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Abstract

The most striking successes in image retrieval using deep
hashing have mostly involved discriminative models, which
require labels. In this paper, we use binary generative adver-
sarial networks (BGAN) to embed images to binary codes in
an unsupervised way. By restricting the input noise variable
of generative adversarial networks (GAN) to be binary and
conditioned on the features of each input image, BGAN can
simultaneously learn a binary representation per image, and
generate an image plausibly similar to the original one. In the
proposed framework, we address two main problems: 1) how
to directly generate binary codes without relaxation? 2) how
to equip the binary representation with the ability of accu-
rate image retrieval? We resolve these problems by propos-
ing new sign-activation strategy and a loss function steering
the learning process, which consists of new models for ad-
versarial loss, a content loss, and a neighborhood structure
loss. Experimental results on standard datasets (CIFAR-10,
NUSWIDE, and Flickr) demonstrate that our BGAN signifi-
cantly outperforms existing hashing methods by up to 107%
in terms of mAP (See Table 2)".

1 Introduction

With the rapidly increasing amount of images, similarity
search in large image collections has been actively pursued
in a number of domains, including computer vision, in-
formation retrieval and pattern recognition (Shakhnarovich,
Darrell, and Indyk 2008; Wang et al. 2017b). However, exact
nearest-neighbor (NN) search is often intractable because of
the size of dataset and the high dimensionality of images. In-
stead, approximate nearest-neighbor (ANN) search is more
practical and can achieve orders of magnitude in speed-up
compared to exact NN search (Shakhnarovich, Darrell, and
Indyk 2008).

Recently, learning-based hashing methods (Wang et al.
2017b; Irie et al. 2014; Lin et al. 2014; Song et al. 2013;
Shen et al. 2017) have become the mainstream for scal-
able image retrieval due to their compact binary represen-
tation and efficient Hamming distance calculation. Such ap-
proaches embed data points to compact binary codes by hash
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functions, which can be generally expressed as:
b=h(x) € {0,1}" (1)

where x € RM>*1 h(.) are the hash functions, and b is a
binary vector with code length L.

Hashing methods can be generally categorized as being
unsupervised or supervised. The unsupervised learning of
a hash function is usually based on the criterion of pre-
serving important properties of the training data points in
the original space. Typical approaches target pairwise sim-
ilarity preservation (i.e., the similarity/distance of binary
codes should be consistent with that of the original data
points) (Weiss, Torralba, and Fergus 2008; Liu et al. 2014;
Irie et al. 2014; Song et al. 2017; Liu et al. 2013), multi-wise
similarity preservation (i.e., the similarity orders over more
than two items computed from the input space and the cod-
ing space should be preserved) (Norouzi and Fleet 2011),
or implicit similarity preservation (i.e., pursuing effective
space partitioning without explicitly evaluating the relation
between the distances/similarities in the input and coding
spaces), (Heo et al. 2015; Jin et al. 2013). A fundamental
limitation of a hashing method geared to preserve a particu-
lar image property is that its performance may degrade when
it is applied to a context where a different property is rele-
vant.

Supervised hashing is designed to generate binary codes
based on predefined labels (Lin et al. 2014; Strecha et
al. 2012; Zhang et al. 2016). For example, Strecha et
al. (Strecha et al. 2012) developed a supervised hashing
method, which maximizes the between-class Hamming dis-
tance and minimizes the within-class Hamming distance.
(Lin et al. 2014) proposed to learn the hash codes such to
approximate the pairwise label similarity. Supervised hash-
ing methods usually significantly outperform unsupervised
methods. However, the information that can be used for su-
pervision is also typically scarce.

