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Abstract

Recently, deep hashing methods have attracted much atten-
tion in multimedia retrieval task. Some of them can even per-
form cross-modal retrieval. However, almost all existing deep
cross-modal hashing methods are pairwise optimizing meth-
ods, which means that they become time-consuming if they
are extended to large scale datasets. In this paper, we propose
a novel tri-stage deep cross-modal hashing method – Dual
Deep Neural Networks Cross-Modal Hashing, i.e., DDCMH,
which employs two deep networks to generate hash codes for
different modalities. Specifically, in Stage 1, it leverages a
single-modal hashing method to generate the initial binary
codes of textual modality of training samples; in Stage 2,
these binary codes are treated as supervised information to
train an image network, which maps visual modality to a bi-
nary representation; in Stage 3, the visual modality codes are
reconstructed according to a reconstruction procedure, and
used as supervised information to train a text network, which
generates the binary codes for textual modality. By doing this,
DDCMH can make full use of inter-modal information to
obtain high quality binary codes, and avoid the problem of
pairwise optimization by optimizing different modalities in-
dependently. The proposed method can be treated as a frame-
work which can extend any single-modal hashing method
to perform cross-modal search task. DDCMH is tested on
several benchmark datasets. The results demonstrate that it
outperforms both deep and shallow state-of-the-art hashing
methods.

Introduction

With the explosive growth of various kinds of data, hash-
ing is becoming more and more popular in approximate
nearest neighbor (ANN) search due to its fast query speed
and low storage cost (Wang et al. 2017b; Tang et al. 2015;
Yang et al. 2014; Liu et al. 2016b; Wang et al. 2015;
2017c). Most of the pioneer efforts are specifically proposed
for single-modal data; yet, in many scenarios, data exhibit
multiple modalities such as text, acoustic and image. In a
sense, cross-modal search deserves our attention. For in-
stance, given textual content, we search the images from
database. As compared to the single-modal hashing meth-
ods, efforts on the multi-modal ones are relatively sparse.
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Recently, deep neural networks have been widely used
in various fields, e.g., computer vision and data mining
(Krizhevsky, Sutskever, and Hinton 2012; He et al. 2016).
Thereinto, deep Convolutional Neural Networks (CNNs)
have demonstrated its theoretical and practical success in
feature learning. Inspired by this, some deep hashing meth-
ods have been proposed for cross-modal retrieval.

Generally, these deep cross-modal hashing methods can
obtain better results than the shallow methods in many real-
world datasets. However, there are still some problems that
need to be further considered. For example, nearly all the
deep cross-modal hashing methods are pairwise optimized,
which means that these methods become inefficient if all su-
pervised information is used for training. This makes them
hardly be extended to large-scale datasets. Thus, in real ap-
plications, they usually sample only a small subset with
m points for training where m is typically less than ten
thousands even the given training set is very large. There-
fore, such methods cannot make full use of all available
data samples. In addition, many single-modal hashing meth-
ods can obtain good results on single-modal data. Appar-
ently, the binary codes generated by a single-modal hash-
ing method contain useful information of intra-modality. If
a model could make use of these binary codes and avoid the
pairwise optimization problem, it is expected to obtain better
results and become efficient.

Motivated by this, in this paper, we propose a novel tri-
stage deep cross-modal hashing method – Dual Deep Neural
Networks Cross-Modal Hashing (DDCMH) for cross-modal
retrieval, which employs two deep neural networks to gener-
ate hash codes for different modalities. Distinct from the ex-
isting deep hashing methods, in DDCMH, the two deep net-
works are optimized independently; therefore, it can avoid
the pairwise optimization problem. Without loss of general-
ity, suppose that each sample has two modalities, i.e., text
and image. In Stage 1, DDCMH leverages a single-modal
hashing method to generate the binary codes of the textual
modality of the training set; as to Stage 2, these binary codes
are treated as supervised information to train an image net-
work, which maps the image modality to a binary represen-
tation; when it comes to Stage 3, these image modality codes
are reconstructed according to a reconstruction procedure,
and be used as supervised information to train a text net-
work, which generates better hash codes for textual modal-
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ity than the single-modal hashing method used in Stage 1.
The framework is illustrated in Figure 1.

