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Abstract

Link prediction in signed social networks is challenging be-
cause of the existence and imbalance of the three kinds of so-
cial status (positive, negative and no-relation). Furthermore,
there are a variety types of no-relation status in reality, e.g.,
strangers and frenemies, which cannot be well distinguished
from the other linked status by existing approaches. In this
paper, we propose a novel Framework of Integrating both La-
tent and Explicit features (FILE), to better deal with the no-
relation status and improve the overall link prediction perfor-
mance in signed networks. In particular, we design two latent
features from latent space and two explicit features by ex-
tending social theories, and learn these features for each user
via matrix factorization with a specially designed ranking-
oriented loss function. Experimental results demonstrate the
superior of our approach over state-of-the-art methods.

Introduction

Signed social networks have been widely adopted by online
communities over the last few years, as they better reflect
real-life human relationships than unsigned networks (Tang
et al. 2016). Under the structure, three kinds of social sta-
tus exist between two users: positive (trust or friend), neg-
ative (distrust or foe), and no-relation. For example, in the
Wikipedia vote network, a user may vote a candidate entity
as positive or negative, and can also choose not to vote and
thus maintain no-relation with the entity. The increasing in-
terest in signed networks has heightened the need to rethink
the link prediction problem (Liben-Nowell and Kleinberg
2007), since it becomes more challenging in the scenario
of signed networks than unsigned networks which consider
only two kind of social status (linked or not).

Most studies (Leskovec, Huttenlocher, and Kleinberg
2010a; Chiang et al. 2011; Hsieh, Chiang, and Dhillon 2012;
Ye et al. 2013) on link prediction in signed networks focus
on predicting the sign of a link, i.e., assigning either a pos-
itive or negative sign to any pair of users. They show that
positive links and negative links can be distinguished with
a high accuracy. However, these studies simply assume that
it is already known whether there is a link between any two
users, which is invalid in real-world scenarios. Recently, a
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few methods have been proposed by also considering no-
relation as a meaningful social status to facilitate link pre-
diction. For example, Song et al. (2015) demonstrate that
leveraging the no-relation status can improve the prediction
of positive links. However, they only focus on the predic-
tion performance of positive links but cannot predict the
no-relation status. Li et al. (2017b) carry out the first at-
tempt to extend the link prediction to a more realistic set-
ting by also predicting the no-relation status. They show that
no-relation can be distinguished from positive and negative
links, through a feature-based model, where the features are
extracted from social theories. However, this model is lim-
ited to the assumption that users have the same criteria to
link with others (Nguyen et al. 2011), which is unrealistic.
For example, some users might be more willingly to connect
to others while some are more influential and easily con-
nected by others (Nguyen et al. 2011).

In fact, the link prediction problem in signed social net-
works becomes rather difficult mainly due to the diversity of
no-relation. It is conceivable that most pairs of users with no-
relation have limited common connections (Stranger). How-
ever, in reality, many user pairs keep the no-relation status
even though they have many common connections (Fren-
emy). For example, in the Epinions dataset1, 40, 779 out of
94, 732 user pairs who share more than 100 common neigh-
bors still have no-relation with each other. It is very easy to
mispredict those users, who have many common neighbors
but are not linked, with a linked status.

In this paper, we propose a novel Framework of Integrat-
ing both Latent and Explicit features (FILE), to better deal
with the no-relation status in signed networks. The key idea
is to design two essential parts to represent the link forma-
tion probability. The first part is the social linkage criteria
from the perspective of individual users, and the second part
is the external social influence from the perspective of user
pairs. Specifically, we design two latent features for the first
part. One is the propensity to connect to others, namely the
activeness, and the other is the propensity to be connected
by others, namely the popularity. We train these two fea-
tures via the matrix factorization technique with a ranking-
oriented loss function, and then we represent the linkage
likelihood as the inner product between the corresponding

1www.trustlet.org/epinions.html
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two user vectors. For the second part, we design the explicit
features extracted from social theories (e.g., balance theory
and status theory) to represent the external social influence.
Both parts are indispensable, since the lack of the latent fea-
tures will lead to the misprediction between a frenemy and a
friend, while the model without explicit features will mispre-
dict two strangers as a linked one. The extensive experiments
on four real-world datasets demonstrate the effectiveness of
our framework on link prediction in signed networks.