More recently, deep learning has been introduced in
the development of hashing algorithms (Xia et al. 2014;
Lin et al. 2016; Do, Doan, and Cheung 2016; Gu, Ma, and
Yang 2016; Wang et al. 2017a; Gao et al. 2017; Song et
al. 2018), leading to a new generation of deep hashing al-
gorithms. Due to powerful feature representation, remark-
able image retrieval performance has been reported using
the hashes obtained in this way. However, a number of



open issues have still remained open. The most successful
deep hashing methods are usually supervised and require
labels. The labels are, however, scarce and subjective. Un-
supervised approaches, on the other hand, cannot take full
advantages of the current deep learning models, and thus
yield unsatisfactory performance (Lin et al. 2016). Another
issue is a non-smooth sign function used to generate the
binary codes, which, despite several ideas being proposed
to tackle it (Li, Wang, and Kang 2015; Cao et al. 2017;
Do, Doan, and Cheung 2016), still makes the standard back-
propagation infeasible. Cai et. al. (Cai 2016) studied the
evaluation of ANNS problem and confirmed serious draw-
backs in the evaluation of most of the existing hashing meth-
ods.

To address the above issues, we propose an unsupervised
hashing method that deploys a generative adversarial net-
work (GAN) (Reed et al. 2016). GAN has proven effective
to generate synthetic data similar to the training data from
a latent space. Therefore, if we restrict the input noise vari-
able of generative adversarial networks (GAN) to be binary
and conditioned on the features of each input image, we can
learn a binary representation for each image and generate a
plausibly similar image to the original one simultaneously.
Feeding the generated images through a “discriminator” that
verifies them with respect to the training images removes the
need for supervision and the relevant hash can be learned in
an unsupervised fashion. We refer to this proposed architec-
ture as binary GAN (BGAN). For the BGAN learning pro-
cess, we design a novel loss function to equip the binary
representation with the ability of accurate image retrieval,
beyond vivid image generation. Furthermore, inspired by re-
cent studies on continuation methods (Allgower and Georg
2012), we propose two equivalent realizations of the sign
function, and design an optimization strategy whose solu-
tion is equivalent to the non-smooth sign function.

2 Binary Adversarial Networks

Given N images, I = {I; ilil without labels, our goal is to
learn their compact binary codes B and reconstructed images
I” for the original images such that: (a) the binary codes can
reconstruct the image content, and (b) the binary codes could
be computed directly without relaxation.

We illustrate our proposed BGAN architecture by the
scheme in Fig. 1. The scheme shows how hash codes are
learned in an unsupervised fashion through the interplay be-
tween, on the one side, the image generation process (the
generator module) taking the generated hash code (the hash
layer) as input, and, on the other side, the verification pro-
cess (the discriminator module) where the images from the
generator are compared to the original training images. For
training of the system, we first construct the neighborhood
structure of images and then train the neural network un-
derlying the encoder, generator and discriminator. In the re-
mainder of this section, we describe the process of construct-
ing the neighborhood structure, the network architecture, our
loss function and learning of parameters.
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System Architecture

As shown in Figure 1, our BGAN consists of four compo-
nents: encoder, hashing, generator and discriminator. We de-
scribe each of them in detail in the remainder of this section.

Encoder For feature extraction, we use a structure similar
to VGG19 (Szegedy et al. 2015). We use 5 groups of convo-
lution layers and 5 max convolution-pooling layers. Similar
to (Szegedy et al. 2015), we use 64, 128, 256, 512, 512 filters
in the 5 groups of convolutional layers, respectively.

Hashing A binary hash code is learned directly, by con-
verting the L-dimensional representation z learned from the
last fully-connected layer FC7, which is continuous in na-
ture, to a binary hash code b taking values of either +1 or
—1. This binarization process can only be performed by tak-
ing the sign function b = sgn(z) as the activation function
on top of the hash layer.

b = sen(z) = { @)

Unfortunately, as the sign function is non-smooth and
non-convex, its gradient is zero for all nonzero inputs,
and is ill-defined at zero, which makes the standard back-
propagation infeasible for training deep networks. This is
known as the vanishing gradient problem, which has been
a key difficulty in training deep neural networks via back-
propagation. Approximate solutions (Zhang et al. 2014;
Kang, Li, and Zhou 2016) that relax the binary constraints
are not a good alternative as they lead to a large quantiza-
tion error and therefore to a suboptimal solution (Zhang et
al. 2014).

