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Abstract

Jointing visual-semantic embeddings (VSE) have become a
research hotpot for the task of image annotation, which suf-
fers from the issue of semantic gap, i.e., the gap between im-
ages’ visual features (low-level) and labels’ semantic features
(high-level). This issue will be even more challenging if vi-
sual features cannot be retrieved from images, that is, when
images are only denoted by numerical IDs as given in some
real datasets. The typical way of existing VSE methods is
to perform a uniform sampling method for negative exam-
ples that violate the ranking order against positive examples,
which requires a time-consuming search in the whole label
space. In this paper, we propose a fast adaptive negative sam-
pler that can work well in the settings of no figure pixels avail-
able. Our sampling strategy is to choose the negative exam-
ples that are most likely to meet the requirements of viola-
tion according to the latent factors of images. In this way, our
approach can linearly scale up to large datasets. The experi-
ments demonstrate that our approach converges 5.02x faster
than the state-of-the-art approaches on Openlmages, 2.5x on
IAPR-TCI2 and 2.06x on NUS-WIDE datasets, as well as
better ranking accuracy across datasets.

Introduction

Automatic image annotation is an important task to index
and search images of interest from the overwhelming vol-
ume of images derived from digital devices. It aims to se-
lect a small set of appropriate labels or keywords (i.e., an-
notations) from a given dictionary that can help describe the
content of a target image. However, it is not trivial to handle
the differences between low-level visual features of images
and high-level semantic features of annotations, which has
been well recognized as the problem of semantic gap. This
issue becomes even more challenging if no visual features
can be drawn from figure pixels, that is, when images are
only represented by numerical IDs rather than pixel values.
This problem setting can be observed in some real datasets,
which is the target scenario of this paper.

A promising way to resolve this issue is to jointly embed
images and annotations into the same latent feature space,
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a.k.a. visual-semantic embeddings (VSE) (Weston, Bengio,
and Usunier 2011; Faghri et al. 2017). Since both images
and annotations are represented by the same set of latent
features, their semantic differences can be converged and
computed in the same space. Existing VSE methods are de-
rived in the form of pairwise learning approaches. That is,
for each image, a set of pair-wised (positive, negative) anno-
tations will be retrieved to learn a proper pattern to represent
the image. Due to the large volume of negative candidates, it
is necessary to take sampling strategies in order to form bal-
anced training data. The most frequently adopted strategy,
e.g. in (Weston, Bengio, and Usunier 2011), is to repeatedly
sample negative labels from the dictionary that violates the
ranking order against positive examples. However, the whole
annotation space may need to be traversed until a good neg-
ative example is found. In a word, it is time-consuming and
thus cannot be applied to large-scale datasets.

In this paper, we propose a fast adaptive negative sam-
pler for the task of image annotation based on joint visual-
semantic embeddings (VSE). It is able to well function in
the problem settings of no figure pixels available. Instead
of traversing the whole annotation set to get good nega-
tive examples, we selectively choose those labels that are
most likely to meet the requirements of violation accord-
ing to the latent factors of images and annotations. Specifi-
cally, our proposed sampler adopts a rank-invariant normal-
ization to dynamically select the required high-ranked neg-
ative labels without conducting the inner product operations
of the embedding vectors. In this way, the running time of
negative sampling can be dramatically reduced. We conduct
extensive experiments on three real datasets (OpenImages',
IAPR-TC12%, NUS-WIDE?) to demonstrate the efficiency
of our approach. The results show that our method is 5.02
times faster than other state-of-the-art approaches on Open-
Images, around 2.5 times on IAPR-TC12 and 2.06 times on
NUS-WIDE at no expense of ranking accuracy.

Our main contributions of this paper are given as follows.

e We propose a fast adaptive sampler to select good nega-
tive examples for the task of image annotation. It adopts
a rank-invariant normalization to dynamically choose

"https://github.com/openimages/dataset
Zhttp://www.imageclef.org/photodata
*Ims.comp.nus.edu.sg/research/NUS-WIDE.htm



highly ranked negative labels, whereby the time complex-
ity can be greatly reduced.

e We provide the corresponding proof to show that the pro-
posed sampling is theoretically equivalent with the inner
product based negative sampling, and thus ensure compa-
rable and even better performance in ranking accuracy.

e We conduct a series of experiments on three real image-
annotation datasets. The results further confirm that our
approach performs much faster than other counterparts in
terms of both training time and ranking accuracy.

