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Abstract

In the past decade, various multi-view outlier detection meth-
ods have been designed to detect horizontal outliers that ex-
hibit inconsistent across-view characteristics. The existing
works assume that all objects are present in all views. However,
in real-world applications, it is often the incomplete case that
every view may suffer from some missing samples, resulting
in partial objects difficult to detect outliers from. To address
this problem, we propose a novel Collective Learning (CL)
based framework to detect outliers from partial multi-view
data in a self-guided way. More specifically, by well exploit-
ing the inter-dependence among different views, we develop
an algorithm to reconstruct missing samples based on learning.
Furthermore, we propose similarity-based outlier detection
to break through the dilemma that the number of clusters is
unknown priori. Then, the calculated outlier scores act as the
confidence levels in CL and in turn guide the reconstruction
of missing data. Learning-based missing sample recovery and
similarity-based outlier detection are iteratively performed
in a self-guided manner. Experimental results on benchmark
datasets show that our proposed approach consistently and
significantly outperforms state-of-the-art baselines.

1 Introduction

Nowadays, data are usually collected from various feature
extractors or obtained from diverse domains, and each group
of features is conceived as a particular view (Xu, Tao, and
Xu 2013). For example, a video can be represented by vi-
sual and audio information; an image can be represented by
color, shape and other features; and a webpage can be rep-
resented by images, words, and URLs on the page. Then,
multi-view outlier detection, i.e., identifying the abnormal
objects in multi-view data, becomes more challenging due to
the complicated distribution and organization of data.

To date, a number of multi-view outlier detection methods
(Das et al. 2010; Janeja and Palanisamy 2013; Muller et al.
2012) have been developed. In the similar direction to con-
ventional single-view outlier detection (Chandola, Banerjee,
and Kumar 2009; Akoglu, Tong, and Koutra 2015), these
multi-view approaches achieved good performance of de-
tecting outliers that have abnormal behaviors in each view.
Meanwhile, a new branch of multi-view outlier detection
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Figure 1: Illustrations of detecting horizontal outliers from
(a) complete and (b) partial multi-view data. The shaded area
means that the corresponding sample is actually missing.

called horizontal anomaly detection is proposed by (Gao
et al. 2011), which detects horizontal outliers that exhibit
inconsistent characteristics (mainly referring to cluster mem-
berships) across different views.

An example is illustrated in Figure 1(a), which can be de-
scribed as follows. Objects {�,�,�,�} stand for a group of
developers working on project A, while objects {�,�,�,	}
are working on both projects A and B (e.g., in a managerial
role). After analyzing the file accesses of users (view-I), we
find that object 
 has the same access right as the first group
{�,�,�,�}. From analyzing view-II representing email in-
teractions among users, we find two social network clusters:
{�,�,�,�} and {�,�,
,�,	}. By examining both views, it
is apparent that object 
 is anomalous due to its inconsistent
across-view behaviors (i.e. cluster results).

Along this mainline, many effective methods (Liu and Lam
2012; Alvarez et al. 2013; Li, Shao, and Fu 2015; Zhao and
Fu 2015; Iwata and Yamada 2016) have been proposed in
the past decade. Detecting horizontal outliers from multi-
view data has shown more and more significant potential in
various applications, such as malicious insider detection (Liu
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Figure 2: Framework of our proposed method to detect out-
liers from partial multi-view data in a self-guided manner.

and Lam 2012), purchase behavior analysis (Gao et al. 2013),
information disparity management (Duh et al. 2013), and so
on. These previous studies assume that all objects are present
in all views.

However, in real-world applications, each view may suffer
from some missing samples, which results in partial objects
(Li, Jiang, and Zhou 2014). Continuing the aforementioned
example, Figure 1(b) shows a partial multi-view scenario.
Object � and � do not have the corresponding samples in
view II, meanwhile, object � and � only have the corre-
sponding samples in view II. This situation is more practical,
e.g., there may be new users without historical behaviors in a
system. After clustering, the outlier (object 
) has been iden-
tified as an inlier owing to its consistent across-view cluster
memberships. Hence, the incompleteness influences outlier
detection. The more partial the multi-view data is, the much
more difficult it is to identify outliers.