In order to tackle this challenge of optimizing deep net-
works with non-smooth sign activation, we draw inspira-
tion from recent studies on continuation methods (Allgo-
wer and Georg 2012; Cao et al. 2017). These studies address
a complex optimization problem by smoothing the original
function, turning it into a different problem that is easier to
optimize. By gradually reducing the amount of smoothing
during training, this results in a sequence of optimization
problems converging to the original optimization problem.
Following this approach, if we find an approximate smooth
function of sgn(.), and then gradually make the smoothed
objective function non-smooth as the training proceeds, the
final solution should converge to the desired optimization
target.

Motivated by the continuation methods, we define a func-
tion app(.) to approximate sgn(.):

+1,ifz>1
app(z):{ z, ifl>z>-1
—1,ifz<—1

We notice that there exists a key relationship between the

sign function and the app function in the concept of limit:

sgn (z) = lim app (Bz) )
B—+o00
An illustration of the process through which app(.) approx-

imates sgn(.) is given in Fig. 2. The figure also shows the
same process for an alternative to app(.): tanh(.):

sgn (z) = ,BEI-POO tanh (5z)

+1,ifz>0
—1, otherwise

3)

)
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Figure 1: The proposed framework for BGAN, which is comprised of four key components: (1) an encoder, for learning image
representations, (2) a hashing layer, for embedding the L-dimensional representation into L-bit binary hash code, (3) a decoder,
to reconstruct the original images, and (4) a discriminator, for distinguishing real and reconstructed images. As a pre-processing
step, we construct the neighborhood structure of the training images.

h
‘ y=sgn(x)
y=sgn(x)—] |
y=tanh(3x)| y=app(3x) ]
y=tanh(x)~]| y=app(x)
= ! ! 2 x 2 ! ! 2 x
(a) tanh(.) (b) app(.)

Figure 2: An illustration of the process through which app(.)
approximates sgn(.)

Generator and Discriminator The task of our BGAN
“Generator” network G is to generate an image based on
the hash code b. First, we let b serve as the input of the
top fully-connected layer with the size 8 x 8 x 256. Then,
we use four deconvolutional layers with the size of ker-
nels 5 x 5,5 x 5,5 x 5,1 x 1, and the number of kernels
256,128, 32, 3, which is followed by batch-normalization
layers and eL.U as the activation function.

Following the approach by Goodfellow et al. (Goodfellow
et al. 2014), we define a “Discriminator” network D in such
a way that it is optimized using criteria that are conflicting
to those of G. In this way, D can act as adversary to G in
the overall min-max optimization process. The goal of this
optimization is to improve G such to be able to generate the
images as well as possible. The process being adversarial to
image generation is the process of trying to distinguish be-
tween the original and reconstructed images. If G manages
to generate the images so well to “fool” D, then it “wins” the
min-max game and the overall GAN optimization has con-
verged. In view of this, given a model of the image classifier
D assessing the original (I) and reconstructed (IR) image,
we can formally define the min-max game resulting in the
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optimal system parameters as follows:

: R
min max log (D (I)) + log (1 — D (I*)) (6)

Here we follow the architecture design summarized by
Radford et al. (Radford, Metz, and Chintala 2015), use eLU
activation and avoid max-pooling throughout the network. It
contains 4 convolutional layers with an increasing number
of 5 x b filter kernels (32, 128, 256, and 512). Strided con-
volutions are used to reduce the image resolution each time
the number of features is doubled. The resulting 512 feature
maps are followed by a dense layer with the size of 1024 and
a final sigmoid activation function to obtain a probability for
sample classification.

Loss Function

The definition of the loss function  is critical for the perfor-
mance of our network as it steers the overall optimization of
the min-max game. In the following subsections, we explain
our realization of this loss function.