Preliminary

In what follows, we first introduce the visual-semantic em-
beddings. Then we summarize the typical negative sampling
algorithm used in WARP (Weston, Bengio, and Usunier
2011) and point out its inefficiency issue.

Visual-Semantic Embedding

Following WARP, we start with a representation of images
i € R? and a representation of annotations a € A =
{a1,as,...,a;,} to indicate an annotation of a dictionary.
Let C = {(im,am)}i\fz1 denote a training set of image-
annotation pairs. We refer to (4,,, a,) as positive pairs while
(im,an) as negative pairs®. s;(a) is an inner product func-
tion that calculates a relevance score of an annotation a for
a given image ¢ under the VSE space. V & R(4HADxk de.
notes the embedding matrix of both images and annotations,
where R4*¥ corresponds to image embedding matrix while
RIAIXE corresponds to annotation embedding matrix and k
is the embedding dimension. Meanwhile, we have the func-
tion Wy () that maps the image feature space R? to the em-
bedding space R, and W4 (a) jointly maps annotation space
from RI4I to R*. Assuming a linear map is chosen for T (i)
and W4 (a), we can have Wy (i) = v; and W4 (a)=v,, where
v; and v, are the i-th and a-th row of V.
Hence, we consider the scoring function as follows:

k
si(a) = Wi(i)" - Wa(a) = Z VifUaf (1)
F=1

where f is the embedding factor and the magnitude of s;(a)
denotes the relevance between a and <. The goal of VSE is to
score the positive pairs higher than the negative pairs. With
this in mind, we consider the task of image annotation as a
standard ranking problem.

The WARP Model

WARP (Weston, Bengio, and Usunier 2011) is known as
a classical optimization approach for joint visual-semantic
embeddings, where a weighted approximate-rank pairwise
loss is applied. The loss function is generally defined by
Eq. 2, which enables the optimization of precision at N by

“That is, the annotation a,, is not labeled on image @,,.
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stochastic gradient descent (SGD).

erT(si(a), ap) =y  L(rank(s(ap)))
p#N
|1 - Si(ap) + si(an)|+
rank(s;(ap))

2

where rank(s;(a,)) is a function to measure how many neg-
ative annotations are ‘wrongly’ ranked higher than the posi-
tive ones a,, given by:

rank(s;(ap)) = Z I(1 + si(an) > si(ap))

p#n

3)

where I(+) is an indicator function. The function L(+) trans-
forms the rank into a loss, defined by:

k
Lk) =) &, (&6>2&>...>0)
j=1
where &; defines the importance of relative position of the
positive example in the ranked list, e.g., {; L is used

lAl-1
to optimize the mean rank.
The overall risk that needs to minimize is given by:

Risk(s) = /W(si(a),ap)dP(i,ap)

where P indicates the probability distribution of positive
image-annotation pair (7, a,), which is a uniform distribu-
tion in WARP.

Negative Sampling
An unbiased estimator of the above risk can be obtained by
stochastically sampling in the following steps:

1. Sample a positive pair (i, a,) according to P(i, a,).
2. Repeatedly sample a required annotation a,, such that:

1+ si(an) > si(ap) 4)

This chosen triplet (i, a,, a,,) contributes to the total risk:

W(S’i(a)7a’pa an) = L(Tank(s,-(ap)))
11— si(ap) + si(an)|+

The sampling strategy in step 2 generally implies that the
learning algorithm concentrates merely on the negative an-
notation with a higher score, ie., s;(an) > si(ap) — 1.
The idea is intuitively correct since negative examples with
higher scores are more likely to be ranked higher than posi-
tive ones, and thus results in a larger loss (Yuan et al. 2016;
2017). Hence, as long as the learning algorithm can distin-
guish these higher scored negative examples, the loss is sup-
posed to be diminished to a large extent.

o)

Efficiency Issue of the WARP Sampler

Even though WARP has been successfully applied in var-
ious VSE scenarios, in the following it is shown that the
computational cost of WARP sampling is expensive, in par-
ticular when it has been trained after several iterations. As
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Figure 1: The number of required negative samples of the WARP model as the SGD iterations increase.

depicted in step 2, a repeated sampling procedure has to be
performed such that a required negative example can be ob-
served. The computational complexity of scoring a negative
pair in Eq. 4 is in O(k). In the beginning, since the model
is not well trained, it is easier to find an violated negative
example that has a higher score than the positive one, which
leads to a complexity of O(Tk), where T is the average sam-
pling trials. However, after several training iterations, most
positive pairs are likely to have higher scores than negative
ones, and thus 7" becomes much bigger, with the complexity
up to O(|A|k), where |A] is the size of the whole annotation
set. For each SGD update, the sampler may have to iterate all
negative examples in the whole annotation collection, which
is computationally prohibitive for large-scale datasets.