To summarize, the main contributions of DDCMH in-
clude:

• It combines two deep neural networks for cross-modal
hashing, avoids pairwise optimization scheme, and gets
O(n) complexity by optimizing different modalities in-
dependently. In addition, a code reconstruction procedure
in this framework is designed for obtaining high-quality
hash codes

• It can leverage any single-modal hashing method, which
means that the proposed method can be treated as a frame-
work to extend any single-modal hashing methods to
cross-modal retrieval task.

• It obtains better results than several state-of-the-art shal-
low and deep hashing methods. Especially, it obtains
much better results than other methods on Image-to-Text
retrieval.

The remaining of this paper is organized as follows. First,
the related work is discussed. Then it introduces the details
of the framework, followed by the experimental results and
corresponding analysis. Finally, we conclude the paper.

Related Work

In recent years, cross-modal hashing has been a popular re-
search topic in machine learning and multimedia retrieval.

Most of the cross-modal hashing methods can be cate-
gorized into unsupervised and supervised ones. The former
one characterizes and models the intra- and inter-modal re-
latedness of the given data without supervised information.
Typical examples are Inter-Media Hashing (IMH) (Song et
al. 2013), Linear Cross-Modal Hashing (LCMH) (Zhu et
al. 2013), Latent Semantic Sparse Hashing (LSSH) (Zhou,
Ding, and Guo 2014), and Collective Matrix Factorization
Hashing (CMFH) (Ding, Guo, and Zhou 2014). By com-
parison, supervised cross-modal hashing methods take ad-
vantage of supervised information, e.g., semantic labels,
to obtain better performance. Representative methods are
Cross View Hashing (CVH) (Kumar and Udupa 2011), Se-
mantic Correlation Maximization (SCM) (Zhang and Li
2014), Quantized Correlation Hashing (QCH) (Wu et al.
2015), Semi-Relaxation Supervised Hashing(SRSH) (Zhang
et al. 2017), Supervised Robust Discrete Multimodal Hash-
ing(SRDMH) (Yan et al. 2016), dictionary learning cross-
modal hashing (DLCMH) (Xu 2016) and Semantics Pre-
serving Hashing (SePH) (Lin et al. 2015).

More recently, some deep hashing methods have been
proposed. For example, CNNH (Xia et al. 2014) decom-
poses the hash learning process into a stage of learning ap-
proximate hash codes, followed by a deep-network-based
stage of simultaneously fine-tuning the image features and
hash functions. Lately, in order to achieve simultaneous fea-
ture learning and hash-code learning, some end-to-end deep
hashing methods (Zhang et al. 2015; Li, Wang, and Kang
2016; Liu et al. 2016a; Erin Liong et al. 2015; Zhao et al.
2015; Wang et al. 2017a) have been proposed, which com-
bine the deep CNN and some specially designed objective

function. Apart from that, deep feature based cross-modal
hashing methods were proposed recently, including Deep
Cross-Modal Hashing (DCMH) (Jiang and Li 2016), Pair-
wise Relation Guided Deep Hashing (PRDH) (Yang et al.
2017) and Deep Visual-Semantic Hashing (DVSH) (Cao et
al. 2016). DCMH integrates both feature learning and hash-
code learning into the same deep learning framework with
one deep neural network for all modalities. PRDH further
exploits different pairwise constraints to enforce the hash
codes from not only intra-modality but also inter-modality.
DVSH uses CNN and Long Short Term Memory (LSTM)
to separately learn hash codes for each modality, but it is
constrained to sentences or other sequential texts.

