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Abstract

In this paper, we investigate the impact of spatial vari-
ation on the construction of location-sensitive user pro-
files. We demonstrate evidence of spatial variation over a
collection of Twitter Lists, wherein we find that crowd-
sourced labels are constrained by distance. For example,
that energy in San Francisco is more associated with the
green movement, whereas in Houston it is more associ-
ated with 011 and gas. We propose a three-step frame-
work for location-sensitive user profiling: first, it constructs a
crowdsourced label similarity graph, where each labeler and
labelee are annotated with a geographic coordinate; second, it
transforms this similarity graph into a directed weighted tree
that imposes a hierarchical structure over these labels; third,
it embeds this location-sensitive folksonomy into a user pro-
file ranking algorithm that outputs a ranked list of candidate
labels for a partially observed user profile. Through extensive
experiments over a Twitter list dataset, we demonstrate the
effectiveness of this location-sensitive user profiling.

Introduction

User profiles are a valuable component of many appli-
cations, including recommender systems, search engines,
question-answering systems, and online social networks.
These profiles provide insight into the interests and exper-
tise of each user, and can lead to improved personalization
of the underlying system (?; ?; ?). Many systems rely on
an explicit definition of a user profile — for example, by fill-
ing in an “About” section in a social media profile or by
directly selecting topics of interest on a question-answer
system. Alternatively, implicit user profiles can be uncov-
ered through methods like query log mining, running La-
tent Dirichlet Allocation (LDA) over a user’s posts, or by
applying matrix factorization approaches to identify hid-
den (or latent) topics of interest (?; ?; ?; ?). In a com-
plementary direction, recent years have seen the develop-
ment of crowdsourced user profiles construction, e.g., (?; ?;
?). In this scenario, crowds of users apply descriptive labels
on other users, so that in the aggregate these labels provide
a crowdsourced user profile of the target user. For example,
Twitter Lists and LinkedIn’s Skill tags provide partial per-
spective on what users are known for by aggregating crowd
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labeling knowledge. However, the vast majority of users
have no crowd labels; their expertise are essentially hid-
den from important applications such as personalized rec-
ommendation, community detection, and expert mining.

In this paper, we aim to extend the reach of these crowd-
sourced methods, so as to construct robust user profiles for
the long-tail of users for whom we have incomplete labels.
A natural approach to extend the reach of these crowd-
generated labels is to apply existing fag recommendation
methods (?; ?; ?; ?; ?). However, many of these approaches
have viewed tag relationships without regard for the local
variations that are inherent in real-world crowdsourced la-
bels of users. For example, we find in a sample of Twitter
Lists that the label energy in San Francisco is more asso-
ciated with the green movement, whereas in Houston it
is more associated with o11 and gas. These spatial vari-
ations are a critical component of crowdsourced labels and
require careful consideration. Beyond just the presence of
different relationships across locations, there is often a varia-
tion in the strength of this relationship from location to loca-
tion. For example, stock and finance are more closely
related in New York City than in Portland. Further, there is
even a potential for varying location-specific senses of a tag
(polysemy). For example, the tag rocket s in the Houston
area may be associated with the local NBA team instead of
other senses of the word.

Hence, we explore the impact of spatial variation on the
construction of location-sensitive user profiles. Our main in-
tuition is that spatial variation over crowdsourced labels can
be modeled in a location-sensitive folksonomy to provide a
comprehensive and up-to-date picture of location-aware top-
ics, topic relations, and a fine-grained topic level view of the
social media corpus, which may mitigate the sparsity inher-
ent in the raw labels. Recent studies (?; ?) have shown how
hierarchical topic structures can improve ranking and rec-
ommendation, indicating the importance of folksonomies.
Thus, we aim to study the impact of location-sensitive hier-
archical structures of crowdsourced tags on user profiling.