Content Loss The content loss models the loss in the qual-
ity of reconstructed images. While auto-encoding is com-
monly modeled based on the Mean Squared Error, we fol-
low (Larsen et al. 2016; Ledig et al. 2017) and design a loss
function that assesses our hashing solution with respect to
perceptually relevant characteristics. The most widely used
pixel-wise MSE loss is calculated as:

ZMSE WHZZ ij

1=15=1

@)

U

However, as pointed out in (Ledig et al. 2017), solutions
of MSE optimization problems often lack high-frequency
content, which results in perceptually unsatisfying solutions
with overly smooth textures. Also, element-wise reconstruc-
tion errors are not robust for images and other signals with
invariance.



Therefore, instead of only relying on pixel-wise losses we
build on the ideas of Ledig et. al. (Ledig et al. 2017) and
use a loss function that closely resembles perceptual similar-
ity. Specifically, we define the VGG loss based on the eLU
activation layers of the last convolutional layer of our dis-
criminator network D. With ¢ we indicate the feature map
obtained by the last convolution (after activation) and then
define the VGG loss as the Euclidean distance between the
feature representations of a reconstructed image I and the
original image I:

W H
1 2
gPerceptual = Tir 11 Z Z ((b (Iij) - (b (Ig)) (8)
WH i=1 j=1
Here, W and H represent the dimensions of the respective
feature maps. Based on the above, we can now define the
content loss as:

EC = éMSE + éPerceptuaL (9)
Adversarial Loss The adversarial loss models the loss due
to misclassification of images, as done by D, in the original
and reconstructed ones. This loss strengthens the power of
image reconstruction, because a reconstructed image similar
to its original image may not look like a real image. Using
the notations already explained in the context of Eq.8, we
model this loss as:

4 =1log (D (1)) + log (1 — D (1)) (10)
Neighborhood Structure Loss Using the previously de-
fined loss functions /¢ and ¢4, we can learn a binary code
of an image which can reconstruct the original image. How-
ever, we cannot guarantee that similar images have close
binary codes. The neighborhood structure loss models the
loss in the similarity structure in data, as revealed in the set
of neighbors obtained for an image by applying the hash
code of that image. We first construct a similarity graph S
of the images using their features. Given the binary codes
B = {bi}ijil for all the images of the length L, and using
the similarity matrix S as the reference for similarity rela-
tions between images, we define the neighborhood structure
loss as follows:

1 1 :
In=3 > (Lbinj - Sw‘)

si; €8

Y

The goal of optimizing for this loss function is clearly to
bring the binary codes of similar images as close to each
other as possible. Instead of calculating the neighborhood
structure loss directly on the binary codes B, we use Z (de-
fined in Eq.2). Then Eq.11 can be reformulated as:

1 1 2 )
Iy = ) ZES <LZ¢TZj - Sij) + HB - Z”F (12)
Sij

where ||B — Z||fD imposes the learned binary codes B to be
close to the L-dimensional representation z learned from the
last fully-connected layer FC7.

We formulate the loss function as the weighted sum of
a neighborhood structure loss, content loss and adversarial
loss as:

C=Un~+ Ml + Xaly (13)
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Learning

Using the loss function in Eq.13, we train our network. The
forward propagation is as follows. First, we use a deep con-
volutional network as the encoder to extract the features and
then use the hash layer to embed the real-valued features into
binary codes:

b; = sgn(Wj, o(1;;0)) (14)
where I; is an input image, 6 is the parameter of the encoder
and W, stands for the parameter of generating Z. Then, b;
is the input for a generator G to reconstruct an image I”*:

1% = ¢(by; ) (15)
where 7 stands for the parameters of the generator G. Fi-
nally, a discriminator D assigns the probability

p=D(Iy)

that If is an actual training sample and probability 1 —p that
I is generated by our model I?* = ¢(b;; 7).

In the network, we have parameters of 6, m, 1 and Wy,
to learn. We use back-propagation (BP) for learning and
stochastic gradient descent (SGD) to minimize the loss. In
particular, we initialize network parameters and use forward
propagation to obtain the value of each loss (¢, {c, £4). In
each iteration, we sample a mini-batch of images from the
training set, and then update each parameter:

(16)

0+ 0—7V9(Un+Lo), (I7)

T T =7V (lc+L4a), (18)
Y= P+ TV, (19)

Wy, Wy, — 7V, (Un + Lo) (20)

where 7 is the learning rate. We train our network until it
converges.