Proposed Method

In this section, we first give the problem formulation; then,
show the details of our proposed method including the
framework, optimization scheme and its extensions to out-
of-sample data and more modalities.

Problem Formulation

Without loss of generality, we assume that there are two
modalities for each sample, i.e., text and image1. Suppose
we have n instances in training set X = {xi}ni=1, where
xi ∈ R

Dx denotes the feature vectors of image modality,
which can be the hand-crafted features or the raw pixels of
the i-th image; Y = {yi}ni=1 denotes the feature vectors of
text modality, where yi ∈ R

Dy is the text tag information
of the i-th image. In addition, we define L = {li}ni=1 where
li ∈ R

Dl to denote the semantic labels of images, which
can be further used to decide whether two samples are simi-
lar. The goal of our method is to learn two modality-specific
hash functions to map the image features x and text features
y to compact k-bit hash codes. More specifically, we tar-
get at learning two functions, e.g., fx(·) and fy(·), that sat-
isfy: bx = fx(x), by = fy(y), where bx, by ∈ {1, 0}k, such
that bx and by preserve the similarity in both intra-modality
and inter-modality. In addition, in this paper, sign(·) is an
element-wise sign function defined as follows:

sign(x) =

{
1 x > 0

0 x ≤ 0.
(1)

Dual Deep Neural Networks Cross-Modal Hashing

As illustrated in Figure 1, there are three stages in DDCMH.
In Stage 1, DDCMH trains a single-modal hashing method
on the textual modality of the samples in training set, and ob-
tains their corresponding binary codes. Thereafter, in Stage
2, these binary codes are treated as supervised information to
train an image deep network, which maps the visual modal-
ity to a binary representation. When it comes to Stage 3,
these visual modality codes are first reconstructed according
to a well designed reconstruction procedure; then, these re-
constructed binary codes are used as supervised information

1We would like to mention that our model can be extended to
handle data samples with more than two modalities.
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Figure 1: Schematic illustration of our proposed DDCMH.

to train a text deep network which can generate the final bi-
nary codes for textual modality. The details of all stages are
described in the following paragraphs.

What should be emphasized is that there are substantial
divergences between single-modal and cross-modal hash-
ing methods because cross-modal methods need to consider
inter-modality similarity. Therefore, it is hard for a single-
modal hashing method to work on multi-modal data. How-
ever, DDCMH can extend any single-modal hashing meth-
ods to work on multi-modal data. From this point of view,
DDCMH can be treated as a framework to extend single-
modal hashing methods to perform cross-modal retrieval.

Stage 1: Initial Hash Codes Generation for Textual
Modality

As mentioned previously, in this stage, DDCMH first tries
to generate the initial binary codes of the textual modality.
Note that, in some bi-stage methods, e.g., CNNH and SePH,
they all first use approximate hash codes generation meth-
ods to obtain approximate binary codes, followed by fur-
ther learning hash functions based on these approximate bi-
nary codes. Thus, to obtain the initial binary codes of textual
modality, we can also adopt these approximate hash code
generation methods. However, considering that the initial bi-
nary codes could affect the quality of final binary codes, we
choose a different strategy here.

Recently, some excellent single-modal hashing methods
have been proposed, e.g., ITQ (Gong et al. 2011), COS-
DISH (Kang, Li, and Zhou 2016), and SDH (Shen et al.
2015), which have achieved state-of-the-art performance.
These methods can generate high-quality and efficient hash
codes. Thus, we can choose one of such existing single-
modal hashing methods, train it with the text modality to ob-
tain the initial binary codes for text modality. In this paper,
we choose COSDISH as the single-modal hash method in
Stage 1. However, other single-modal hashing methods can

also be used here. Due to space limitation, we do not discuss
much about COSDISH. The detail about it can be found in
the original paper. After training, we obtain a trained single-
modal hashing model and the textual modality hash codes,
e.g., By1 = {by1i }ni=1.