Experimentation on the Efficiency Issue

According to Eq. 4, the WARP sampler always attempts to
find the violating annotation for a given image annotation
pair. Along with the convergence of WARP training, most
annotations have met the demand (s;(a,) > 1+s;(ay,)), and
thus it will take longer time per iteration to find the expected
violation annotation. To verify our analysis, we conduct ex-
periments on three datasets to count the number of required
negative sampling in the WARP model, as illustrated in Fig-
ure 1. The results show that the main issue of the WARP
sampler is the inefficiency to sample negative items as the
SGD iterations grow. We defer the detailed description of
datasets to the evaluation section.

Specifically, the number of required negative sampling
increases very drastically before the 13th iteration, which
takes over 2,000 repeated sampling until finding an ap-
propriate example. After that, the number stays high at
about 2,100 on the Openlmages dataset. For the NUS-WIDE
dataset, before the 15th iteration, the required sampling
grows rapidly up to 870 and then stable at around 900. Anal-
ogously, the number of negative sampling quickly increases
at the beginning stage and then keeps stable at a high value
around 1,600 on the IAPR-TC12 dataset.

To sum up, the WARP sampler will become slower and
slower as the SGD update iterations accumulate. Hence, we
aim to resolve this issue in this paper by proposing a novel
and efficient negative sampling method.
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Fast Sampling Algorithm

Actually, suchlike sampler has been adopted not only in
WARP but also in other fields, for example in paper (Yuan et
al. 2016). Inspired by (Rendle and Freudenthaler 2014), we
will introduce an alternative sampler for negative examples
in this section, which can greatly speed up the sampling pro-
cess and thus solve the efficiency issue of the orignal sam-
pler mentioned above.

Naive Sampling

As aforementioned, the major computational cost of WARP
is caused by the repeated inner product operations in Eq. 4,
which have a complexity of O(k) in each operation.

In the following, an alternative sampler with fast sampling
rate is derived which has the same intuition with the nega-
tive sampler in WARP — considering a negative example
a,, for a given positive pair (4, a,), the higher score (4, a,,)
has, the more chance a,, should be sampled. Instead of using
the notion of a large score, we opt to formalize a small pre-
dicted rank 7;(a,, ) because the largeness of scores is relative
to other examples, but the ranks are absolute values. This
allows us to formulate a sampling distribution, e.g., an ex-
ponential distribution’, based on annotation ranks such that
higher ranked annotations have larger chance to be selected.

pi(an) o exp(—7i(an)) /A (6)

Hence, a naive sampling algorithm can be easily imple-
mented by:

1. Sample arank  from the exponential distribution in O(1).

2. Return the annotation a,, that is currently ranked on the -
th position, i.e. find a,, with #;(a,) = r or j = 77 *(ay,).

However, it should be noted that this trivial sampling
method has to compute s;(a,,) for all a,, in A, and then sort
them by their scores and return the annotation at place r.
This algorithm has a complexity of O(|A|k + | A|log|A|) for
each SGD learning, which is clearly infeasible in practice.

Motivated by this, we will introduce a more efficient sam-
pling method in the following. The basic idea of our pro-
posed sampler is to formalize Eq. 6 as a mixture of ranking

5In practice, the distribution can be replaced with other analytic distributions,
such as geometric and linear distributions.



distributions over normalized embedding factors such that
the expensive inner production operation can be got around.
The mixture probability is derived from a normalized ver-
sion of the inner product operation in Eq. 1.