All previous methods may fail to detect horizontal outliers
in partial multi-view scenarios. There are two distinguishing
challenges summarized as follows. On the one hand, if an ob-
ject is present in all views, there exists natural correspondence
relationship among its corresponding samples. In (Wang et al.
2016), this relationship is dubbed “co-occurrence”. The inter-
view consistency of behaviors can be consequently guaran-
teed. However, the existence of horizontal outliers suppresses
this inter-view consistency. It is challenging to determine
which object appearing in all views can help to link up dif-
ferent distributions. On the other hand, the objects with miss-
ing samples act as troublemakers that disturb the intrinsic
doublet/triplet based relations. Since they still provide some
information, it is not suitable to remove these objects. The
intention of horizontal outlier detection is also for all given
objects. It is challenging to make full use of them as well.

In order to address the above challenges, we propose a
Collective Learning (CL) based outlier detection approach,
which can detect horizontal outliers in the scenario that every
view suffers from some missing samples. We present a unified
framework to conduct missing sample recovery and outlier
detection in a self-guided manner. As illustrated in Figure 2,
CL is utilized to reconstruct missing samples by enhancing
the inter-dependence among all samples from different views.
In order to identify outliers in the intractable case that the

cluster number is unknown, we propose a similarity-based
Hilbert-Schmidt Independence Criterion for outlier scores.
Then, the calculated outlier scores are converted into confi-
dence levels of all objects and in turn guide CL. Learning-
based missing sample recovery and similarity-based outlier
detection are iteratively integrated together. Comparison ex-
periments on benchmark datasets convincingly demonstrate
the superiority of our method.

To the best of our knowledge, this paper is the first attempt
to detect outliers from partial multi-view data. In summary,
our major contributions are as follows:

1) We propose a novel collective learning based partial
multi-view outlier detection method, which iteratively inte-
grates missing sample recovery and outlier detection together
in a self-guided way.

2) An effective algorithm with closed-form solutions is
developed for learning-based missing samples recovery.

3) Similarity-based outlier scores are designed for outlier
detection, which can in turn guide the process of learning.

2 Preliminary

2.1 Notation Summary

Except in some specified cases, lowercase letters (m,n, · · ·)
are scalars. Bold lowercase letters (x,y, · · ·) denote vectors,
while bold uppercase letters (X,Y, · · ·) are matrices. x(i)
presents the ith element of x. Xij is the jth element in the
ith row of X. |Xij | is the absolute value of Xij . ‖X‖1 and
‖X‖F denote the l1 norm (

∑
i,j |Xij |) and Frobenius norm

(
√∑

i,j X
2
ij), respectively. Tr (·), (·)−1, and (·)T stand for

the trace, inverse, and transpose, respectively. Moreover, 1
denotes an all-ones vector with a compatible length. I is an
identity matrix with an appropriate size.

2.2 Hilbert-Schmidt Independence Criterion
(HSIC) Revisit

HSIC (Gretton et al. 2005) is a kernel-based metric to mea-
sure the independence between two random variables x and y
by computing the Hilbert-Schmidt-norm of the cross covari-
ance operator over the domain X ×Y in Reproducing Kernel
Hilbert Spaces (RKHSs). Suppose that X and Y are two
RKHSs in X and Y , respectively. By the Riesz representa-
tion theorem, there are two feature mappings ϕ (x) : X → R

and φ (y) : Y → R, such that the kernel function L (x,x′)
returns the inner product ϕ(x)Tϕ (x′) in X and K (y,y′)
returns the inner product φ(y)Tφ (y′) in Y.

HSIC can be empirically estimated in the RKHSs by a
finite number of samples. Let {(xi,yi)}ni=1 ⊆ X × Y denote
n observations that are independently and identically drawn
from the joint distribution PrX×Y . Then,

HSIC =
1

(n− 1)
2Tr (HLHK), (1)

where H = I − 1
n11

T ∈ R
n×n is called the centering

matrix1. L,K ∈ R
n×n are both kernel matrices with each

element Lij = L (xi,xj) and Kij = K (yi,yj).
1In this paper, we absorb 1

n−1
into H as H = H

n−1
.
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Figure 3: The flowchart of our proposed method to detect outliers for partial multi-view data.

3 The Proposed Method

In this section, we propose a Collective Learning (CL) based
framework to detect outliers from partial multi-view data
in a self-guided manner. Figure 2 illustrates our CL based
framework. Here, we first introduce the mechanism of CL.