Stage 2: Image Network Training

After obtaining the textual modality hash codes By1 in
Stage 1, we subsequently utilize it as the supervised infor-
mation and the original images to train a deep neural net-
work. It is essentially similar to a multi-label classification
task, with the acquired textual modality hash codes as labels
to map the visual modality X of data to the image hash codes
Bx = {bxi }ni=1.

Considering the impressive image feature learning power
of CNNs, here we adopt a CNN model as the image network.
Specifically, we modify AlexNet (Krizhevsky, Sutskever,
and Hinton 2012), a famous and widely used CNN model.
The original AlexNet model consists of five convolutional
layers (conv1-conv5) and three fully-connected layers (fc6-
fc8), and is pre-trained on the ImageNet-1000 dataset (Deng
et al. 2009). To obtain the image hash codes, we replace
the fc8 with a new hashing layer fch with k nodes, each of
which corresponds to one bit in the target hash code. With
the fch layer, the fc7 layer representation is transformed to
a k-dimensional representation. The deep architecture of the
image network is demonstrated in Figure 1.

More specifically, let zxi = hx(xi; θx) be the output of
the image network, where xi is the input image and θx is the
parameter of the image network. Since our goal is to train an
image network according to the text codes By1, we define
the following likelihood function:

p(by1ij |zxij) =
{

σ(zxij) by1ij = 1

1− σ(zxij) by1ij = 0,
(2)
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where by1ij is the hash code corresponding to the j-th bit of
the i-th sample in By1, zxij is the output of the j-th node in
fch layer of the i-th sample, and σ(·) is a sigmoid function,
i.e.,

σ(zxij) =
1

1 + e−zx
ij

. (3)

Then, the loss function of the image network can be for-
mulated as:

Lx = − 1

nk
log p(By1|Zx)

= − 1

nk

n∑
i=1

k∑
j=1

log p(by1ij |zxij) (4)

= − 1

nk

n∑
i=1

k∑
j=1

[by1ij log pxij + (1− by1ij ) log(1− pxij)],

where n is the number of training samples, k is the number
of bits in each hash code, and pxij = σ(zxij).

Given the above loss function, we learn the parameter θx
of the network using the Back-Propagation (BP) algorithm
with stochastic gradient descent (SGD). Specifically, we first
take the derivative of the loss function:

∂Lx

∂zxij
=

∂Lx

∂pxij

∂pxij
∂zxij

= − 1

nk
(by1ij

1

pxij
− 1− by1ij

1− pxij
)(pxij(1− pxij))

= − 1

nk
(pxij − by1ij ). (5)

Thereafter, we can obtain ∂Lx/∂θx with ∂Lx

/
∂zxij us-

ing the chain rule, based on which the BP can be used to
update the parameter θx. After training, we obtain a deep
CNN model for image modality and the corresponding im-
age hash codes Bx = {bxi }ni=1 of the training set, where
bxi = sign(hx(xi; θx)).

Stage 3: Code Reconstruction and Text Network
Training

Thus far we have already trained two models that can gen-
erate binary codes for textual and visual modalities, i.e., the
single-modal hashing in Stage 1 and the image deep network
in State 2. We can use them to generate the binary codes
of multi-modal samples. However, the procedure of the text
hash code generation in Stage 1 is independent of the visual
modality; consequently, it may result in a suboptimal result
if we directly use it to generate the hash code of a query data
point and perform the retrieval task among the image hash
codes. To solve this problem, we further incorporate Stage 3
into the proposed framework.

In Stage 3, we design a multi-layer perceptron (MLP)
model2 with three fully-connected layers for textual modal-
ity, i.e., the text network. The architecture of the text network
is also illustrated in Figure 1. Its architecture is similar to the
last three layers of the image network, except for the first

2Other deep models can also be used here.

layer being replaced with an input layer, and the text-modal
feature vectors are used as the input.