All in all, the contributions of this work are as follows:

• We propose a novel link prediction framework which in-
tegrates social explicit features into a latent model. We
demonstrate that this can significantly improve the pre-
diction of positive link, negative link and no-relation.

• We take a deep investigation on the no-relation status.
We empirically show that two types of no-relation sta-
tus widely exist in real-world datasets, and the proposed
framework can well handle both of the two types.

Related Work

Link prediction in unsigned networks has been well stud-
ied during the past decade. It mainly calculates a “link
formation score” for two users to indicate their probabil-
ity to be linked in near future (Liben-Nowell and Klein-
berg 2007). Popular calculation metrics include: the num-
ber of common neighbors, Adamic/Adar Index (Adamic
and Adar 2003), Jaccard Coefficient (Newman 2001), and
Resource Allocation Index (Zhou, Lü, and Zhang 2009).
These metrics are derived from the neighborhood structure.
Meanwhile, the features related to the path between two
users are also used to compute the similarities of the user
pair, like Katz (Liben-Nowell and Kleinberg 2007), Vertex
Collocation Profile (Lichtenwalter and Chawla 2012) and
ProfFlow (Lichtenwalter, Lussier, and Chawla 2010). Pop-
ular supervised methods include: feature-based classifica-
tion models (Al Hasan et al. 2006) and latent feature mod-
els (Menon and Elkan 2011). However, link prediction in un-
signed networks considers only two possible connection sta-
tus of two users, i.e., linked or not-linked, while three types
of social status exist in signed networks.

In signed networks, Leskovec et al. (2010a) adopt a re-
gression model with triangle-based features to predict the
sign (i.e., positive or negative) between each two users. Be-
sides, k-cycle-based features are proposed in (Chiang et al.
2011) where triangle-based features (k = 3) are specially
explored. It also shows that longer cycles (k = 5) signifi-
cantly benefit sign prediction, while the performance gain is
not significant beyond k = 5. Papaoikonomou et al. (2014)
leverage the pattern of frequent subgraph among user pairs
to predict link status. These methods can well distinguish
positive and negative links, however, they are all based on
an unrealistic assumption where it is already known whether
there is a link between any two users.

Hsieh et al. (2012) state that three social status exist
in signed networks, which are positive, negative and no-
relation. They treat no-relation as a potential status to be
linked, and propose a matrix factorization model to infer

the signs of those “potential links” which currently are no-
relation. However, they ignore that no-relation could be sta-
ble and possibly will not transform to a linked one. Song and
Meyer (2015) adopt a low-rank model to recommend posi-
tive links, which learns latent features by capturing the intu-
ition that linked pairs have a different status with no-relation,
and no-relation status can help to better embed users. Kumar
et al. (2016) adopt a recursive model for link prediction in
weighted signed networks, where no-relation can be treated
as a special case in which the link value is zero. However,
this model still cannot predict no-relation since it only pre-
dicts the link status with non-zero value. Li et al. (2017a)
are the first to treat no-relation as a future status for link
prediction. They derive topological features based on six so-
cial theories, and adopt a simple regression model to distin-
guish these three status. They show that no-relation status
can be distinguished from positive and negative links by so-
cial theory-based features. However, they ignore individual
differences on the social linkage criteria.

Preliminaries

Problem Formulation

We formally define the problem as: given a signed social
network S ∈ R

n×n (n is the number of users in the net-
work) with Sij ∈ {1, 0,−1}, we aim to rank all the user
pairs (i, j) with Sij = 0 in the present, by the probability of
transforming to positive links, negative links, or maintaining
no-relation in the future. We argue that our problem setting
is more comprehensive and realistic compared to the previ-
ous studies. Rather than classifying a user pair as a specific
social relation, we adopt a ranking mechanism and try to
answer a more practical question: “Of user pairs (i, j) and
(i, k), which pair is more likely to become friends (or ene-
mies)?” The obtained ranking list can be directly utilized in
real-world applications like social recommendation.