3.1 Collective Learning (CL)

Borrowed from the realm of pedagogy (Garavan and Carbery
2012), CL draws on a wide body of theories related to psy-
chology and sociology. It is generally conceptualized as a
dynamic process of knowledge production. Learning emerges
due to cumulative interactions where individual knowledge
is disseminated, diffused, and further shared. Therefore, CL
can be conceived as an evolutionary process of perfecting
collective knowledge.

Suppose there are n people with diverse professional back-
grounds. Towards a novel concept, their opinions may be dif-
ferent and complementary. Then, through collective learning,
each person can obtain new knowledge and correct his/her
priori knowledge. There are three key components in collec-
tive learning:

• The learning process aims to let everyone have a complete
knowledge at the end. Thus, CL should maximize the
dependency among all people’s updated knowledge.

• Each person should have confidence for what he/she has
contributed. Thus, other people can determine the quality
of knowledge they learned. Consequently, the learning
process can prevent from misleading.

• The learning process should be dynamic as well as the
individual confidence. The learning process and the update
of confidence should be iteratively integrated together.

For partial multi-view data, the incompleteness accom-
panied by complementarity spontaneously motivates us to
utilize CL to reconstruct missing samples (§3.2). Consider-
ing that different individuals may have different confidence
in his/her knowledge, there is a demand to measure confi-
dence levels. Fortunately, the outlier score is a quantitative
estimation of across-view inconsistency, which is a naturally
good choice. After missing sample recovery, similarity-based
outlier scores are calculated (§3.3) and then converted into
confidence levels to guide CL in turn. Learning-based miss-
ing sample recovery and similarity-based outlier detection
are iteratively integrated together in a self-guided way (§3.4).

3.2 Learning-based Missing Sample Recovery

For the convenience of presentation, assume that we are given
n objects with two views. Both of the two related views are

incomplete, i.e., Sc = {(xi,yi)}nc

i=1 is the set of samples
present in both views, Sx = {xnc+i}nx

i=1 is the set of samples
only present in the first view, and Sy = {ync+nx+i}ny

i=1 is
the set of samples only present in the second view. Hence,
we can formulate the above partial multi-view data as

X =

[
Xnc

Xnx

Xny =?

]
and Y =

[
Ync

Ynx =?
Yny

]
,

where n = nc+nx+ny . The ith row of X or Y stands for a
sample of object i. The sub-matrices Xny and Ynx stand for
the missing data in each view, respectively. To help identify
outliers from the two incomplete views, we first introduce
CL to reconstruct missing samples in this subsection.

The missing data Xny (or Ynx ) has inherent dependency
upon the given data Yny (or Xnx). According to Eq.(1),
maximizing the empirical estimation of HSIC will lead to
the maximization of the dependency between two random
variables. We adopt linear kernel matrix, i.e., L = XXT and
K = YYT . Therefore, we formulate Eq.(2) as the objective
function of CL for learning-based missing sample recovery.

max
Xny ,Ynx

Tr
(
HXXTHYYT

)
(2)

Without loss of generality, we can follow (Shao, He, and Yu
2015; Zhao, Liu, and Fu 2016) to fill in the missing data Xny

with average features as initialization. Then, Eq.(2) can be
alternately optimized as follows:

1) Solve Ynx with fixed Xny . Denote P = HXXTH as

P =

⎡
⎣ Pncnc Pncnx Pncny

(Pncnx)
T

Pnxnx Pnxny

(Pncny )
T

(Pnxny )
T

Pnyny

⎤
⎦ .

Then, using the fact that P is symmetric, Eq.(2) reduces to

max
Ynx

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Tr
[
Ynx(Ynx)

T
Pnxnx

]
+2Tr

[
Ynx(Ync)

T
Pncnx

]
+2Tr

[
Yny (Ynx)

T
Pnxny

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (3)

By setting the derivative w.r.t. Ynx to zero, we can acquire
the solution2

Ynx = −(Pnxnx)−1
[
(Pncnx)TYnc +PnxnyYny

]
. (4)

2) Solve Xny with fixed Ynx . Denote Q = HYYTH as

Q =

[
Qncnc Qncnx Qncny

(Qncnx)T Qnxnx Qnxny

(Qncny )T (Qnxny )T Qnyny

]
.