Rank-Invariant Normalization

According to Eq. 1, a transformation s} (a) of s;(a) can be
defined by:

k
si(a) =Y p(fli)sgn(vi,s)v; ¢

(N
f=1
where p(f]|¢) is the probability function:
p(fli) := |vigl - oy ®

and v;} ¥ is a standardized label factor:

* Ya,f — Kf
Vaf = =
of
where py and crj% are the empirical mean and variance over
all labels’ factors, given by:

pr=E(v,f), of=Var(v,f) ©)

The main idea is that the ranking ©* generated from scor-
ing s* has the same effect as the ranking v from s.
We can prove this as follows:

k
si(a) =Y vi Vo
f=1

k
= loisl sgn(uig) (o505 + 1s)
F=1

k
=" lvigl sgnlvig) o705 ¢ + [vi | sgn(vip) gy
=1
k
sp(a) + > |vi sl sgn(vig) 1
f=1

Note that the second term Zl;zl |vi,f| sgn(vi f)py is in-
dependent of label a, whereby we can treat it as a constant
value. In other words, the ranks generated by s} (a) will be
equal with those generated by s;(a), i.e., 7 = 7*.

Sampler Function. Since the ranks generated by s;(a)
can also work with s¥(a), we can define our sampler func-
tion according to this characteristic. The representation of
sf(a) in Eq. 7 indicates that the larger p(f|i) is, the more
important dimension f is for the specific image i. We can
define the sampling distribution as follows:

k
plali) =" p(f1i) plali, f)
f=1

As v*; has been standardized, we may define p(ali, f) in
the same manner as Eq. 6:

plali, f) o exp(=7~(ali, f)/X)
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Algorithm 1 VSE-ens with fast negative sampling

1: Randomly initialize ©, I, A,q =0

2: repeat

3 qg+q+1

4:  if ¢%|Allog|A| = 0 then

5: pevery |Allog|A| draws
6: for fel,...,kdo

7: Compute 7~ 1(.| f)

8: Compute pr and fy
9: end for

10:  end if

11:  Draw (i,a,) « P(i,a,)

12:  Draw r from p(r) o< exp(—r/\)
13:  Draw f from p(f|i) o< |vs, flof
14:  if sgn(v; s) =1 then

15 j=r i)

16:  else

17: jg=r=Y(I| —r+1]f)

18:  end if

19: for6d € Odo

20: 0 < 0 — V|l + si(ap) — si(an)|+
21:  end for

22: until convergence

23: return ©

Following Eq. 7, the scoring function under the given image
7 and dimension f can be defined by:

s"(ali, f) = Sgn(vi,f) ”Z,f

According to the inference aforementioned, the above sam-
pler function can be written as follows:

s(ali, f) := sgn(vi,f) va,r (10)

From our sampler function, we can observe an intuitive rela-
tion between s(ali, ) and 7(ali, f): the label on rank r has
the 7-th largest factor v £, if sgn(v;, ¢) is positive; otherwise
it has the r-th largest negative factor.

Process of Sampling

According to our sampler function (Eq. 10), the process of
sampling negative labels is elaborated as follows:

1. Sample a rank r from a Geometric distribution.
2. Sample a factor dimension f from p(f|7).

3. Sort labels according to v, y. Due to the rank-invariant
property, it is thus equivalent to an inverse ranking func-
tion (77 1).

4. Return the label a,, on position 7 in the sorted list accord-
ing to the value of sgn(v; 5), i.e., #(r|f) if sgn(v; y) =1,

or #(|A] —r+1|f) if sgn(v; f) = —1.

In the process, steps 1 and 4 can be performed in O(1),
step 2 including the computation of p(f|i) in O(k). So, the
only computational intensive step is the third one, where
three factors are sorted in O(]A| log|A|).

It will take much time if we have to re-sort the ranks in
order to get the negative examples for every dimension f.



Instead, we opt to further reduce the complexity by pre-
computing the k rankings for every |A| log|A]| iterations.
This is because the ordering changes only little and many
update steps are necessary to change the pre-computed rank-
ing considerably. As a result, the complexity can be reduced
to O(k |A| log|A]) and the memory consumption can be de-
creased to k| A| for storing all #~1(.| ).

To sum up, the sampling algorithm has an amortized run-
time of O (k) for drawing a negative annotation which is the
same as the cost of a single SGD step. As there is one sam-
ple for each gradient step, the computational complexity of
the original SGD algorithm does not increase.