Concretely, we propose an approach for location-sensitive
user profiling as illustrated in Figure ??. First, we construct
a crowdsourced label similarity graph induced from crowd-
sourced labels, where each labeler and labelee are annotated
with a geographic coordinate; this similarity graph varies by
location to capture spatial variations of the kind identified
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Figure 1: Overall approach: constructing location-sensitive user profiles from crowdsourced labels

above (e.g., the similarity graph for San Francisco will link
energy with green movement). Second, we transform
this similarity graph into a directed weighted tree that im-
poses a hierarchical structure over these labels, such that
labels like sports are higher in the tree, whereas labels
like rocket s are lower, thereby providing finer granularity
for building user profiles. Finally, we embed this location-
sensitive folksonomy into a user profile ranking algorithm
that outputs a ranked list of candidate labels for a partially
observed user profile. Through extensive experiments over a
Twitter list dataset, we demonstrate the effectiveness of this
location-sensitive user profile estimation.

Related Work

In this section, we highlight several research directions that
inform the work presented here.

User and Resource Profiling. User profiling is critical for
enabling effective information services. Many efforts are de-
voted to profile a user’s topic interest for applications in per-
sonalized search (?), targeted advertisement (?), social me-
dia (?), and expert search (?). Many other research efforts
aim to reveal users’ demographic information like age and
gender (?; ?; ?). For example, Li et al. (?) propose a co-
profiling approach to profile users’ attributes like employer,
college, and circles of friends in a joint fashion.

Meanwhile, another line of research focuses on recom-
mending tags to resources, targeting the sparsity of collabo-
rative tagging in order to construct comprehensive tag pro-
files (?; ?; ?). Some proposed approaches are based on topic
models, association rule mining, and context information (?;
?:. 7). Later works construct hierarchical folkonomies to as-
sist resource tag prediction (?; ?). In our work, we lever-
age location-sensitive folksonomy for user profiling and we
adopt a learning to rank approach that automatically weighs
a group of factors to minimize the prediction error.

Folksonomy Construction. Considerable research has been
devoted to folksonomy generation (?; ?; ?; ?; ?; ?). Many
approaches consider the co-occurrence of tag pairs (?; ?;
7). Generally, they first identify subsumption relations of tag
pairs using unsupervised approaches and then prune these
relations into a tree. Our method differs in two key aspects:
(i) we are constructing a location-sensitive foklsonomy that
models the knowledge structures focused on a particular lo-
cation; and (ii) we propose to induce the folksonomy us-
ing an optimization algorithm that best conserves the graph
structure.
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Figure 2: Probability of tagging as a function of distance
between labeler and user.

Geographic Influence. The impact of geographical distance
has been widely studied for online social interactions (?;
?). Additionally, there are also studies of spatial varia-
tion over query logs and social media, e.g., (?; 2; 2; 2;
?). Our intuition is that due to the geographic, cultural, and
structural differences among locations, there could be corre-
sponding differences reflecting how people organize infor-
mation in these locations.

Location-Sensitive User Profiling

Our overarching goal is to estimate high-quality user pro-
files that respect this observed spatial variation. We assume
some partial coverage of users via existing crowdsourced
tags (e.g., from Twitter Lists or LinkedIn’s Skill Tags), but
that many tags are unknown. That is, given a user u’s full
(but hidden) tag profile P(u), we have visibility only to
some portion of this profile Py (u) where Py(u) C P(u).
The goal is to estimate the unseen tags t; of u where ¢; €
P(u) — Py(u). Our intuition is that the spatial variation
of how tags are applied can be carefully modeled to create
high-quality user profiles.

Spatial Variation in Crowdsourced Labels

In this section, we provide data-driven evidence for spatial
variation in crowdsourced labels from a collection of Twitter
lists (described more fully in Experiments). Twitter lists are
one form of crowdsourced tagging, whereby individual users
can add other users to a curated list annotated with a name.
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Figure 3: Example Tag Pairs Similarity.

How does distance impact tagging?

We begin by investigating in Figure ?? the impact of dis-
tance on the probability that a list labeler will include an-
other user on a list. We observe that the probability of tag-
ging is exponentially decaying with distance, which indi-
cates a user is less likely to be tagged by a labeler as the
distance between them increases. This spatial locality is a
well-known property of many offline relationships and has
been confirmed repeatedly even in online scenarios where
distance is not inherently a limiting factor. This locality of
tagging suggests that a method for user profile prediction
that is induced from these crowd-based tags should reflect
local knowledge; that is, since tags are not uniformly ap-
plied across distances, there may exists local variations of
interest.