2To guarantee the invertibility, we usually add a small perturba-
tion ε = 10−6 to each main diagonal element of Pnxnx in practice.
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Then, in a similar way, we obtain the solution w.r.t. Xny :

Xny = −(Qnyny )−1
[
(Qncny )TXnc + (Qnxny )TXnx

]
. (5)

The above steps of CL are alternatively performed until
the learning-based missing sample recovery converges.

3.3 Similarity-based Outlier Detection

After missing sample recovery, we construct similarity ma-
trices W(X)and W(Y ) ∈ R

n×n for both views. Specially,
the similarity matrix W(X) for n samples x1, · · · ,xn is cal-

culated as W
(X)
ij =

{
1 , j ∈ Ni or i ∈ Nj

0 , otherwise , where Ni

is a set of indexes indicating the k nearest neighbors of xi.
Similarly, we can obtain W(Y ). Note that both W(X) and
W(Y ) are symmetric matrices.
Remark 1: It is a frequent occurrence that distant samples
most likely come from different clusters while samples close
to each other are often within the same cluster. W(X)

ij = 0
means that xi and xj are completely dissimilar, and thus may
have different labels, while W

(X)
ij = 1 suggests that the two

samples are likely to be grouped into the same cluster.
Remark 2: Despite the number of clusters is unknown a
priori, we can denote it as c tentatively. Let V ∈ R

n×c be
the cluster indicator matrix of X. Each row of V is a one-hot
label vector: vi = [0, 0, · · · , 1, · · · , 0, 0], whose non-zero
position indicates the cluster label of xi. Let J ∈ R

n×n

denote the linear kernel matrix of V, i.e., J = VVT . Thus,
if xi and xj belong to the same cluster, Jij = viv

T
j = 1;

otherwise, Jij = viv
T
j = 0.

As analyzed in Remark 1 and 2, the similarity matrix is a
naturally good surrogate for the linear kernel matrix of corre-
sponding cluster indicators, especially when the total number
of clusters is unknown priori. Consequently, we revive the
kernel-based HSIC and design a similarity-based criterion
for the quantitative estimation of inconsistency.

Denote s ∈ R
n as the outlier score vector. Then, our

criterion to estimate each object’s outlier score is

s (i) = Δii with Δ = HW(X)HW(Y ). (6)

Note that the summation of all outlier scores is an approxima-
tion of HSIC, which measures the independence between the
cluster indicators of two views. The smaller the score s (i) is,
the more likely object i is a horizontal outlier.

3.4 Iterative Integration

After reconstructing samples and computing outlier scores,
object i is marked as a horizontal outlier if s (i) is smaller
than the threshold τ . One can regard this as a natural ending,
but it is not done yet. Recall that our goal is to detect outliers
from partial multi-view data. Do all objects contribute equally
to missing sample recovery? Of course not. The reason comes
from the fact that a horizontal outlier has inconsistent cluster
memberships. The more likely an object is an outlier, the less
effect it should have on the reconstruction of missing data.

To address this issue, we employ the outlier score vector s
to integrate missing sample recovery and outlier detection in

Algorithm 1 Partial Multi-view Outlier Detection Based on
Collective Learning

Input:
Partial multi-view data X and Y;
the number of self-guided iterations T ;
the number of nearest neighbors k;
the threshold τ .

Output:
Binary outlier indicator vector o.

1: Initialize missing data with average features, C = 11T .
2: for t = 1 : T do
3: repeat
4: Calculate P = diag (C)HXXTH.
5: Fix the others and update Ynx via Eq.(4).
6: Calculate Q = HYYT diag (C)H.
7: Fix the others and update Xny via Eq.(5).
8: until convergence
9: Construct similarity matrices W(X) and W(Y ).

10: Calculate the outlier score vector s via Eq.(6).
11: Scale {s(i)}ni=1 to [0.1, 1] and update C = ssT .
12: end for
13: Generate the binary outlier indicator vector o ∈ R

n,
if s (i) < τ , o (i) = 1; otherwise, o (i) = 0.

a self-guided manner. All scores {s (i)}ni=1 are scaled to the
range of [0.1, 1] and a confidence matrix C = ssT ∈ R

n×n is
calculated. The optimization problem (2) for learning-based
missing sample recovery is modified as

max
Xny ,Ynx

Tr
[(
HXXTHYYT

)�C
]
, (7)

where � is the Hadamard product (element-wise multiplica-
tion). Cij = Cji, whose value reflects the pairwise confi-
dence level in measuring the dependency of samples.