Data Analysis

Previous analysis on data patterns in signed networks
(Leskovec, Huttenlocher, and Kleinberg 2010b; Tang et al.
2016) are preliminary and focus only on the comparisons
between positive and negative links. We now re-investigate
data patterns by also considering the no-relation status. Our
analysis is performed on four real-world signed networks:
Epinions, Slashdot2, Wikipdia RFA3 and Bitcoins4.

Data imbalance. From Table 1, we can see that no-
relation accounts for the majority of social status, and the
number of no-relation is much larger than linked ones.
Meanwhile, the proportions of those social relations vary in
different datasets, requiring the robustness of the proposed
method on various scenarios. It should be noted that as rank-
ing metrics (e.g., AUC) are relatively effective for evaluating
and distinguishing machine learning techniques in imbal-
anced scenarios, we also use ranking metrics instead of ac-

2snap.stanford.edu/data/soc-Slashdot0902.html
3snap.stanford.edu/data/wiki-RfA.html
4cs.umd.edu/˜srijan/wsn
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Table 1: Dataset statistics.
Epinions Slashdot Wikipedia Bitcoin

Users 131, 828 82, 140 9, 654 3, 783

Positive links (P) 717, 667 425, 072 87, 766 22, 650

Negative links (N) 123, 705 124, 130 16, 788 1, 536

No-relation (U) 1.73 × 1010 6.7 × 109 9.3 × 107 1.4 × 107

U with CN=0 1.72 × 1010 6.6 × 109 8.5 × 107 1.3 × 107

U with 1 ≤CN≤ 50 1.6 × 109 9.7 × 107 7.2 × 106 1.1 × 106

U with CN>50 234, 793 9, 752 3, 390 13
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Figure 1: The distribution of no-relation changing ratio.

curacy metrics for reasonable evaluations and comparisons
of different approaches in our experiments.

Stranger v.s. Frenemy. The statistics in Table 1 demon-
strate the existence of two kinds of no-relation status as
there are a substantial number of no-relation pairs with few
common neighbors (CN=0) or many common neighbors
(CN>50). For example, in Epinions dataset, the number of
common neighbors for no-relation user pairs ranges from 1
to 2, 059. In other words, even a user pair with 2, 059 com-
mon neighbors may still have no link with each other.

We further check whether these no-relation pairs are sta-
ble over time in Epinions dataset as it contains the infor-
mation about timestamp of every link formation over 30
months. Figure 1 shows the changing ratio of the no-relation
user pairs after 15 months. Y axis is computed as the num-
ber of no-relation user pairs with a certain number of com-
mon neighbors who are linked after 15 months divided by
the number of no-relation user pairs with the certain num-
ber of common neighbors in the present. We observe that
no-relation status of user pairs can be stable over time even
though they have many common neighbors, and user pairs
with more common neighbors may not have a higher proba-
bility of being linked in the future. On the contrary, when the
number of common neighbors is larger than 20, no-relation
status becomes more stable with more common neighbors.

As we have known, the core task of link prediction is
to calculate a “link formation score” for a user pair. Since
both user pairs of frenemies and strangers belong to the
same no-relation class, they are expected to have a similar
score. However, most existing approaches relying on net-
work topological features cannot achieve this simple goal as
frenemies and strangers have quite different topological fea-
tures (e.g., the number of common neighbors). Therefore,
we clarify that the core task of link prediction in signed net-
works is more suitable to be explicitly defined as “how to
design a link score function to generate similar scores for

External
Influence

Intrinsic 
Similarity

Friend

Enemy

Frenemy

Stranger

Frenemy

Figure 2: Illustration of the influential social components.

frenemies and strangers, meanwhile to be able to distinguish
them from positive and negative links”.