Algorithm 1 sketches the pseudocodes of the improved
learning algorithm. To explain, several arguments are taken
as input, including the model parameters O, the collection
of images I, the collection of annotations A and a variable
q. Firstly, we precompute the 7~ '(.|f), 07 and jy with a
constant time (line 7 and line 8). Then, we sample an image-
annotation pair (line 11) and get the position of this annota-
tion in the annotation embedding space (line 12). Next, we
choose a factor in the annotation embedding (line 13) space
according to p(f]i) and get another annotation according
the value of sgn(v; r) (line 14 - line 17). Finally, we adopt
the popular Stochastic Gradient Descent (SGD) algorithm to
train our model and update the model parameters O (line 19
and line 20) until convergence.

Example of Negative Sampling: As shown in Figure 2,
suppose we have 5 images with 10 annotations in the train-
ing datasets and set the number of embedding factor as 5.
Following Algorithm 1, our model will rank these annota-
tions according to v, ¢ for each dimension f, and compute
the value of oy and ji at the first iteration. Then, it will ran-
domly choose a positive image-annotation pair, e.g. the 1st
image and the 2nd annotation, denoted as (1,2). After this,
the negative sampler will sample a rank r, e.g. r = 2 ac-
cording to the designed distribution and a dimension f, e.g.
f = 3. Finally, we are able to return the negative example
according to sgn(vy 3), i.e., choosing the negative annota-
tion from the ranked list with r = 8, f = 3 if sgn(v13) <0,
andr =2, f = 3if sgn(vy 3) > 0.

Experiments and Results
Datasets

Three real datasets are used in our evaluation, namely Open-
Images, NUS-WIDE and IAPR-TC12. Openlmages is intro-
duced by (Krasin, Duerig, and Alldrin 2017) and contains
9 million URLs to images that have been annotated with
image-level labels. NUS-WIDE (Chua et al. 2009) is col-
lected at the National University of Singapore, and com-
posed of 269,648 images annotated with 81 ground-truth
concept labels and more than 5,000 labels. IAPR-TC12 pro-
duced by (Grubinger et al. 2006) has 19,627 images com-
prised of natural scenes such as sports, people, animals,
cities or other contemporary scenes. Each image is anno-
tated with an average of 5.7 labels out of 291 candidates.
The statistics of the three datasets are presented in Table 1,
where rows “Train’ and ‘Test’ indicate the number of image-
annotation pairs in the training and test set, respectively.
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Figure 2: Example of our adaptive negative sampling

Table 1: The statistics of our datasets

Feature | Openlmages | NUS-WIDE | IAPR-TC12
Images 112,247 269,648 19,627
Lables 6,000 5108 291
Train 887,752 2,018,879 79,527
Test 112,247 267,642 20,000

Experimental Setup

We have implemented and compared with the following two
strong baselines.

e WARP (Weston, Bengio, and Usunier 2011) uses a nega-
tive sampling based weighting approximation (see Eq. 3)
to optimize standard ranking metrics, such as precision.

e Opt-AUC is to optimize Area Under the ROC Curve
(AUC). Logistic loss is used as the smoothed AUC sur-
rogate.

We adopt the leave-one-out evaluation protocol. That is,
we randomly select an annotation from each image for eval-
uation, and leave the rest for training. All reported results
use the same embedding dimension of k = 100. The hyper-
parameters for VSE-ens on all three datasets are: learning
rate n = 0.01, regularization = 0.01, and variables are ini-
tialized by a normal distribution A/(0, 0.01). Parameter A for
VSE-ens is tuned from 0.001 to 1.0 to find the best value.
The learning rate and regularization settings of other models
are tuned from 0.001 to 0.1 to search the optimal values.

Evaluation Metrics

We use four widely used ranking metrics to evaluate the per-
formance of all comparison methods. Generally, the higher
ranking metrics are, the better performance we get. The first
two ranking metrics are precision@N and recall@N (de-
noted by Pre@N and Rec@N). We set N = 5,10 for the
ease of comparison in our experiments.

TP
TP+ FP

TP

Pre@N =
re TP+ TN

Rec@N =



Table 2: The ranking accuracy of comparison methods, where the last line of each dataset ‘Improve’ indicates the improvements

our approach achieves relative to WARP.