Considering the definition of Tr(·), Eq.(7) is equiva-
lent to maxXny ,Ynx Tr

[
HXXTHYYT diag (C)

]
, where

diag (C) stands for a diagonal matrix with the same main
diagonal elements as C. The fact that the main diagonal ele-
ments of C are {s(i)2}ni=1 provides us a fresh perspective of
self-guided mechanism. Just as in collective learning, if a per-
son has less confidence in his/her knowledge, he/she will be
shyer to share. Hence, if an object is more likely an outlier, it
should provide less contribution to missing sample recovery.
Regarding the optimization procedure, we only need to up-
date P = diag (C)HXXTH and Q = HYYT diag (C)H.
Algorithm 1 outlines the whole procedures of our method.
As indicated in Algorithm 1, missing sample recovery and
outlier detection are iteratively performed in a self-guided
way.

3.5 Discussion

Algorithmic analysis: The time complexity for missing sam-
ple recovery approximates O(n3

x + n3
y), which involves the

most time-consuming matrix inversion. The time complex-
ity for outlier detection approximates O(ndx + ndy) due to
the most computational k nearest neighbor graph construc-
tion, where dx and dy are the feature dimensions of data.
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In practice, we set a maximum iteration number T for the
self-guided iteration. We find that the performance gradually
levels out in less than 100 iterations for all datasets in our
experiments. As for missing sample recovery, we judge the
alternating optimization to be converged as long as the value
of Eq.(7) changes not obviously (≤ 10−7). The experimental
results show that it also converges very fast, i.e., at most 100
iterations. Hence, the overall time cost of our method tends
to be small because Algorithm 1 converges rapidly.

Extension for multiple views: It is straight-forward to
extend our method to the case with more than two views.
Suppose there are m incomplete views (m > 2). For arbitrary
two partial views in which some objects have co-occurring
samples, Algorithm 1 can be implemented to generate a bi-
nary outlier indicator vector. Then, to decide whether an
object is an outlier, we just need to take the majority vote of
all its corresponding outlier indicators.

4 Experiment

In this section, we compare our proposed approach with
four baseline multi-view outlier detection methods over one
synthetic dataset and two real-world datasets.

4.1 Datasets

Synthetic dataset is composed of two views {X,Y}. For
each view, we randomly select 200 data points from a
two-component Gaussian mixture model as samples. There
are two clusters (i.e., cluster 1 and 2). Specifically, the
cluster means are μ

(X)
1 = [1, 1] and μ

(X)
2 = [4, 2] in X,

μ
(Y )
1 = [1, 3] and μ

(Y )
2 = [3, 1] in Y. The corresponding co-

variances are

Σ
(X)
1 =

[
0.3 0
0 0.4

]
,Σ

(X)
2 =

[
0.2 0.15
0.15 0.35

]
;

Σ
(Y )
1 =

[
0.25 −0.05
−0.05 0.2

]
,Σ

(Y )
2 =

[
0.4 0.1
0.1 0.3

]
.

Real-world datasets are described as follows.

• Oxford Flowers Dataset (Flowers) (Nilsback and Zis-
serman 2006) is comprised of 17 flower classes, with 80
images per class. Each image is described by color and
shape features. In this paper, we adopt the χ2 distance
matrices of different features as different views.

• USPS-MNIST Dataset combines two popular handwrit-
ten datasets, USPS (Hull 1994) and MNIST (LeCun et al.
1998). The USPS dataset contains 9298 digit images with
the size of 16×16, and the MNIST dataset contains 70000
digit images with the size of 28× 28. The same digits in
two datasets can be regarded as two different views, since
they were collected under different scenarios. In the exper-
iments, we follow (Li, Shao, and Fu 2015) and randomly
select 50 images per digit from each dataset. Thus, there
are 500 samples in each view.