Example location-sensitive relationships.

We consider the relationships between pairs of labels across
different locations in our dataset. Representing each tag as
a location-specific vector (see the following section for ad-
ditional details), we show in Figure ?? the relationships of
a group of tag pairs at multiple locations using cosine sim-
ilarity. The x-axis shows each tag pair and each color bar
represents the similarity at a location. We observe that the
magnitude of tag-pair relations varies across different loca-
tions. For example, we find the similarity between general
concepts like nba and basketball tends to be relatively
even across locations, with London having the lowest value;
finance and st ock have highest confidence in New York
while lowest in Houston. Another typical example is the
similarity between energy with green and o1 1. Interest-
ingly, we notice energy and oil have the strongest rela-
tionship in Houston, while energy and green bond clos-
est in San Francisco. This fits our understanding of these lo-
cations, since Texas is a major oil and gas hub, while San
Francisco is a more eco-friendly community. These phe-
nomena suggest location-sensitive user profiling has poten-
tial to reflect the characteristics of these locations.

Next, we shed light on the three-step framework (as
shown in Figure 2?).
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Crowdsourced Label Similarity Graph

Given a group of users U = {uy,us, ..., u,}, where each
user u is associated with a geographic coordinate /,, and a
tag profile P, which contains a variable number of (tag, fre-
quency) pairs {(t1, f1), (t2, f2), ...}. Our goal is to build a
location-sensitive tag similarity graph from these profiles.

We begin by proposing a distance weighting scheme
which weights the profile tags of a user according to how
far this user is from the target location. Our intuition is a
distant labeler is considered less knowledgeable about local
users. We adopt a model popularized in the GIS literature
— the zone of indifference model — for capturing this spatial
influence. The key idea is to combine the inverse distance
with a fixed distance band model. In this model, all users
within the distance band are considered equally important
and once beyond the threshold distance, a user’s influence
drops off quickly following an exponential rate. We empiri-
cally set the distance band as 50 miles for large cities, which
defines a circle area centered at the target location. Hence,
the weight of a user w.r.t the target location [, is

if d <50
else

wy(ly) = { zﬂ)—a
50
where d is the distance from a user’s location [, to [; and «
is a constant, set experimentally. Thus, we utilize the whole
dataset for constructing the location-sensitive folksonomy
for each location. This avoids the sparsity issues that may
arise (if we were to build a location-sensitive folksonomy
using only locally-available tags) and mitigates data imbal-
ances across locations (so a smaller city is not penalized in
folksonomy creation relative to a larger city). We represent
each tag ¢, at target location [, as a tf-idf vector of the users
who are labeled with the tag, and each user is weighted by
her corresponding influence w,, (I;): t; =t; - w;. Tag vec-
tors vary in each location according to the users and weights.
With these tag vectors t;, we then construct a directed tag
similarity graph. We compare four similarity measures for
tag pairs. Three are symmetric measures including cosine,
RBF kernel, and pointwise mutual information (PMI). The
fourth measure is imbalanced (meaning the strength of one
tag to a second tag is not necessarily the same as in the re-
verse situation) and based on a modified version of the tradi-
tional association rules notion of confidence (what we term
modified confidence, or MConf).

Modified confidence. Finally, we adopt the idea of confi-
dence from association rule mining which has been used for
inferring subsumption relations between tags. Since instead
of predicting very general tags, we would like to predict tags
that are as specific as possible. Thus we propose a modified
confidence metric (¢; = ¢;):

C(ti, tj)

(- llog(F(t;)) — log(F(t:))|
F(t;)

log(max F)

MConf(ti = tj) = )
where C(t;,t;) = min(fi, f2) is the co-occurrence fre-
quency of the tag pair, F'(t;) = ), f; is the overall fre-
quency of t; in the corpus and max F' is the overall fre-
quency of the most used tag in the corpus. Here we use con-
fidence as a criteria for ordering tags and we only consider



confidence for cases that con f(t; = t;) > conf(t; = t;).
The reason of multiplying a weight is to avoid connecting
tags with large frequency difference as mentioned in the sec-
ond drawback. Even if confidence is high, there might be
some intermediate nodes that fit between the nodes. As tag
frequency versus number of tags follow a power law distri-
bution, we model frequency difference with damping factor
which is a fraction in log scale. When there is no frequency
difference, the factor is 1, when there is large frequency dif-
ference, the factor decays to 0.