Analogous to Stage 2, we can train the text network with
the binary codes of images generated in Stage 2. However,
this could lead to suboptimal because the procedure of gen-
erating image hash codes Bx in Stage 2 is essentially a
multi-label classification task without explicit similarity pre-
serving. Thus, the distribution of image hash codes Bx in the
Hamming space is not as good as the text hash codes By1,
which are generated by a well-designed hashing method and
the quality of them can be guaranteed. Consequently, if we
directly utilize these suboptimal codes to train the text net-
work, the result could be worse. In addition, our method is
not a pairwise one; we thus cannot adopt pairwise optimiza-
tion to catch the similarity between data points like other
deep cross-modal hashing methods do.

To consider the above problems, we further propose a
code reconstruction method to optimize the image hash
codes Bx according to semantic labels, which is demon-
strated as follows:

bxri =
1

‖liL�‖1 liL
�Bx, (6)

where li is the semantic label vector of the i-th image, Bx is
the hash codes of image modality generated in stage 2 and
‖·‖1 is the 1-norm. It is obvious that, for the reconstructed
hash codes Bxr = {bxri }ni=1 , the data points with the same
semantic labels will have the same code because they are
constructed with the same code from Bx based on their la-
bel information. This reconstruction method can optimize
the distribution of image hash codes in the Hamming space.
In the experiment section, we demonstrate that it can effec-
tively improve the performance of Text-to-Image retrieval
task. In addition, the time complexity of code reconstruction
procedure is also O(n), which guarantees its efficiency.

Once given the reconstructed codes Bxr, Stage 3 works
similarly as Stage 2: Utilizing the Bxr as supervised infor-
mation, and the textual feature vector as input to train the
text network, which maps the textual modality Y of data to
hash codes after training, i.e., By = {byi }ni=1. Specifically,
let zyi = hy(yi; θy) be the output of the text network, where
yi is the input text and the θy is the parameter vector of the
text network, the loss function of the text network can be
formulated as:

Ly = − 1

nk
logp(Bxr|Zy)

= − 1

nk

n∑
i=1

k∑
j=1

logp(bxrij |zyij) (7)

= − 1

nk

n∑
i=1

k∑
j=1

[bxrij logp
y
ij + (1− bxrij )log(1− pyij)].

Similarly, the partial derivative of Ly with respect to zyij
is:

∂Ly

∂zyij
=

∂Ly

∂pyij

∂pyij
∂zyij

= − 1

nk
(pyij − bxrij ). (8)
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Then, ∂Ly/∂θy can be obtained with ∂Ly

/
∂zyij by using

the chain rule, based on which the BP can be used to update
the parameter θy .

Out-of-Sample Extension

For a new instance which is not in the training set, we can
easily generate its hash code as long as we can get one of its
modalities. For example, given a query data point with visual
modality xq , we directly use it as the input of the image
network, then forward propagate the network to generate its
hash code as follows:

bxq = sign(hx(xq; θx)). (9)

Similarly, we can also use the text network to generate the
hash code of a data point with only textual modality yq:

byq = sign(hy(yq; θy)). (10)

Extension to More Modalities

We have demonstrated how the proposed framework works
on data with two modalities. We have to point it out that
it is very easy to extend our model to data with more than
two modalities. For example, we can append additional net-
works for more modalities in the framework, and train them
on the corresponding modalities of training data with the
binary codes generated by the preceding network as super-
vised information. After that, we can use them to obtain the
hash codes of the corresponding modalities.

Experiments

To justify our proposed method, we carried out exten-
sive experiments on two public benchmark datasets, i.e.,
MIRFlickr-25K (Huiskes and Lew 2008) and NUS-WIDE
(Chua et al. 2009), and compared DDCMH with several
state-of-the-art hashing methods for cross-modal search task
including deep and shallow hashing methods.