All the above datasets are naturally complete. To simplify
the partial multi-view scenarios, we follow the settings in
(Shao, He, and Yu 2015) and delete the same number of
samples for all views. In specific, we set the Partial Object

Ratio (POR) from 0% (all views are complete) to 75% (75%
of the total objects have only one view) with 15% as interval.
The missing samples are distributed evenly in all views. Note
that for each object, it is available in at least one view. Then,
we follow the strategy in (Gao et al. 2011) to generate outliers.
We take two objects from different classes and swap their
samples in one view but not in the others. We randomly
perturb 10% of all data in that way.

4.2 Baseline Algorithms

For the compared methods, the following algorithms are
considered as baselines:
• HOrizontal Anomaly Detection (HOAD) (Gao et al. 2011):

Horizontal outliers are identified by comparing the cal-
culated cosine distances among different spectral embed-
dings.

• Anomaly detection via Affinity Propagation (AP) (Alvarez
et al. 2013): Horizontal outliers are detected via the dis-
tances among different clustering results from the affinity
propagation algorithm.

• Multi-view Low-Rank Analysis (MLRA) (Li, Shao, and
Fu 2015): Horizontal outliers are identified by l2,1-norm
regularized low-rank subspace learning.

• Dual-regularized Multi-view Outlier Detection (DMOD)
(Zhao and Fu 2015): Horizontal outliers are detected via
l2,1-norm induced K-means clustering.
Detailed description of these methods is in §5. For AP, we

utilize the l2 distance with HSIC to yield better performance.
For MLRA and DMOD, we focus on detecting across-view
inconsistence by setting the trade-off parameters in outlier
score estimation to zero. Since these works cannot directly
deal with partial multi-view data, we pre-process the incom-
plete views by mean imputation (Shao, He, and Yu 2015) for
these methods. That is to say, regarding each missing sample,
we use the linear combination (weighed by similarities) of its
5 nearest neighbors that appear in both views.

4.3 Results and Analysis

Outlier detection for partial multi-view data is evaluated by
AUC, i.e., the area under Receiver Operating Characteristic
(ROC) curve. We repeat all experiments 10 times and report
the means and standard deviations of AUC for all algorithms
in Table 1-3. The best results are in boldface.

It can be observed that our proposed method significantly
outperforms other multi-view outlier detection methods. The
main reason is that our unified framework integrates missing
sample recovery and outlier detection in a self-guided man-
ner. Without doubt, our proposed method can achieve better
performance than using two-step strategies, i.e., reconstruct-
ing missing samples followed by outlier detection. The other
observation is that the performance of all methods drops with
more missing samples (i.e., POR increases). The possible
reason is that when POR increases, the quality of information
in the filling samples through mean imputation or collective
learning tends to be bad or even misleading.

In addition, we conducted a statistical significance test
for all the results to judge the significant improvements of
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Table 1: AUC results and p-values on the synthetic dataset under different POR settings.

0% 15% 30% 45% 60% 75%

HOAD 0.6512±0.0445 0.6036±0.0451 0.5815±0.0429 0.5598±0.0461 0.5302±0.0470 0.5067±0.0474
(2.15×10−15) (4.58×10−10) (1.16×10−12) (9.24×10−6) (4.10×10−17) (1.98×10−20)

AP 0.8946±0.0397 0.8739±0.0475 0.8519±0.0511 0.8340±0.0467 0.8017±0.0554 0.7811±0.0569
(6.14×10−18) (9.81×10−8) (5.64×10−11) (9.83×10−17) (5.98×10−11) (9.11×10−17)

MLRA 0.7038±0.0458 0.6798±0.0462 0.6512±0.0471 0.6264±0.0475 0.5984±0.0476 0.5603±0.0481
(3.16×10−19) (6.22×10−20) (1.84×10−15) (8.16×10−16) (2.58×10−15) (4.41×10−20)

DMOD 0.7612±0.0551 0.7408±0.0566 0.7054±0.0561 0.6819±0.0570 0.6590±0.0582 0.6244±0.0578
(5.96×10−18) (6.38×10−17) (6.10×10−19) (4.41×10−20) (8.77×10−14) (3.28×10−16)

Ours 0.9385±0.0260 0.9177±0.0252 0.8826±0.0259 0.8543±0.0245 0.8291±0.0258 0.8055±0.0243

Table 2: AUC results and p-values on the Flowers dataset under different POR settings.