Location-Sensitive Folksonomy Construction

Given these measures of tag similarity that capture both
user and location influences and similarity graph, we next
turn to induce a folksonomy bound to a target location [,
which is represented as directed rooted tree (arborescence)
T = (V, &), where each tag has a unique parent. The node
set 1V contains all unique tags that &/ has been labeled with,
and edge set £ contains subsumption relations of tag pairs.
The abstractness of each tag is controlled by its level in the
tree. We can further assign weights to edges to capture the
similarity between tag pairs. Note that we will build a differ-
ent location-sensitive folksonomy for each location of inter-
est (e.g., one for Houston, one for Chicago).

In order to define an order of abstractness for the tags,
we calculate the closeness centrality of each tag, defined as:
Centrality(t) =, sim(t, t;), which sums up each tag’s
similarity with all other tags. This definition forces general
tags to have high centrality. Since the modified confidence
metric already assigns a direction for a pair of tags, this step
is exempted. Then we organize the tags and relations into a
directed weighted graph G. To do this, we initialize G with
a ROOT node and add an edge for the tag pair when the
similarity is above a pre-defined threshold (when 50% of

of the edge is set as the similarity value. Then, we assign
a direction for each tag pair from the high centrality node
to the low centrality node. As the graph is very likely not
connected, we make the ROOT node point to every other
node, with edge weight equal to the pre-defined threshold to
make the graph weakly connected.

A directed rooted tree has a root vertex and exactly one di-
rected path from root to any other vertex. A straightforward
criteria is to find a tree that maximizes the edge weights.
In essence, this follows a greedy strategy which was used
previously by Heymann et al. (?). They proposed to itera-
tively add nodes in a decreasing centrality order to a tree
which maximizes similarity. From a graph point of view, we
can apply Chu-Liu/Edmond’s algorithm(?) over the similar-
ity graph. The core procedure is finding the edge incoming
to node t of highest weight (with ties broken arbitrarily) for
each t other than the ROOT. Since the edge order is pre-
defined according to centrality, the graph is guaranteed to
have no cycles and we can simplify the algorithm to forgo
this cycle check.

Generalized Cost Function Although different metrics are
adopted for characterizing the relation between a pair of
tags, they share the similar greedy strategy of minimizing
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Algorithm 1: Mincost Tree Formation

Input: Tag vectors

Calculate similarity between each pair of node (¢;, ;)

Initialize directed weighted graph G with ROOT node

Add an edge (t;,t;) when Sim(t;,t;) > threshold

Assign direction for edges following centrality order

Add an edge between ROOT and each node with
weight = threshold

N R W N =

6 while n(edge)>n-1 do
7 for each edge (t;, t;) do
8 G’ < remove edge (¢;, t;) from graph G
9 Find shortest path from ¢; to ¢; in G’
10 Calculate cost of deleting edge(t;, t;)
11 i=0
12 while edge not removed do
13 edge=increasing_cost_sequencel[i]
14 if the edge is not the last incoming edge to t;
then remove edge from G and break;
15 i+=1
16 return G

the cost function

cost = Zeeg Wie) - Zteg

where sim(t,t,) represents the similarity between a tag ¢
and its parent. Here we introduce a new minimum cost tree
formation algorithm which builds upon the simplified Chu-
Liu/Edmond’s algorithm that generalizes the cost function.
Concretely, the proposed folksonomy generation algorithm
can be formalized as Algorithm ??.