Datasets

MIRFlickr-25K: It originally consists of 25,000 image
samples collected from the Flickr website. Each image is
annotated by one or more labels selected from 24 labels and
some textual tags. In our experiment, we only retained the
instances which have at least 20 tags. We then got 20,015
instances. The textual modality of each instance is repre-
sented as a 1,386-dimensional bag-of-words vector. For tra-
ditional methods based on shallow architectures, each im-
age is represented by a 150-dimensional SIFT feature vec-
tor. For deep hashing methods, we directly utilized raw pix-
els as the image modality input. On this dataset, we sampled
2,000 instances as the test set (query), and the remaining as
the retrieval set (database). In addition, as mentioned previ-
ously, existing deep hashing methods are based on pairwise
optimization, which cannot efficiently work on large-scale
datasets. For fairness, for all methods, we randomly sample
5,000 instances from the retrieval set as the training set.

NUS-WIDE: It contains 260,648 images from a public
web image dataset. There are 81 ground truth concepts man-
ually annotated for search evaluation. In our experiment, we

selected 186,577 image-text pairs that belong to some of the
10 most frequent concepts. The text modality of each in-
stance is represented as a 1,000-dimensional bag-of-words
vector. For traditional methods based on shallow architec-
tures, each image is represented by a 500-dimensional bag-
of-words vector. For deep hashing methods, we directly used
raw pixels as the image modality inputs. On this dataset, we
chose 1% of the dataset as the test set (query) and the rest
as the retrieval set (database). In addition, we also randomly
sampled 5,000 instances from the retrieval set to construct
the training set.

Baselines

We compared our proposed method with eight state-of-the-
art cross-modal hashing methods, namely, CVH (Kumar and
Udupa 2011), IMH (Song et al. 2013), SCMseq (Zhang and
Li 2014), LSSH (Zhou, Ding, and Guo 2014), CMFH (Ding,
Guo, and Zhou 2014), SePHkm (Lin et al. 2015), DCMH
(Jiang and Li 2016), and PRDH (Yang et al. 2017). DCMH
and PRDH are deep hashing methods; others are shallow
hashing methods. Generally, they can be further divided into
two categories: Specifically, IMH, LSSH and CMFH as un-
supervised methods; CVH, SCMseq , SePHkm, DCMH and
PRDH as supervised ones.

All parameters are set to those suggested in original pa-
pers or selected by a validation process. In addition, as men-
tioned previously, DDCMH adopts COSDISH as the single-
modal hashing method in Stage 1 to generate the initial hash
codes of textual modality. The image and text are consid-
ered to be similar if they share at least one common label.
Otherwise, they are considered to be dissimilar.

Results and Discussions

The performance of all methods are measured by Mean
Average Precision (MAP), which is a widely used metric
for evaluating the accuracy of hashing. We also plotted the
precision-recall curves of some cases.

Experimental results on MIRFlickr-25K are summarized
in Table 1. From this table, we can observe that:

• All deep hashing methods, i.e., DCMH, PRDH and DD-
CMH, generally obtain better performance than those of
the shallow hashing methods.

• DDCMH on all cases outperforms all the baselines no
matter the deep or shallow ones.

• DDCMH obtains much better results on Image-to-Text
cases than other methods.

To gain deep insights into DDCMH and all baselines, we
plotted the precision-recall curves of the cases with 32 and
64 bits in Figure 2. From Figure 2, we can also observe sim-
ilar results to those in Table 1.

Jointly analyzing Table 1 and Figure 2, we can observe
that the results of DDCMH are a little different from those of
other compared methods. For example, for other compared
methods, the results on Text-to-Image are better than their
corresponding results on Image-to-Text; however, DDCMH
obtains better results on Image-to-Text than those on Text-
to-Image. We think the main reason is that DDCMH adopts
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Figure 2: Precision-Recall curves on MIRFlickr-25K.
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Figure 3: Precision-Recall curves on NUS-WIDE.