For the hashing layer, we start training BGAN with 3, =
1. For each stage ¢, after BGAN converges, we increase
B¢ and train (i.e., fine-tune) BGAN by setting the con-
verged network parameters as the initialization for training
the BGAN in the next stage. For 3; towards oo, the network
will converge to BGAN with sgn(z) as activation function,
which can generate the desired binary codes. Using 5, = 10
we can already achieve fast convergence for training BGAN.

3 Experiments

We evaluate our BGAN on the task of large-scale image re-
trieval. Specifically, the experiments are designed to study
the following research questions of our algorithm:

RQ1: How does each component of our algorithm affect the
performance?

RQ2: Do the binary codes computed directly without relax-
ation improve the performance of the relaxed resolution?
RQ3: Does the performance of BGAN significantly outper-
form the state-of-the-art hashing algorithms?

RQ4: What is the efficiency of BGAN?



Settings

Datasets We conduct empirical evaluation on three public
benchmark datasets, CIFAR-10, NUS-WIDE, and Flickr.
CIFAR-10 labeled subsets of the 80 million tiny images
dataset, which consists of 60,000 32 x 32 color images in
10 classes, with 6,000 images per class.

NUS-WIDE is a web image dataset containing 269,648 im-
ages downloaded from Flickr. Tagging ground-truth for 81
semantic concepts is provided for evaluation. We follow the
settings in (Zhu et al. 2016) and use the subset of 195,834
images from the 21 most frequent concepts, where each con-
cept consists of at least 5,000 images.

Flickr is a collection of about 25,000 images from Flickr,
where each image is labeled with one of the 38 concepts.
We resize images of this subset into 256 x 256.

In NUS-WIDE and CIFAR-10, we randomly select 100
images per class as the test query set, and 1,000 images per
class as the training set. In Flickr, we randomly select 1,000
images as the test query set, and 4,000 images for training.

Evaluation Metric Hamming ranking is used as the
search protocol to evaluate our proposed approaches, and
two indicators are reported. 1) Mean Average Precision
(mAP): For a single query, Average Precision (AP) is the
average of the precision value obtained for the set of top-k
results, and this value is then averaged over all the queries.2)
Precision: We further use precision-recall curve and preci-
sion@K to evaluate the precision of retrieved images.

We compare our BGAN with other state-of-the-art hash-
ing algorithms. Specifically, we compare with four non-
deep hashing methods (iterative quantization (ITQ) hash-
ing (Gong et al. 2013), spectral hashing (SH) (Weiss,
Torralba, and Fergus 2008), Locality Sensitive Hashing
(LSH) (Datar et al. 2004), PCAH (Wang, Kumar, and Chang
2012), Spherical Hashing (Heo et al. 2015)), and two unsu-
pervised deep hashing methods (DeepBit (Lin et al. 2016)
and Deep Hashing (DH) (Erin Liong et al. 2015)).

To make a fair comparison, we also apply the non-deep
hashing methods on deep features extracted by the VGG
network (VGG-fc7 (Szegedy et al. 2015)). For non-deep
hashing algorithms, we use the features provided with the
dataset.

By constructing the neighborhood structure using the la-
bels, our method can be easily modified as a supervised
hashing method. Therefore, we also compare with some su-
pervised hashing methods, e.g., iterative quantization hash-
ing (ITQ-CCA) (Gong et al. 2013), KSH (Liu et al. 2012),
minimal loss hashing (MLH) (Norouzi and Fleet 2011),
DNNH (Lai et al. 2015), CNNH (Xia et al. 2014) and Deep
Hashing Network (DHN) (Zhu et al. 2016).