0% 15% 30% 45% 60% 75%

HOAD 0.6481±0.0725 0.6179±0.0755 0.5933±0.0711 0.5706±0.0697 0.5470±0.0684 0.5219±0.0715
(1.68×10−16) (3.09×10−14) (5.29×10−15) (8.16×10−10) (9.47×10−18) (7.13×10−19)

AP 0.8066±0.0457 0.7907±0.0481 0.7859±0.0412 0.7760±0.0501 0.7521±0.0496 0.7451±0.0483
(1.08×10−14) (4.09×10−15) (2.96×10−16) (8.35×10−9) (1.58×10−12) (5.01×10−15)

MLRA 0.7435±0.0502 0.7028±0.0513 0.6469±0.0469 0.6201±0.0487 0.5993±0.0495 0.5645±0.0504
(3.56×10−18) (2.19×10−20) (3.00×10−16) (7.01×10−18) (6.48×10−18) (5.04×10−20)

DMOD 0.7329±0.0531 0.6867±0.0542 0.6454±0.0563 0.6001±0.0551 0.5582±0.0536 0.5276±0.0545
(6.00×10−19) (3.18×10−12) (4.85×10−14) (6.91×10−12) (9.07×10−15) (3.12×10−18)

Ours 0.8712±0.0215 0.8623±0.0268 0.8488±0.0247 0.8367±0.0251 0.8012±0.0272 0.7898±0.0274

Table 3: AUC results and p-values on the USPS-MNIST dataset under different POR settings.

0% 15% 30% 45% 60% 75%

HOAD 0.6611±0.0610 0.6407±0.0576 0.6196±0.0582 0.5876±0.0595 0.5523±0.0621 0.5259±0.0605
(5.71×10−21) (3.58×10−20) (6.54×10−18) (1.08×10−17) (2.70×10−18) (4.92×10−20)

AP 0.8738±0.0379 0.8569±0.0391 0.8301±0.0389 0.8127±0.0377 0.7814±0.0410 0.7470±0.0519
(1.28×10−14) (3.50×10−10) (2.44×10−13) (8.14×10−9) (1.98×10−13) (2.41×10−12)

MLRA 0.8361±0.0495 0.8102±0.0502 0.7839±0.0487 0.7564±0.0513 0.7301±0.0479 0.7037±0.0485
(3.25×10−20) (1.34×10−18) (7.18×10−18) (6.37×10−15) (3.05×10−16) (9.24×10−19)

DMOD 0.8272±0.0522 0.8003±0.0534 0.7792±0.0540 0.7386±0.0539 0.7015±0.0546 0.6593±0.0550
(3.47×10−19) (4.51×10−20) (7.15×10−17) (6.20×10−13) (5.07×10−17) (9.10×10−21)

Ours 0.9147±0.0214 0.8938±0.0230 0.8784±0.0218 0.8501±0.0225 0.8308±0.0215 0.8123±0.0223

the developed models in comparison with the state-of-the-art
methods. The significance level, i.e., p-value, is typically set
to 0.05, which means that if the significance evaluation is
lower than this level, the performance difference between the
evaluated methods is statistically significant. The p-values
between our proposed method and the compared methods
are shown in the parentheses. We can see that the perfor-
mance differences between our method and all the compared
methods are statistically significant, which also improves the
effectiveness of our method.

4.4 Parameter and Convergence Study

Since AUC is adopted as the evaluation metric, we do not
need to specify the threshold τ in Algorithm 1. Then, there

are two major parameters, i.e., the number of self-guided
iterations T and the number of nearest neighbors k.

As for parameter T , we have observed that the performance
gradually levels out for all datasets in our experiments. Figure
4 shows the convergence trend against parameter T (iteration
numbers) on the synthetic dataset. In general, there are two
stages seen from each curve: in the first stage, the objective
function value increases dramatically; in the second stage,
the increment becomes gradually inconspicuous. Besides, the
other observation is that our method converges faster under a
larger POR. The reason is that the two data matrices for the
nc objects appearing in both views will inevitably affect the
step of learning. A larger POR indicates that there are fewer
differences between Xnc and Ync , hence Algorithm 1 needs

303



(a) (b)