In view of psychosocial theories, both intrinsic personal-
ity (Duck and Craig 1978) and external influence from mu-
tual neighbors (Bukowski and Hoza 1989) affect social re-
lationship formation. Thus, it is reasonable to explain the
stranger relationship as a lack of external influence, and the
frenemy relationship as a lack of intrinsic personality simi-
larity. Figure 2 illustrates the differences among these social
relations. Inspired by this, in our FILE framework, we de-
rive a user’s latent features in the latent space to represent
the intrinsic personality, and design explicit features based
on network topology to represent the external influence.

The FILE Framework

In this section, we describe the FILE framework incorpo-
rating both latent and explicit features for link prediction in
signed networks. We first present the two types of features
in detail, and then introduce our designs of the link score
function and the optimization method.

Latent Features

A signed network can be represented by a signed adjacency
matrix S (S ∈ R

n×n) associated with the n users and links
in the network, where Sij = 1 indicates a positive link
from user i to j, Sij = −1 a negative link from i to j,
and Sij = 0 no-relation from i to j representing the ma-
jority of the entry values in S. Since this kind of matrices of
signed networks has the low-rank property (Hsieh, Chiang,
and Dhillon 2012), matrix factorization technique can be de-
ployed to learn users’ latent features. Specifically, S can be
decomposed into two low-rank matrices U and V , where
UTV ≈ S (U, V ∈ R

n×r, r � n). We call both ui ∈ U
and vi ∈ V as user i’s latent vectors, being referred to as
the activeness and popularity respectively. For a certain user
pair i and j, the probability of link formation simultaneously
depends on both ui and vj , i.e., whether i is active and has
more tendency to “trust” (or distrust) others, and whether j
is popular and more probably to be trusted (or distrusted) by
others. A higher value of uT

i vj indicates a higher probabil-
ity to form a positive link. Conversely, a lower value of uT

i vj
implies a higher probability to form a negative link.
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Figure 3: Illustration of 16 types of triads.

To sum up, given a pair of users (i, j), and the r-
dimensional features ui (activeness of user i) and vj (pop-
ularity of user j), we define the link formation probability
from user i to j as:

L1(i, j) = uT
i · vj (1)

Explicit Features

Explicit features capture social influences from the sur-
rounding neighborhoods around a user pair, and can be for-
mulated from the network topology. We claim that any valu-
able and reasonable features identified in the literature can
be incorporated into the FILE framework (Leskovec, Hut-
tenlocher, and Kleinberg 2010b; Li, Fang, and Zhang 2017b)
as they contribute new information to social influences. In
our framework, to show the effectiveness of the explicit fea-
tures part, we design two explicit features by extending the
balance theory and status theory. According to the two social
theories, each common neighbor will bring either a positive
or a negative influence. As shown in Figure 3, there are in
total 16 types of triads formed by a pair of users and their
mutual neighbor (p and n denote the positive and negative
signs, and f and b represent the link directions of forward
and backward respectively).

As indicated in the balance theory, each mutual friend
brings a positive influence which makes two users more
likely to generate a positive link, while a neighbor incurs
a negative influence if she is one’s friend but the other’s en-
emy. Therefore, we check whether the positive or negative
influence is dominant in the balance theory via:

f1 = (|ppff|+|ppfb|+|ppbf|+|ppbb|+|nnff|+|nnfb|+|nnbf|+|nnbb|)
-(|pnff|+|pnfb|+|pnbf|+|pnbb|+|npff|+|npfb|+|npbf|+|npbb|)

where | · | represents the number of respective type of triads.
In the status theory, a neighbor can imply the status differ-

ence between a user pair. For example, for ppff, given a user
pair (i, j) and their neighbor w, the links i→ w and w → j
are both positive. Based on the status theory, it suggests that
j’s status is higher than w while w’s status is higher than i.
Therefore, the link i → j is more likely to be positive since
the status of j is higher than i. We thus quantify the overall
influence in the status theory via:

f2 = |ppff|+|nnbb|+|pnfb|+|npbb|-(|nnff|+|ppbb|+|npfb|+|pnfb|)
For these two features, a higher positive (negative) value

indicates a higher probability to form a positive (negative)
link. A value close to 0 suggests they will be more likely
to keep no-relation. We conduct the One-Way ANOVA test
on explicit features to evaluate their effectiveness, and both
the two features pass the test at the significance level of 0.01
(p-value < 0.01), suggesting that they can reasonably dis-
tinguish the three kinds of social status.