Implementation Details When constructing the neigh-
borhood structure, we use two different types of fea-
tures: non-deep features provided with the dataset, and
2,048-dimensional deep features extracted using ResNet.
We denote them as BGAN_non and BGAN respectively.
The average number of the neighbors for each image is
400, 1021, 1168 for the three datasets. By default, we set
A1 = 0.1 and Ay = 0.1. We set the mini-batch size as 256,
and the learning rate as 0.01.

398

Table 1: The mAP of BGAN_non on CIFAR-10 using dif-
ferent combinations of components. The similarity graph S
is constructed using the non-deep features.

mAP
Components 24-bit | 32-bit | 48-bit
Lo 0.131 | 0.137 | 0.146
la 0.124 | 0.136 | 0.144
In 0.342 | 0.351 | 0.372
In+Lla 0.357 | 0.366 | 0.371
In+LlrvsE 0.353 | 0.361 | 0.361
lo+1La 0.145 | 0.156 | 0.163
In+Llc+0a | 0369 | 0375 | 0.395

Component Analysis (RQ1)

Our loss function consists of three major components:
neighborhood structure loss (£ ), content loss (¢¢) and ad-
versarial loss (£ 4). In this subsection, we study the effect of
each component on the performance. Due to the space limit,
we only report the results on the CIFAR-10 dataset in Ta-
ble 1. As analyzed in Sec.2, using the loss function of /¢~
can already learn the binary codes of images. £ 4 is the fur-
ther help the reconstruction quality, and ¢}y is to ensure that
similar images have similar binary codes.

By using /¢ only, our network is similar to an autoen-
coder, and the retrieval performance is far from satisfac-
tory. The mAP is only 0.131, 0.137, and 0.146 on CIFAR-10
dataset, which is consistent with another autoencoder based
method DH (Erin Liong et al. 2015). This is because even
the binary codes can reconstruct the images well, they can-
not guarantee similar images to have similar binary codes.
Similarly, by using ¢4 only, the performance is unsatisfac-
tory. On the other hand, by using ¢y only, the retrieval per-
formance reaches 0.341, 0.351 and 0.372 for 24, 32 and 48
bits on CIFAR-10 dataset. However, the reconstructed im-
ages are not close to the original images. By using the com-
bination of /n and /., or the combination of {5 and /4,
the mAP can be further increased by around 0.01 compared
with using ¢ only. This verifies the effectiveness of £ 4 and
lc. As expected, using the combination of ¢4 and /¢ still
cannot lead to a good retrieval performance.

The best performance is achieved when we use the com-
bination of the three components: £ + ¢ + £ 4. Compared
with using ¢ only, the performance is improved by 2.7%,
2.4% and 2.3% for 24, 32, and 48-bit hash codes. From the
above analysis, we can conclude that all these three compo-
nents contribute to the great performance of our BGAN.

Effect of Binary Optimization (RQ2)

As discussed above, BGAN can learn binary hash codes di-
rectly while previous hashing methods first learn continuous
representations and then generate hash codes using a sign
function (denoted as two-step solution). In this subsection,
we study the effect of direct binary codes optimization on
the performance of hash codes, and the results are shown
in Table 3. As shown in Table 3, our binary optimization
can improve the performance of the learned binary codes.
Specifically, the first solution (Eq.4) outperforms two-step



Table 2: mAP for different unsupervised hashing methods using different number of bits on three image datasets