Figure 4: (a) The performance trend against parameter T on
the synthetic dataset with POR = 60%. (b) The convergence
curve of missing sample recovery in the 4th iteration of (a).

fewer iterations before converging to unified representations.
Regarding parameter k, we limit it to a certain percentage

of the total number of objects. It is observed that our pro-
posed method achieves a relatively good performance when
the proportion is in the range of [3%, 5%]. Figure 5 plots
the AUC curves w.r.t. parameter k on the synthetic dataset
and USPS-MNIST dataset with POR = 45%. The total num-
bers of objects in the above two datasets are 200 and 500,
respectively. Figure 5 can illustrate our observation very well.
Similar observations can be concluded for other datasets with
different POR settings.

5 Related Work

Outlier detection is a fundamental data analysis technique
which aims to identify the abnormal objects in a dataset.
Over the past decades, a number of single-view outlier de-
tection methods (Xiong, Chen, and Schneider 2011; Liu, Xu,
and Yan 2012; Li, Shao, and Fu 2014; Hu et al. 2016) have
been proposed and applied to many fields, such as web spam
detection (Castillo et al. 2007), video surveillance (Krausz
and Herpers 2010), network failure detection (Ding et al.
2012), and so on. Nowadays, heterogeneity has already been
common in data mining applications. Multi-view data is usu-
ally collected from diverse domains (Xu, Tao, and Xu 2013;
Bai et al. 2016; 2017). Along the above mainline, many
single-view approaches have been extended to multi-view
scenarios. These methods (Das et al. 2010; Gao et al. 2010;
Janeja and Palanisamy 2013; Muller et al. 2012) have
achieved impressive performance of detecting outliers that
exhibit abnormal behaviors in each view.

Besides, there exist other plotlines (Shekhar, Lu, and
Zhang 2002; Sun et al. 2005; Song et al. 2007; Christoudias,
Urtasun, and Darrell 2008; Wang and Davidson 2009) to de-
tect different types of outliers from multi-view data. Among
them, Horizontal Anomaly Detection (Gao et al. 2011) may
be an interesting branch, which detects horizontal outliers
that have inconsistent across-view cluster memberships. Gao
et al. firstly compute spectral embeddings with an ensemble
similarity matrix, and then calculate the outlier score with the
cosine distance between different embeddings. Subsequent
works utilize sophisticated machine learning algorithms to
detect inconsistent characteristics for each object, e.g., con-
sensus clustering (Liu and Lam 2012), affinity propagation
(Alvarez et al. 2013), and probabilistic latent variable models

(a) (b)

Figure 5: AUC curves with respect to parameter k on (a)
synthetic and (b) USPS-MNIST datasets with POR = 45%.

(Iwata and Yamada 2016). To identify two types of outliers
simultaneously, l2,1-norm induced error terms are integrated
into low-rank subspace learning (Li, Shao, and Fu 2015) and
K-means clustering (Zhao and Fu 2015). In general, our pa-
per is closely related to this practical branch. We focus on a
real-world case that every view suffers from some missing
samples. These previous methods assume that all objects are
present in all views, consequently their performance may be
dramatically harmed. It is necessary to develop a method as
our proposed one in this paper that can work well in partial
multi-view scenarios.

6 Conclusion and Future Work

In this paper, we have proposed a novel Collective Learning
(CL) based framework for partial multi-view outlier detection.
CL is first introduced for missing sample recovery by well
exploiting the inter-dependence among different views. An
optimization algorithm with closed-form solutions is devel-
oped accordingly. Moreover, we propose a similarity-based
Hilbert-Schmidt Independence Criterion for outlier detection.
Our device alleviates the dilemma that the number of clusters
is unknown priori. Then, the above two key operations are
iteratively integrated together through a confidence matrix
calculated using outlier scores, i.e., learning-based missing
sample recovery and similarity-based outlier detection are
alternatively performed in a self-guided way. Extensive exper-
iments demonstrate the superior performance of our approach
over state-of-the-art multi-view outlier detection methods.

As for future work, there will be more novel frameworks
to deal with partial multi-view data. The two distinguish-
ing challenges mentioned in §1 are not solved thoroughly.
Regarding our proposed collective learning strategy, it is
promising to integrate it into generative models. Besides, col-
lective learning can contribute to the combination of data
driven and knowledge driven methods.
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