Dataset Model Pre@5 Rec@5 Pre@10 Rec@10 MAP AUC
Open- VSE-ens 0.0574 0.2869 0.0434 0.4342 0.1762 0.7168
Images WARP 0.0526 0.2628 0.0390 0.3900 0.1676 0.6948
Opt-AUC 0.0188 0.0938 0.0147 0.1465 0.0564 0.5732
Improve 9.13% 9.17% 11.28 % 11.33 % 5.13 % 3.17 %
NUS- VSE-ens 0.0278 0.1391 0.0198 0.1982 0.0893 0.5990
WIDE WARP 0.0107 0.0533 0.0083 0.0830 0.0336 0.5415
Opt-AUC 0.0035 0.0177 0.0028 0.0279 0.0113 0.5139
Improve 159.81 % 160.98 % 138.55 % 138.80 % 165.77 % 10.62 %
IAPR- VSE-ens 0.0598 0.2990 0.0436 0.4364 0.1836 0.7126
TCI12 WARP 0.0595 0.2976 0.0428 0.4278 0.1796 0.7086
Opt-AUC 0.0543 0.2713 0.0414 0.4136 0.1629 0.7011
Improve 0.50 % 0.47 % 1.87 % 2.01 % 2.23 % 0.56 %

where TP is the number of annotations contained in both
the ground truth and the top-N results produced by the al-
gorithm; F'P is the number of annotations in the top-N rec-
ommendations but not in the ground truth; and T'N is the
number of annotations contained in ground truth but not in
the top-N recommendations.

We also report the results in Mean Average Precision
(MAP) and Area Under the Curve (AUC), which take into
account all the image labels to evaluate the full ranking.

9 | AveP(q)
Q

where @ denotes the sample space and ¢ is an example of
Q. AveP = >~} _, P(k)Ar(k), where P and r denote the
Precision and Recall, respectively.

)

|Ds| (i,ap,an) €D

MAP =

AUC — O'(SACZ‘pn > O)
114,114,

where Dy denotes the set of training triplet pairs; o(-) is a

sigmoid function and &;;,,, = f;(ap)— fi(a,) aims to capture

the relationship between positive annotation a,, and negative

annotation a,, for image 7.

Comparison in Training Time

We compare the different models in terms of training time.
Specifically, Table 3 summarizes the theoretical time com-
plexity of all the comparison methods by iterating all an-
notation sets; and Table 4 shows the specific training time
on the Openlmages, NUS-WIDE and IAPR-TC12 datasets.
The results show that our approach gains up to 5.02 times
improvements in training time compared with other com-
parison methods in the Openlmages dataset.

In Table 3, our model precomputes rankings for every
|A|log| A| SGD update (as described in Algorithm 1), which
can be finished in amortized runtime. Then it will draw a
rank r, the rank of negative sample in O(1) and a latent
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Table 3: The theoretical time complexity of all the compar-
ison models in each iteration, where k is the size of the em-
bedding space, T is the average number of sampling trials
for negative sampling.

Model Time Complexity
VSE-ens O(2k)

WARP O(Tk)

Opt-AUC O(k)

Table 4: Training time comparison on the three datasets

Model Openlmages | NUS-WIDE | IAPR-TC12
VSE-ens 7.1h 24.83h 0.95h
WARP 35.65h 51.46h 2.38h
Opt-AUC 10.13h 25.06h 1.82h

factor f in O(k), resulting in the additional time complex-
ity around O(k). For the WARP model, most time is con-
sumed and determined by the negative sampling, which can
be noted as O(T'k). For Opt-AUC, although the time com-
plexity for each SGD update is lowest among these models,
it takes more training iterations for convergence since most
negative examples selected by the uniform sampler are not
informative.

In Table 4, our VSE-ens spends 7.1 hours in training on
the Openlmages dataset, whereas WARP costs 5 times more
training time. On the NUS-WIDE dataset, the improvement
our model reaches is about 2x faster than WARP. Similar ob-
servation can be made on the IAPR-TC12 dataset. Besides,
our proposed sampling also consistently takes shorter time
than Opt-AUC, because VSE-ens requires less number of
iterations to reach convergence. More specifically, our ap-
proach can reach the stable status and converge at around



200 iterations, WARP costs 150 iterations (thus more costly
for each iteration), and Opt-AUC takes around 800 iterations
to complete the optimization in our experiments.