Method CIFAR-10 NUS-WIDE Flickr

12bits | 24 bits | 32bits | 48bits | 12bits [ 24bits | 32bits | 48bits | 12bits | 24 bits [ 32bits | 48 bits
ITQ (Gong et al. 2013) 0162 | 0169 | 0172 | 0175 | 0452 | 0468 | 0472 | 0477 | 0544 | 0555 | 0560 | 0.570
SH (Weiss, Torralba, and Fergus 2008) 0.131 0.135 0.133 0.130 0.433 0.426 0.426 0.423 0.531 0.533 0.531 0.529
LSH (Datar et al. 2004) 0.121 | 0.126 | 0.120 | 0.120 | 0403 | 0421 | 0426 | 0441 | 0499 | 0513 | 0521 | 0.548
Spherical (Heo et al. 2015)) 0.138 | 0.141 0.146 | 0.150 | 0413 | 0413 | 0424 | 0431 | 0569 | 0559 | 0.583 | 0.572
ITQ+VGG 0.196 | 0246 | 0289 | 0301 | 0435 | 0435 | 0548 | 0435 | 0553 | 0548 | 0545 | 0.560
SH+VGG 0.174 | 0205 | 0220 | 0232 | 0433 | 0426 | 0426 | 0423 | 0550 | 0544 | 0541 | 0.545
LSH+VGG 0.101 | 0.128 | 0.132 | 0169 | 0401 | 0442 | 0480 | 0471 | 0543 | 0549 | 0555 | 0.551
Spherical+VGG 0212 | 0247 | 0256 | 0281 | 0549 | 0.614 | 0.653 | 0.678 | 0552 | 0547 | 0546 | 0.545
DeepBit (Lin et al. 2016) 0.185 | 0218 | 0248 | 0263 | 0383 | 0401 | 0403 | 0412 | 0501 | 0505 | 0511 | 0513
DH (Erin Liong et al. 2015) 0.160 | 0.164 | 0.166 | 0.168 | 0422 | 0448 | 0480 | 0493 | 0553 | 0548 | 0.543 | 0.556
BGAN_non 0361 | 0369 | 0375 | 0395 | 0518 | 0.541 | 0.545 | 0.568 | 0.591 | 0.601 | 0.607 | 0.626
BGAN 0.401 | 0512 | 0531 | 0558 | 0.675 | 0.690 | 0714 | 0.728 | 0.683 | 0702 | 0.703 | 0.703

solution by 2.3%, 1.7%, and 2.6% for 24, 32, and 48-bit hash
codes, while the second solution (Eq.5) improves it by 3.2%,
2.0%, and 3.4%. This verifies our argument that two-step so-
lution is sub-optimal, and binary optimization can achieve a
better performance.

Table 3: The mAP of BGAN_non on CIFAR-10 using differ-
ent binary optimization methods.

mAP
Methods 24-bit | 32-bit | 48-bit
two-step solution 0.337 | 0.355 | 0.361
sgn (z) =limg_, yoo tanh (8z) | 0.369 | 0.375 | 0.395
sgn (z) =limg_ 4 ocapp (82) 0.360 | 0.372 | 0.387

Compare with the State-of-the-art Algorithms
(RQ3)

In this subsection, we compare our BGAN with different un-
supervised hashing methods on three datasets. The results
on mAP are shown in Table 2, and the precision is shown
in Fig. 3. From Table 2 and Fig. 3, we have the following
observations:

1) Our method (BGAN) significantly outperforms the other
deep or non-deep hashing methods in all datasets. In CIFAR-
10, the improvement of BGAN over the other methods is
more significant, compared with that in NUS-WIDE and
Flickr datasets. Specifically, it outperforms the best counter-
part (Spherical+VGG) by 18.9%, 26.5%, 27.5% and 27.7%
for 12, 24, 32 and 48-bit hash codes. One possible reason is
that CIFAR-10 contains simple images, and the constructed
neighborhood structure is more accurate than in the other
two datasets. BGAN improves the state-of-the-art by 12.6%,
7.6%, 6.1% and 5.0% in NUS-WIDE dataset, and 11.4%,
14.3%, 12.0% and 13.1% in Flickr dataset.

2) Comparing to BGAN, the performance of our BGAN_non
is worse. This indicates that the similarity graph plays an
important role in the learning of hashing codes, and the non-
deep features are not as good as deep features.