Note that we do not aim to come up with an exhaustive
list of explicit features in this work. A more comprehensive
list of explicit features can be found in (Leskovec, Hutten-
locher, and Kleinberg 2010b; Li, Fang, and Zhang 2017b).
Our experimental results show that with only the above two
explicit features, our approach can already achieve better re-
sults than other existing approaches.

Link Score Function

The link score function is defined as follows:

L(i, j) =
Latent︷ ︸︸ ︷

N(uT
i · vj)+

Explicit︷ ︸︸ ︷∑
k

αw ∗N(fw
ij ) (2)

As aforementioned, both latent and explicit features are in-
dispensable since the lack of any will lead to the mispredic-
tion of no-relation. In view of this, we first define a threshold
rule for the link formation: there will be a positive link if the
link score is larger than 1, and a negative link if the link score
is smaller than −1. We bound the value of each part (Latent
or Explicit) by (−1, 1), which indirectly constrains that only
the combination of two parts can successfully induce an ei-
ther positive or negative link.

In Equation 2, ui is user i’s latent feature of activeness, vj
is user j’s latent feature of popularity, fw

ij (w ∈ {1, 2})5

is an explicit feature for user pair {i, j}, αw is the cor-
responding weight with

∑
w αw = 1, N(·) is the func-

tion which normalizes the corresponding values of features
into (−1, 1). Hence, the link score function is bounded and
Lij ∈ (−2, 2). Based on the previous analysis, if Lij is
within (−1, 1), there will be no link from i to j. If Lij ≥ 1,
there will be a positive link from i to j, and if Lij ≤ −1,
there will be a negative link from i to j.

Normalization Function. It normalizes the feature values
into range (−1, 1). Here, we formulate it as follows.

N(x|θ) = 1− exp(−θx)
1 + exp(−θx) (3)

The sigmoid distribution well captures the property of link
formation that the value increases at a lower speed when i
and j already show a high probability to establish a link.
The selection of θ mainly depends on the scale of the corre-
sponding feature. In this work, we normalize the two explicit
features by making them to be scaled within the same order
of magnitude. To this end, we set θ as the reciprocal of the
median value of the corresponding feature.

Optimization

The traditional square loss is not suitable for our problem,
because instead of caring about the absolute prediction er-
ror, we focus on the ranking performance. That is to say, for
example, given a possibly positive link Sij = 1, there should
not incur any loss if predicted Lij ≥ 1. Therefore, in view
of Equation 2, the loss function is defined as:

min
∑

Sij=1

I(Lij ≥1)+
∑

Sij=0

I(|Lij |<1)+
∑

Sij=−1

I(Lij ≤−1) (4)

5Note that as indicated in the explicit features part, more ex-
plicit features can be designed and incorporated into Equation 2.

333



where I(·) is the 0/1 indicator function that if the condition
in (·) comes true, we get 0 loss, otherwise 1 loss. We aim
to find a surrogate function to replace I(·) because it is non-
convex. Considering our link score function in Equation 2,
the ultimate goal of the objective function can be interpreted
as to make Lij as large as possible if Sij = 1, meanwhile
make Lij as small as possible if Sij = −1. As for Sij = 0,
we make |Lij | to be closer to 0. In view of this rationale, we
design the objective function as follows:

min
∑

Sij=1

(1− Lij) +
∑

Sij=0

(L2
ij − 1) +

∑

Sij=−1

(Lij + 1) (5)

To construct the equivalent reduced form for Equation 5 and
add regularizers to avoid overfitting, the loss function F can
be rewritten as follows:

min
U,V

1

2

∑

i

∑

j

(1− S2)L2 − SL+
λ1

2
‖U‖2F +

λ2

2
‖V ‖2F (6)