Table 1: MAP comparison on MIRFlickr-25K. The best re-
sults are in boldface.

Method
I → T T → I

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits
CVH 0.5741 0.5706 0.5682 0.5735 0.5705 0.5686
IMH 0.5655 0.5640 0.5658 0.5630 0.5622 0.5642
SCMseq 0.6405 0.6576 0.6613 0.6335 0.6527 0.6594
LSSH 0.5826 0.5824 0.5795 0.5867 0.5917 0.5941
CMFH 0.5660 0.5673 0.5666 0.5659 0.5682 0.5676
SePHkm 0.6844 0.6872 0.6883 0.7333 0.7402 0.7440
DCMH 0.7056 0.7035 0.7140 0.7311 0.7487 0.7499
PRDH 0.7126 0.7128 0.7201 0.7467 0.7540 0.7505
DDCMH 0.8208 0.8434 0.8551 0.7731 0.7766 0.7905

COSDISH to generate initial binary codes for text modality.
We further analyzed this in the following subsection.

The results on NUS-WIDE are displayed in Table 2 and
Figure 3. Specifically, Table 2 lists the MAP values of all
methods on different cases; Figure 3 illustrates the precision-
recall curves of all methods on cases with 32 and 64 bits.
From Table 2 and Figure 3, we have the following observa-
tions:
• Deep methods also perform better on this dataset.
• DDCMH outperforms all baselines on all cases.
• DDCMH obtains much better results on all cases of

Image-to-Text retrieval than other methods.
• DDCMH also obtains better results on Image-to-Text re-

trieval than those on Text-to-Image retrieval, which is

Table 2: Perfromance (MAP) comparison on NUS-WIDE.
The best results are in boldface.

Method
I → T T → I

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits
CVH 0.3662 0.3572 0.3522 0.3604 0.3535 0.3497
IMH 0.3524 0.3515 0.3547 0.3495 0.3498 0.3523
SCMseq 0.5455 0.5576 0.5583 0.4864 0.5006 0.5080
LSSH 0.3899 0.3926 0.3917 0.4157 0.4206 0.4186
CMFH 0.3382 0.3371 0.3381 0.3382 0.3370 0.3392
SePHkm 0.5350 0.5409 0.5487 0.6177 0.6334 0.6418
DCMH 0.6141 0.6167 0.6427 0.6591 0.6487 0.6847
PRDH 0.6348 0.6529 0.6506 0.6808 0.6961 0.6943
DDCMH 0.8023 0.8271 0.8316 0.6867 0.7012 0.7412

similar to that on MIRFlickr-25K.
To sum up, from the results on MIRFlickr-25K and NUS-

WIDE, we can find that DDCMH can obtain better results
than all baselines, which confirms its effectiveness.

Other Analysis

Necessity of Stage 3 and Code Reconstruction: In DD-
CMH, Stage 3 is added into the framework to learn the hash
codes of textual modality. A code reconstruction procedure
is used in Stage 3. In order to demonstrate that both Stage
3 and the code reconstruction procedure are necessary for
DDCMH, we design two variants of the proposed approach,
i.e., DDCMH-1 and DDCMH-2. The first one is a bi-stage
method without Stage 3, which directly uses the single-
modal hashing method in Stage 1, rather than the text net-
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Table 3: Performance (MAP) comparison of the variants of
DDCMH on the Text-to-Image retrieval of two datasets. The
best results are in boldface.

Method
MIRFlickr-25K NUS-WIDE

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits
DDCMH-1 0.7227 0.7367 0.7336 0.6839 0.6979 0.7008
DDCMH-2 0.7159 0.7322 0.7295 0.6723 0.6785 0.6849
DDCMH 0.7731 0.7766 0.7905 0.6867 0.7012 0.7412

work, to generate the binary codes for the query data points.
DDCMH-2 has all the three stages; however, the code recon-
struction procedure is removed in Stage 3, which means that
the output of the image network is directly used as super-
vised information to train the text network in Stage 3 after
quantization.