3) From Table 2, we observe that Spherical+VGG is a strong
competitor in terms of mAP. On the other hand, the perfor-
mance of deep hashing methods (DeepBit (Lin et al. 2016)
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Table 4: mAP for different supervised hashing methods us-
ing different number of bits on three image datasets

Method CIFAR-10
12bits | 24 bits [ 32bits | 48 bits

ITQ-CCA (Gong et al. 2013) 0435 | 0435 | 0435 | 0435
KSH (Liu et al. 2012) 0556 | 0572 | 0581 | 0588
MLH (Norouzi and Fleet 2011) | 0500 | 0.514 | 0520 | 0522
DNNH (Lai et al. 2015) 0.674 | 0697 | 0713 | 0715
CNNH(Xia et al. 2014) 0611 | 0618 | 0.625 | 0.608
DHN (Zhu et al. 2016) 0708 | 0735 | 0.748 | 0.758
BGAN_s 0.866 | 0.874 | 0.876 | 0.877

and DH (Erin Liong et al. 2015)) is not superior. A possi-
ble reason is that the deep hashing methods use only 3 full
connected layers to extract the features, which is not very
powerful.

4) When we run the non-deep hashing methods on deep fea-
tures, the performance is usually improved compared with
the hand-crafted features. The performance gap is larger in
CIFAR-10 and NUS-WIDE datasets than in Flickr dataset.

5) With the increase of code length, the performance of most
hashing methods is improved accordingly. More specifically,
the mAP improvements using deep features are generally
more significant than that of non-deep features in CIFAR-10
dataset and NUS-WIDE dataset. An exception is SH, which
has no improvement with the increase of code length.

We also compared with supervised hashing methods, and
present the mAP results on CIFAR-10 dataset in Table 5.
It is obvious that our BGAN_s outperforms the state-of-the-
art deep and non-deep supervised hashing algorithms by a
large margin, which are 15.8%, 13.9%, 12.8% and 11.9%
for 12, 24, 32, and 48-bits hash codes. This indicates that the
performance improvement of BGAN is not only due to the
constructed neighborhood structure, but also the other com-
ponents. However, our method is mainly designed for unsu-
pervised learning of hashing codes, and it has large room to
be improved for the task of supervised hashing.
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Figure 3: Precision for different unsupervised hashing methods using different number of bits on CIFAR-10 dataset.
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Figure 4: The convergence of BGAN in CIFAR-10 dataset.

The Study of Efficiency (RQ4)

In this subsection, we study the efficiency of our algorithm.
First, we study the convergence of our BGAN in CIFAR-10
dataset, and the results are shown in Fig. 4. It can be seen
that our method converges after a few epochs, which shows
the efficiency of our solution.

We also report the training and testing time in CIFAR-10
dataset of our algorithm, and compare it with DH (Erin Li-
ong et al. 2015) in Table 5. Since our BGAN has more pa-
rameters, it takes longer time for training and testing. How-
ever, BGAN is still fast in generating the hash codes for a
test image.

Reconstruction Results

To evaluate the ability of image reconstruction using BGAN,
we show some qualitative results on CIFAR-10 dataset in
Fig. 5. The top row are the reconstructed results using ran-
dom input, the second row are the reconstructed results from
BGAN, and the last row are the original images. We can see
that BGAN can reconstruct images which are similar to the
original images.
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Table 5: The training and testing time for BGAN and DH.

Methods | Training time | Testing time
DH (Erin Liong et al. 2015) 1 hour 0.5 ms
BGAN 5 hours 3 ms

Top: random points reconstructed | Middle: reconstructed images | Bottom:input images

-!

BE
a0

@ @

Figure 5: Image reconstruction using binary codes.

5

4 Conclusion

In this work, we propose an unsupervised hashing which
addresses two central problems remaining largely unsolved
for image hashing: 1) how to directly generate binary codes
without relaxation? 2) how to equip the binary represen-
tation with the ability of accurate image retrieval, beyond
vivid image generation? First, we propose two equivalent
but smoothed activation functions, and design a learning
strategy whose solution converges to the results of sign ac-
tivation. Second, we propose a loss function which consists
of an adversarial loss, a content loss, and a neighborhood
structure loss. Experimental results show that our BGAN
doubled the performance of the state-of-the-art in CIFAR-
10 dataset, and also significantly outperformed the competi-
tors on NUSWIDE, and Flickr datasets. In the future, it is
necessary to improve the reconstruction accuracy of BGAN.
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