After constructing a directed weighted graph G, we next
convert this graph to a tree 7 with minimum cost, where the
cost here characterizes the structural change to G. We define
the cost for deleting the edge as sim(t;,t;) - d; j, where d; ;
represent the shortest path length from ¢; to ¢; in the graph
which excludes the edge (t;,t;). After deleting an edge, the
two corresponding nodes are disconnected and we need to
identify a new shortest route that connect these two nodes.
The intuition is we want to maintain the coherence of the
structure after deleting edges such that more similar tags
tend to stay closer to each other. To do so, in each iteration,
we calculate the cost of deleting each remaining edge in the
graph G’, and then find an edge with minimum cost which
is not the last remaining edge pointing to the corresponding
child node (so the node is not isolated). The algorithm stops
when n — 1 edges are left, with each node having exactly
one parent. Thus our goal is to minimize the structure con-
servation cost function for converting G to a tree 7 :

cost = Zeeg,eeT sim(ti, ty) - dij

However, this algorithm is computationally costly as when-
ever a new edge is deleted, it is required to recompute the
shortest path between each pair of nodes. This is an O(E?)
shortest path calculation. Hence, we provide an approxima-
tion for the calculation shown in algorithm ??, where we
only calculate the cost of deleting each edge in the original
graph. According to the cost from low to high, we iteratively

sim(t, tp)



delete the edges until there is a unique parent for each node.
Finally, the output is a location-sensitive folksonomy.

Algorithm 2: Approximation Algorithm

Input: Tag vectors
1 Constructing the Directed Weighed Graph G
according to lines in Algorithm ??
2 for each edge (t;, t;) do
3 G’ < remove edge (%;, t;) from graph G
4 Find shortest path from ¢; to ¢; in G’
5 Calculate cost of deleting edge(t;, t;)

6 while n(edge)>n-1 do

7 for each edge in increasing cost do

8 L if the edge is not the last incoming edge to t;
then Remove edge from G;

9 return G

Folksonomy-Informed Profiling

We turn in this section to apply the location-sensitive folk-
sonomy for profile construction. We begin by finding candi-
date tags from folksonomy, and then embedding these candi-
dates in a learning-to-rank framework for ordering the tags.

Finding Candidate Tags. Given a user’s seen tag profile
Py (u), we first leverage the location-sensitive folksonomy
and select a set of candidate tags. To accomplish this, we
locate each seen tag in Ps(u) in the folksonomy and collect
parent, children, and sibling tags of this seen tag as candidate
tags. The hierarchical structure acts as a good filter and thus
controls the number and quality of candidate tags. Then we
order the candidate tags according to different strategies for
prediction. The formal definition for this problem is given
user v and a set of candidate tags T.(u) = {t1, ..., tx}, we
aim to find a scoring function to rank tags in 7. (u) for w.

Ranking Candidate Tags. We adopt a learning to rank
approach for personalized candidate tag ranking. The ad-
vantage is that it automatically assigns optimum weight
for each feature. We apply a pairwise learning algorithm
RankSVM(?). Here we consider each user as a query and
we assign each candidate tag an integer ranking score in the
range of 3 to 1 according to its actual count in the user’s
unseen profile. RankSVM first generates a set of pairwise
constraints and then transform the problem to a two-class
classification problem according to those constrains and an
SVM model is learned. Finally, in the ranking phase, rank
scores are calculated according to the margin value. Note
that we train the model with the training set and an L2 regu-
larization term is added to prevent overfitting.

Here we introduce a set of features that we rely on to gen-
erate a preference order of the candidate tags for prediction
in Table ??. A total of 13 features are used for training the
model include features introduced above. Features can be
grouped into three categories: user specific features, tag fea-
tures, and folksonomy structure features. User specific fea-
tures include fu(s)’ fu(t)’ Hgim, Sumgim, H fsim, St

muv?
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Features Descriptions
f(s) log scale overall frequency(freq) of the seed tag
7@ log scale overall freq of the tag
fu(s) log scale unique user freq of the seed tag
Su(t) log scale unique user freq of the tag
Ssim similarity with seed tag
Hgim highest similarity with existing tags
Hfsim H;m weighted by freq
Sumsim  sum of similarity with all seen tags
gul sum of similarity with existing seed
mv tags weighted by f(s)
qu2 sum of similarity with existing seed
mu tags weighted by [, (s)
Pent freq of the candidate tag being a parent
Sent freq of the candidate tag being a sibling
Cent freq of the candidate tag being a child
Table 1: Features for ranking candidate tags from the

location-sensitive folksonomy.