We then adopt stochastic gradient descent (SGD) to learn
the values of parameters and variables. In particular, we first
make x = 1/(1+e−uT

i vj ), Δ1 = 2x+
∑

w αN(fw
ij )−1, and

Δ2 = 2x(1− x). Then the corresponding partial derivatives
are computed as follows:

∂F

∂ui
=

∑

j

(
(1− S2)Δ1Δ2 − SΔ2

) ∗ vj + λ1ui (7)

∂F

∂vj
=

∑

i

(
(1− S2)Δ1Δ2 − SΔ2

) ∗ ui + λ2vj (8)

Algorithm 1 Optimization process
Input: Matrix S, learning rate β, iteration time T , and
converge threshold c
Initialize: t = 0, calculate fij ∈ E, generate U0, V0

repeat
t = t+ 1;
Ut+1 = Ut − β ∂F

∂Ut
based on Equation. 7;

Vt+1 = Vt − β ∂F
∂Vt

based on Equation. 8;
until Converge
Output: U , V

Algorithm 1 summarizes the optimization procedure of
the SGD. The time complexity of the algorithm is O(trn),
where t is the number of iterations, r is the number of latent
features, n is the number of observations in the network.

Experiments

We conduct experiments on four real-world datasets, and
compare our approach with five state-of-the-art approaches
in terms of ranking metrics.

Experimental Setting

As shown in Table 1, four datasets are used in the ex-
periments, which are Epinions, Slashdot, Wikipedia RFA
and Bitcoin. To make a more comprehensive evaluation,
we directly generate three datasets from each dataset, and
each new generated dataset shows unique distribution of
|P |:|U |:|N |, where |P |, |U |, |N | are the numbers of positive

Table 2: 12 datasets used in the experiments.
Datasets Positive No-relation Negative Ratio

Epinions@10 38, 452 4, 017, 624 8, 180 5:491:1
Epinions@25 26, 732 797, 001 4, 367 6:182:1
Epinions@50 17, 039 233, 624 2, 346 7:99:1
Slashdot@10 22, 551 1, 544, 792 2, 666 8:579:1
Slashdot@25 16, 097 359, 568 1, 331 12:270:1
Slashdot@50 11, 023 119, 265 756 14:157:1
Wikipedia@10 2, 585 172, 644 332 7:520:1
Wikipedia@25 363 12, 594 39 9:322:1
Wikipedia@50 131 3, 454 15 8:230:1
Bitcoin@10 10, 863 361, 590 868 12:461:1
Bitcoin@25 5, 093 43, 780 411 12:106:1
Bitcoin@50 2, 048 7, 551 202 10:37:1

links, no-relation, and negative links respectively. Specifi-
cally, we sample 10% data for each of the three large datasets
(Epinions, Slashdot, Wikipedia) and select the data entries
filtered by user degree d (≥ 10, ≥ 25, ≥ 50). The benefits
of this setting include: 1) in the real-world offline case, peo-
ple keep 40 friends on average (Express.co.uk 2017) and an
online user has about 338 friends on average (Mazie 2016).
Therefore, it is more realistic to check users with a high de-
gree. This sampling strategy is widely adopted in the previ-
ous studies (Liben-Nowell and Kleinberg 2007); 2) we can
test the model robustness under different scenarios in terms
of data sparsity and size. The statistics of the datasets are
summarized in Table 2 where we use ‘name@degree’ to rep-
resent a specific dataset, e.g., Epinions@10 (or E@10) is the
dataset about Epinions with d ≥ 10.

Evaluation Metrics. We use the standard 5-fold cross-
validation for training and testing, and utilize GAUC (Gen-
eralized AUC over +1, 0 and −1) (Song and Meyer 2015)
to measure the overall ranking performance, formulated as:

1

|P |+ |N |

(
1

|U |+ |N |
∑
ai∈P

∑
as∈U∪N

I (L(ai) > L(as))+

1

|U |+ |P |
∑
aj∈N

∑
at∈U∪P

I (L(aj) < L(at))

⎞
⎠

where L(·) is the link score function. GAUC is an extension
of AUC, and provides a ranking metric considering the three
kinds of link status.