We conducted experiments on both MIRFlickr-25k and
NUS-WIDE. The MAP results of both variants and DD-
CMH are shown in Table 3. Note that these variants mainly
affect the results of Text-to-Image retrieval, Table 3 only
shows the results of Text-to-Image retrieval. From Table 3,
we have the following observations:

• DDCMH outperforms DDCMH-1 on all cases of both
datasets, which confirms that Stage 3 is necessary for DD-
CMH.

• DDCMH outperforms DDCMH-2 by 3.1% to 5.4 % on
all cases of both datasets, which confirms that DDCMH
also benefits from the code reconstruction procedure.

• The performance of DDCMH-2 is a little worse than that
of DDCMH-1. This further demonstrates the necessity
and effectiveness of code reconstruction procedure to op-
timize the codes generated by the image network.

Impact of Single-Modal Hashing: As shown in Figure 1,
i.e., the architecture of DDCMH, we leverage a single-modal
hashing method in Stage 1 to generate initial binary codes of
textual modality. Intuitively, the performance of the single-
modal hashing method could affect the performance of DD-
CMH, i.e., the better performance of the single-modal hash-
ing method is, the better performance DDCMH achieves. To
confirm this, we further design a new variant of DDCMH,
i.e., DDCMH-ITQ, which adopts ITQ as the single-modal
hashing method in Stage 1, instead of COSDISH used in
previous experiments. ITQ is a well-known single-modal
hashing method, but it is an unsupervised method and its
performance is generally worse than that of COSDISH. We
carried out experiments on MIRFlick-25K. The MAP re-
sults are shown in Table 4, in which DDCMH-ITQ means
ITQ is used in Stage 1 and COSDISH is used in DDCMH-
COSDISH. Note that the last three columns are the results
of ITQ and COSDISH, which means that the MAP values
are computed based on the hash codes generated by ITQ
and COSDISH on Text-to-Text retrieval. From this table, we
have the following observations:

• COSDISH outperforms ITQ on all cases of the Text-to-
Text retrieval task.

• DDCMH-COSDISH outperforms DDCMH-ITQ in most
cases except the case of 64 bits of Text-to-Image retrieval.
This justifies that DDCMH can obtain better results by
using a single hashing model with better performance.

• DDCMH-ITQ obtains better results on Text-to-Image re-
trieval than those on Image-to-Text retrieval. This is dif-
ferent from that of DDCMH-COSDISH. We thus can con-
clude that DDCMH obtains better results on Image-to-
Text retrieval than those on Text-to-Image retrieval ob-
served in Table 1 and 2 is because that COSDISH gener-
ates different initial binary codes.

Conclusion and Future Work

In this paper, we present a novel deep cross-modal hashing
methods for cross-modal retrieval task, i.e., Dual Deep Neu-
ral Networks Cross-Modal Hashing, DDCMH, which con-
sists of three stages. By optimizing different modalities in-
dependently, DDCMH avoids pairwise optimization prob-
lem. Moreover, DDCMH can be treated as a framework to
extend any single-modal hashing methods to cross-modal
retrieval task. Extensive experiments are conducted on two
benchmark datasets. The results demonstrate that the pro-
posed method outperforms several state-of-the-art baselines
for cross-modal retrieval task.

In this work, DDCMH first generates initial binary codes
of the textual modality so that we can make full use of the
powerful representation of CNN in Stage 2. In our future
work, we plan to explore whether it can also work well if it
first generates the binary codes of visual modality in Stage
1. Besides that, we only train the image network and the text
network once separately because of the limitation of time.
Since the experiments demonstrated that it helps to freeze
one model and use it as a supervisor while the other trains
and vice versa, we may try to continue this process over and
over until the performance saturates. We will further explore
the balance between the time consumed and performance
gained by continuing the process in the future work.
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