Sw2 These features are retrieved from a user’s seen profile,
which represents characteristics of the user. Tag features in-
cludes f(s), f(t), and Sg;,. These features only provide in-
trinsic properties of candidate tags. And folksonomy struc-
ture features include pept, Cont, Sent, Which are uniquely de-
fined by the folksonomy to provide extra clues for making
good predictions. The intuition here is that predicting a par-
ent tag is more likely to be correct than a sibling or child,
as parent tags are more general, having the largest overlap
with the candidate. For example, inferring football to
parent sports is more likely to be correct than to sibling
volleyball and child football player.

Experiments

Data Preparation. We rely on a Twitter list dataset contain-
ing 15 million list relationships in which the geo-coordinates
of the labelers and users are known (?). In our experiments,
the tags we included in the folksonomy are extracted from
each list name, and users in the list will be endowed with the
tags in their profile. These tags contain multifaceted opin-
ions of actual labelers, which means they can be complex
and noisy. Hence, we apply text processing techniques such
as case folding, stopword removal, and noun singulariza-
tion. We also separate the string pattern like ‘FoodDrink’
into two words ‘food’ and ‘drink’. We use language identifi-
cation package (?) to filter out non-English tags. To guaran-
tee the informativeness and quality of the tags, we filter out
infrequent tags with fewer than 5 labelers and 10 labelees.
Twitter has a 25-character length limit for list names, and
empirically we find nearly all list names do not exceed three
words. We also include bigrams. Finally, the size of tagset is
10,489.

Profile Prediction Setup. For each of nine selected loca-
tions, a random sample of local users is held out. We con-
struct a location-sensitive folksonomy given the location
based on the rest of whole dataset. Following that we pre-
dict the user profiles for users in the hold-out data. For each
user, the seen tag set Py (u) is a random 25% of his profile
P(u). Then we try to predict tags in the rest 75% unseen



tags.! The result reported for every profiling experiment in
this paper, including baselines, are based on four-fold cross
validation and averaged over the nine locations.

Baselines. We consider two approaches based on collabora-
tive filtering and Bayesian personalized ranking as baselines.

Collaborative Filtering-K Nearest Neighbor(CF-KNN). In
CF-based profiling approach, we first identify the top-k lo-
cal users that share the most similar tags with the target user.
To maintain consistency with other approaches, we assume
each user profile only contains 1/4 of the tags). Here, we ap-
ply cosine similarity to measure user similarity. Then, we ag-
gregate the tags of the 50 nearest neighboring users weighted
by their similarity and make predictions based on decreasing
tag frequency in the collective neighbor profile.

Bayesian Personalized Ranking-Matrix Factorization(BPR-
MF). We consider these tags as implicit feedback and our
goal is identifying an optimal preference ranking of tags for
each user. We thus experiment with two variations of state-
of-the-art Bayesian personalized ranking criteria (?). In the
first setting, we train a unique model for each location by
only considering its local users, denoted as “LBPR”. We
model a user ¢’s affinity to tag j as r;; = p;q; + b;, where
p; and g; represent latent factor of user and tag, respectively.
b; represents the overall preference of tag j. In the second
setting, we train with whole dataset and explicitly model
location-aware preferences, denoted as “LABPR”. We de-
fine a user 4’s affinity to tag j as as r;; = piq; + gi(iy; + bj>
where latent factor g;(;); represents the regional popularity
of tag 7 at the user ¢’s home location (?). For reproducibil-
ity, the number of negative samples, number of iterations,
number of user and tag latent factors are set as 200, 80, 20
respectively. Regularization weights are set as 0.02.