The other metric is precision@top k. In signed networks,
we have both positive and negative precision@top k, which
are defined as the ratio of positive (or negative) links in
the top (or bottom) k predictions, respectively. These two
metrics assess the performance of link recommendation, as
the top k list is more crucial for applications like recom-
mendation systems, whereas the negative top k is useful for
security-related applications.

Benchmarking Approaches. We conduct comparisons
with five state-of-the-art approaches, including feature-
based models: Common Neighbors (CN) (Liben-Nowell
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Table 3: Performance of different methods. The best performance is highlighted in bold, and the second-best one is marked by
*. ‘Improvement’ indicates the improvement of FILE over the model having the highest performance other than FILE.

Datasets CN LRM BPRMF OptGAUC SFM FILE Improvement

Epinions@10 0.557 0.719 0.743 0.764∗ 0.738 0.826 8.12%
Epinions@25 0.563 0.731 0.730 0.843 0.742 0.842∗ −0.19%
Epinions@50 0.557 0.741 0.696 0.789∗ 0.784 0.823 4.31%
Slashdot@10 0.525 0.697 0.658 0.721∗ 0.708 0.823 14.15%
Slashdot@25 0.520 0.747 0.639 0.792∗ 0.757 0.838 5.81%
Slashdot@50 0.502 0.760 0.685 0.827∗ 0.771 0.856 3.51%
Wikipedia@10 0.509 0.534 0.561 0.652 0.665∗ 0.729 9.62%
Wikipedia@25 0.593 0.508 0.577 0.714∗ 0.605 0.727 1.82%
Wikipedia@50 0.540 0.551 0.568 0.625∗ 0.643 0.595 −8.07%
Bitcoin@10 0.512 0.627 0.607 0.683∗ 0.682 0.717 4.98%
Bitcoin@25 0.555 0.706 0.609 0.715 0.716∗ 0.723 0.98%
Bitcoin@50 0.557 0.711 0.665 0.692 0.710∗ 0.716 0.85%
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Figure 4: Performance as parameters change w.r.t. GAUC.

and Kleinberg 2007) and Social Feature Model (SFM) (Li,
Fang, and Zhang 2017a); latent models: Low Rank Mod-
eling (LRM) (Hsieh, Chiang, and Dhillon 2012) and rank-
ing based latent models of Bayesian Personalized Ranking
(BPRMF) (Rendle et al. 2009) and Optimizing GAUC (Opt-
GAUC) (Song and Meyer 2015).

Parameter Setting. For all the above benchmark meth-
ods, we set the parameters recommended in the literature.
For instance, we adopt λ=20 and r=50 in OptGAUC, while
we set λ=1 and r=10 in LRM. As for the feature-based
model CN, we use the difference between the number of
positive and negative common neighbors as the metric to
generate the ranking list.

In our FILE framework, there are three hyper-parameters:
λ1, λ2 and r. Being consistent with the literature, we set
λ1=λ2 and search over {0.01, 0.05, 0.1, 0.5}. We also search
the number of latent features r over {5, 10, 15, 20}. We con-
duct 5 fold cross-validation on the training set and adopt
the parameters which gain the best performance. We also
check the parameter sensitivity of our approach with re-
gard to λ1, λ2 and r, and the results on Slashdot@50 and
Epinions@50 are presented in Figure 4. Across all param-
eters combinations, in terms of GAUC, FILE varies in a
range of [0.823, 0.856] in Slashdot@50 and [0.779, 0.823] in
Epinions@50. We can see that the performance fluctuation
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Figure 5: Performance fluctuations across datasets with dif-
ferent parameter combinations.

over different parameter settings is relatively small. We get
similar results in other datasets as shown in Figure 5. The
maximum fluctuation is 0.051 and occurs in Wikipedia@10.
We can thus conclude that FILE shows good flexibility be-
cause of its insensitivity to the model parameters.