Comparison in Ranking Accuracy

The ranking accuracy of all the comparison models is shown
in Table 2, where the percentage of improvements that our
approach gains relative to WARP is also presented in the
last row of each dataset. In general, our model achieves the
best performance in ranking accuracy. Specifically, WARP
is a stronger baseline than Opt-AUC, given the fact that
the higher ranking accuracy is achieved across all of the
datasets. Our VSE-ens model outperforms WARP in all test-
ing datasets, with a large portion of improvements. In par-
ticular, the improvements on NUS-WIDE are the most sig-
nificant, which can reach up to around 166% in terms of
MAP. This implies that our adaptive negative samplers are
more effective than the uniform samplers used by WARP
and Opt-AUC. Note that the amount of improvements vary
quite different among datasets, which may be due to the dif-
ferent statistics of our datasets, and require further study as
part of our future work.

In conclusion, our VSE-ens approach cannot only greatly
reduce the training time in sampling positive-negative anno-
tation pairs for each image, but also effectively improve the
performance of image annotation in comparison with other
counterparts across a number of real datasets.

Related Work

Many approaches have been proposed in the literature to re-
solve the issue of semantic gap in the task of image annota-
tion. In general, these approaches can be roughly classified
into three types, namely (1) manual annotation, (2) semi-
automatic annotation and (3) automatic annotation. Man-
ual annotation requires users to provide the browsed im-
ages with descriptive keywords, which are often regarded as
the ground truth of corresponding datasets. However, man
power is often very expensive and it would be even in-
tractable when facing a huge amount of images.

Semi-automatic annotations can produce automatic anno-
tation to some extent, but also require to build fundamental
structures with the involvement of human beings. For exam-
ple, (Marques and Barman 2003) propose a layered struc-
ture to build image ontology for annotations, where low-
level features of images are selected by the bottom layer.
By abstracting low-level features up to high-level features, it
connects the semantic feature of images with appropriate an-
notations. However, the building of image ontology requires
expert knowledge, and may be domain-specific. (Zhang, Li,
and Xue 2010) formulate image annotation as a multi-label
learning problem, and develop a semi-automatic annotating
system. For a given image, their system initially chooses
some keywords from a vocabulary as labels, and then refines
these labels in the light of user feedback.

Most existing works follow the direction of automatic im-
age annotation, which provides the greatest flexibility and
the least involvement of human users. To this end, some
researchers make use of textual information for image an-
notation. (Deschacht, Moens, and others 2007) present a
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novel approach to annotate images by the associated text.
It first determines the salient and attractive parts of text from
which semantic entities (e.g, persons and objects) are then
extracted and classified. (Verma and Jawahar 2012) propose
a two-step variant of K-nearest neighbor approach, where
the first step is to learn image-to-label similarities and the
second is to learn image-to-image similarities. Both kinds
of similarities are combined together to help annotate an im-
age with proper labels. (Uricchio et al. 2017) propose a label
propagation framework based on Kernel Canonical correla-
tion analysis. It builds a latent semantic space where corre-
lations of visual and textual features are well preserved.

For visual semantic embeddings, (Frome et al. 2013) de-
velop a new deep visual-semantic embedding model which
transfers the semantic knowledge learned from a textual
domain to a deep neural network trained for visual object
recognition. (Yu, Pedrycz, and Miao 2013) propose a multi-
label classification method for automatic image annotation.
It takes into consideration the uncertainty to map visual fea-
ture space to semantic concept space based on neighbor-
hood rough sets. The label set of a given image is deter-
mined by maximum a posteriori (MAP) principles. (Ren
et al. 2015) introduce a multi-instance visual-semantic em-
bedding model to embed images with a single or multi-
ple labels. This approach first constructs the image subre-
gion set, and then builds the region-to-label correspondence.
(Kiros, Salakhutdinov, and Zemel 2014) describe a frame-
work of encoder-decoder models to address the problem of
image caption generation. The encoder learns a joint image-
sentence embedding using long short-term memory (LSTM)
and the decoder generates novel descriptions from scratch
by a new neural language model. Different from the above
works, our problem settings do not have associated content
to describe images. Our main focus is not to better model
images, but to provide a better solution to find appropriate
annotation pairs in shorter time, which may be beneficial for
other models.

Conclusions

In this paper, we aimed to resolve the problem of slow
negative sampling for visual-semantic embeddings. Specif-
ically, we proposed an adaptive sampler to select highly
ranked negative annotations by adopting a rank-invariant
normalization, through which the time complexity can be
greatly reduced. We showed that our proposed sampling was
theoretically comparable with traditional negative sampling
based on time-consuming inner products. Experimental re-
sults demonstrated that our approach outperformed other
counterparts both in training time and ranking accuracy.
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