Evaluation Metrics. The evaluation metrics we use are Pre-
cision@k (P@K) and Actual Frequency @k (AF@k). P@k
measures how reliable predictions can be made. A high P@k
value implies users have been labeled with the predicted tag,
while high AF@k represents that users have been labeled
many times with the predicted tags. Both measurements re-
ported later are averaged over the test data. We consider the
quality of prediction for the top-1 tag as well as top-5 tags.
AF @k is defined as AFQk = ), fu,(tx)/k, where ty, is the
kth predicted tag.

We now turn to the task of user profile construction based
on location-sensitive folksonomies. We first compare the
performance based on different ranking strategies, followed
by profiling performance across different folksonomy gen-
eration approaches and local and general versions. Finally,
we compare location-sensitive folksonomy informed profil-
ing with the other baselines.

Comparing Ranking Strategies

Given the candidate tags identified from the folksonomy, our
goal is to generate a personalized ranking over these tags so

'We only consider users with overall more than 10 tags.
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Methods P@1 P@5 AF@]l AF@5
Highest similarity | 0.3331  0.285f 4.821  4.24%
Freq. & similarity | 0.507f 0.360f 14.6f  6.87%
Overall popularity | 0.607f 0.5011 25.9 15.1¢
SuMsimitarity 0.651F1  0.552f 25.3% 18.5
Learning to rank 0.763 0.677 26.5 19.2

Table 2: Comparing Tag Ranking Approaches. We observe
that the LTR based approach results in the best preci-
sion, and also identifies the tags used most often (AF). *{’
marks statistical significant difference with LTR according
to paired t-test at 0.05.

that the actual tags rank top. Here we compare the learning-
to-rank (LTR) based approach with several baselines in Ta-
ble ??, i). rank the candidate tags according to the decreas-
ing order of similarity with the seen tag which subsumes the
candidate tag. ii). rank with a hierarchical criteria, primar-
ily according to the frequency of corresponding seen tag as-
sociated with the user and secondarily by decreasing order
of similarity with the corresponding seen tag. iii). rank by
overall tag popularity. iv). rank according to the aggregated
similarity with the seen tag set.

We observe the LTR based approach outperforms all base-
lines in terms of precision, indicating high rank tags are
more likely to be actual tags. Moreover, we find a similar
trend in terms of AF@5, which represents the actual number
of predicted tags that a user possesses. All these results im-
ply the effectiveness of proposed features and feature weight
scheme. Among the baselines, we find the “overall popular-
ity” and “Sumgimitarit,” are relatively strong predictors.

Location Sensitive vs General Folksonomy

IST. GF ISF. | GE.
Methods \—+G1—p@s TperT  P@s | AF | AF
MS-MC | 0.754 _0.663 | 0.653 0571 | 192 | 152
SC-MC | 0.763 0677 | 0.656 0571 | 192 | 154
MS-COS | 0.751 0.656 | 0.662 0521 | 164 | 11.9
SC-COS | 0.756  0.663 | 0.662 0531 | 18.1 | 12.8
MS-PMI | 0389 0349 | 0352 0320 | 124 | 1.53
SC-PMI | 0402 0362 | 0363 0332 | 121 | 1.62
MS-RBF | 0.566 0413 | 0471 0422 | 9.94 | 822
SC-RBF | 0.581 0430 | 0465 0410 | 10.1 | 12.0

Table 3: Comparing Location-Sensitive and General Folk-
sonomies in Profile Tag Prediction. All location-sensitive
versions are statistical significantly different with general
versions according to paired t-test at 0.05.

In Table ??, we compare the location-sensitive folkson-
omy versus the general folksonomy over all design choices
for the application of profile construction. For each design
choice, we acquire both location-sensitive and general ver-
sion for each of the 9 locations mentioned in Table ??. The
general folksonomy is constructed using the whole dataset
excluding distance and location factors. The reported re-
sult is based on averaging 9 locations. We observe that
overall, location-sensitive versions always beat its general



Methods | P@I __P@5 _ AF@l AF@5 (hdf@5
CE-KNN | 0.6567 0.542f 256 _ 18.07  36.17
LBPR 07311 0650t 22.6f 1231  30.2%
LABPR | 0.771 0.673 24.1f 1621 34.6t
LSFolk. | 0763  0.677 265 192 426

Table 4: Comparing Tag Prediction Approaches. *t’ marks
statistical significant difference with LS-Folk. approach ac-
cording to paired t-test at 0.05.

counterpart in terms of precision@k and AF@S5, regardless
of design choice. The priority in terms of P@5 is around
0.1 and AF@5 is above by 20%. This result justifies the
location-sensitive folksonomy since it better captures the lo-
cal knowledge structures. It also demonstrates the effective-
ness of how we model distance influence. Moreover, we find
that the performance is consistent across locations.