Comparative Experiments

Overall Performance. Table 3 shows the comparisons
among different models regarding to the ranking metric
GAUC. As demonstrated, our model outperforms other
benchmarks on most of the datasets. CN performs the worst
in all scenarios because it does not differentiate the signs
of neighbors and links, which indicating that traditional
link prediction methods cannot be directly applied for link
prediction in signed networks. The latent models, LRM,
BPRMF and OptGAUC, perform better than CN, which
shows the effectiveness of the latent features. In addition,
OptGAUC outperforms LRM and BPRMF, indicating that
no-relation information used in OptGAUC helps improve
the performance of link prediction. This result is consistent
with the result in (Song and Meyer 2015). Besides, SFM
performs better than CN, LRM and BPRMF, suggesting
that the explicit social features in SFM work well in signed
network scenarios. In Wikipedia@50, FILE performs worse
than OptGAUC and SFM, but the high variation (−8.07%)
is caused by only a few mispredictions as Wikipedia@50
is a very small dataset. Besides, FILE improves its perfor-
mance as more data is considered, i.e., in Wikipedia@10 and
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Figure 6: (a)-(f) represent PPrec@top k; (g)-(l) refer to NPrec@ top k.
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Figure 7: The impact of degree d.

Wikipedia@25. As suggested by SFM, the performance of
FILE can be improved in the dataset like Wikipedia@50 by
incorporating more explicit features.

Overall, FILE achieves the best performance when com-
pared with other approaches across all the datasets, and the
improvement is 3.9% on average. We conduct t-test for the
performance difference over these approaches, and the result
shows that the improvement of our framework is statistically
significant (p-value < 0.01).

Top-k Ranking Performance. We investigate the rank-
ing performance on top k. Both precisions of positive (i.e.,
PPrec) and negative (i.e., NPrec) at top k (k={10, 25, 50,
100, 200, 500, 1000}) are examined. Due to space limita-
tions, we show the experimental results in six datasets for
each metric in Figure 6, and the results are consistent in
the other six datasets. For clarity, we only show the perfor-
mance of OptGAUC and SFM, which perform better than
the other three competing approaches. We can see that in
terms of PPrec and NPrec, FILE consistently achieves the
best results in almost all scenarios, demonstrating the use-
fulness of our approach since top-k list is very piratical and
effective in real-world applications. It is worth noting that,
FILE exhibits greater improvement over other approaches in
term of NPrec, indicating its immense potential in security-
related applications. The overall results again verify the ef-
fectiveness of incorporating latent and explicit features for
link prediction in signed networks.

Impact of degree d. To demonstrate the robustness of our
approach, we check its performance in terms of GAUC as
the change of d in the range [1, 50]. As shown in Figure 7,
when d is small (d < 5), FILE performs similarly to or
slightly worse than others. As d increases, our approach is
consistently better than others. One reason is that the data
of larger d preserves more valuable information to learn la-
tent features via matrix factorization. Besides, as we have
mentioned, in reality d is usually much bigger than 5, we
thus are more convinced of the robustness and superior of
our approach in real-world scenarios. Another observation
is that the performance falls as the degree increases in the
Wikipedia dataset. It’s because the Wikipedia dataset is very
small. When the degree is larger than 20, the filtered dataset
gets smaller. This is why the performance of all approaches
becomes worse.

Conclusions

Link prediction in signed networks is challenging because of
the imbalance of the three kinds of social status, which are
positive, negative and no-relation. Besides, previous meth-
ods cannot well predict no-relation status due to the diffi-
culty in distinguishing the no-relation of the stranger and
frenemy types from the linked types. Therefore, in this pa-
per, inspiring by the psychosocial theories, we propose the
FILE framework which considers both social linkage criteria
of individual users and the external social influence from the
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neighborhood of every user pair. We also particularly design
an optimization approach for this problem using the matrix
factorization technique with a ranking-oriented loss func-
tion. Extensive evaluations in four datasets show that our
model outperforms state-of-the-art approaches, demonstrat-
ing that our framework has effectively incorporated latent
and explicit features for link prediction in signed networks.
Besides, experimental results also verify that FILE is robust
and relatively insensitive to the choice of model parameters.

In future, we will explore more explicit features for the
FILE framework to enhance its prediction performance, and
further test the effectiveness of it using field experiments.
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