We next compare the four similarity metrics used for con-
structing the tag similarity graph at the heart of location-
sensitive folksonomy construction. Design choices with
modified confidence (MC) perform best in terms of P@k,
and AF@5, with folksonomy-informed version built on top
of cosine similarity slightly lower, followed by RBF kernel
and PMI. The extremely low performance of PMI indicates
it may not be suitable for this scenario. After inspecting
the folksonomy, we observe many of the hierarchical rela-
tions are incorrect or meaningless. PMI only considers co-
occurrence of tags without taking the relative frequency dif-
ference into account. In our experiment design, as we don’t
set a minimum tag occurrence for each user to avoid spar-
sity, many tags only show up once on a user and it creates
noise for an approach like PMI.

Last but not least, we evaluate the proposed structure
conservation cost function (SC) against maximum similar-
ity (MS) baseline. SC aims to construct a folksonomy that
makes the smallest change to the similarity graph. We ob-
serve in Table ?? that applying SC leads to an incremen-
tal change in profile construction. For example, in the co-
sine case, we notice the P@5 and AF@5 are slightly better
for SC. We notice about 9.5% of the relations are different
among folksonomy generated using the two cost functions,
meaning that the SC approach made some structure adjust-
ments with some sacrifice in connecting most similar first
strategy. Considering the limited difference in the two folk-
sonomies, this increase in performance can be attributed to
a better macro-structure.

Evaluate User Profiling

Finally, we compare location-sensitive folksonomy-
informed user profiling with the CF-KNN and BPR-MF
baselines. As we observe in Table ??, the proposed
approach outperforms the CF-KNN and locally trained
BPR-MF (LBPR) in both P@k and AF@k and exhibits
similar performance compared with the location-aware
BPR-MF (LABPR) approach. Even though LABPR does
not consider frequency which is also important, the latent
factors effectively capture user preferences over tags and
location-based preference for tags. However, BPR-MF

392

based approach is computationally costly as the dimension
of user and tag increase. The CF-KNN approach is not
robust in sparse condition, for example, when there are few
similar users, the prediction made by CF-KNN could be
very inaccurate.

We leverage average TFIDF score for top five predicted
tags as a metric to reflect how important and informative
the predicted tag is to a user in the actual tag collection.
The score is averaged for users and locations. We notice
the proposed LS-Folk yield the highest TFIDF @5, showing
the capability of identifying uniquely important tag for the
user. We notice that CF-KNN and BPR-MF based approach
have a strong tendency to predict general high frequency
tags. For CF-KNN, highly general tags are very likely to
rank top in the sequence. For BPR-MF, the implicit feed-
back formulation neglects the difference in importance of
the seen tags and has a tendency to predict tags that are
seen on many users. These tags are often on a high abstrac-
tion level and thus provide only vague insight to a user. For
example, if the predicted tag is peep which is short for
“people”, there is little new information contributed to the
target user. In order to precisely profile a user, we expect
to have concrete and specific tags, additionally, we wish to
have a diverse tag space. In contrast, we observe that the
location-sensitive folksonomy-informed approach performs
much better in predicting diverse specific tags.

Conclusion

In this work, we explored the impact of spatial varia-
tion on the construction of location-sensitive user profile.
Concretely, we proposed an location-sensitive folksonomy-
informed framework toward the goal of improved user pro-
filing. Through extensive experiments, we have demon-
strated such location-sensitive folksonomy is more effective
in identifying relevant tags, and learning to rank strategy
is helpful for optimizing feature weights and leads to high
quality user profile tags.
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