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Abstract

Badges are a common, and sometimes the only, method
of incentivizing users to perform certain actions on on-
line sites. However, due to many competing factors in-
fluencing user temporal dynamics, it is difficult to deter-
mine whether the badge had (or will have) the intended
effect or not.
In this paper, we introduce two complementary ap-
proaches for determining badge influence on users. In the
first one, we cluster users’ temporal traces (represented
with Poisson processes) and apply covariates (user fea-
tures) to regularize results. In the second approach, we
first classify users’ temporal traces with a novel statis-
tical framework, and then we refine the classification
results with a semi-supervised clustering of covariates.
Outcomes obtained from an evaluation on synthetic
datasets and experiments on two badges from a pop-
ular Q&A platform confirm that it is possible to validate,
characterize and to some extent predict users affected by
the badge.

Introduction

Awarding a digital badge after a user performs certain actions
is a common mechanism to motivate users on online sites, be
it social networking sites like Foursquare1, education sites
like Khan Academy2, or crowdlearning Q&A sites like Stack
Overflow3. Previously, there have been several attempts at
modeling the badges’ effect on online communities and at
recommending how the badge systems should be designed.
However, there are no previous studies actually verifying
whether the badges have any impact on individual users or
not; it has been taken for granted that badges affect targeted
users in a desired way. In contrast, in this paper we take a
closer look at this assumption, and present the first work that
addresses the problems of validation, characterization and
prediction of users attracted to badges.

It is a challenging task to answer the question whether a
user was (is) in any way motivated by the badge. Users tend
to evolve over time, and apart from badges there are usually
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1https://foursquare.com
2https://www.khanacademy.org/
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Figure 1: Sample user from Stack Overflow influenced by
the Research Assistant badge that is awarded for tag wiki
edits. The user increases its action rate when the badge is
introduced to the community (at time τ ), and returns to the
previous rate after receiving it (at time bu).

many competing factors influencing their dynamics. Further-
more, neither ground truth nor counterfactual data showing
behavior of users not influenced by badges are available.

In this paper, we focus on the most popular type of badges,
i.e., threshold badges, that are awarded after a user performs
a certain number of desired actions. The above challenges
in this context can be addressed by simultaneously looking
at users’ temporal traces and their general characteristics. In
particular, we identified the following useful patterns:

– attracted users change their mean behavior around the
badge awarding time

– influenceable users are similar
As an example, Figure 1 illustrates how user action rate
changes due to the badge, and also shows the associated user
features and statistics.

In this paper, we propose two complementary solutions to
the user badge influence problem exploiting the above obser-
vations. In both we apply users’ temporal traces (modeled as
non-homogeneous Poisson processes) as a main source of the
badge effect information and use associated covariates (user
features and statistics) to regularize classification results.

This paper makes the following contributions:
– introduction and formalization of the user badge influence

problem
– validation and prediction of the influence of badges on

individual users with two novel methods:
I. a model-based algorithm to cluster (problem-specific)

counting processes with covariates used to encode
priors
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II. a statistical test complemented with a way of cali-
brating it by means of virtual badges bootstrapping
and an adaptation of the EM clustering algorithm that
refines the results of this test

– empirical evaluation using synthetic data
– case studies of two badges from a popular Q&A platform

The code used in this paper is publicly available 4.
In the rest of the paper we’ll give an overview of related

work, formalize the problem, provide a detailed description
of our proposed solutions, and demonstrate their effectiveness
on synthetic and real datasets.

Related Works

Our work extends previous studies on motivational mecha-
nisms in social media (Ghosh and McAfee 2011; Hamari,
Koivisto, and Sarsa 2014; Lewis 2004) and in particular on
understanding and modeling the effects of badges (Anderson
et al. 2013; Gibson et al. 2015; Zhang, Kong, and Yu 2016).

Previously, (Immorlica, Stoddard, and Syrgkanis 2015;
Easley and Ghosh 2016; Zhang, Kong, and Yu 2016) worked
on optimal badges design from a game-theoretic perspective.
They relied on strong theoretical assumptions not necessarily
satisfied in real data, including the assumption that badges
always work. In this paper, we challenge this presumption.
Early studies suggesting that may not always be the case ap-
peared first in the educational context (Abramovich, Schunn,
and Higashi 2013). In the context of social media the problem
of badges effectiveness was noticed very recently (Bornfeld
and Rafaeli 2017; Kusmierczyk and Gomez-Rodriguez 2017;
Hamari 2017). In these works researchers assumed badges
effect to be binary, i.e., either a badge changes commu-
nity functioning or not, and (apart from (Kusmierczyk and
Gomez-Rodriguez 2017) who on the other hand worked
with simpler single-action badges) focused on site-global
statistics (total number of views, edits, etc.), whereas we
take a user-level perspective and try to understand badge
influence on individuals. This places our study closer to
works trying to characterize susceptible users in social me-
dia, for example (Aral and Walker 2012), and modeling
user behavior in presence of badges (Anderson et al. 2013;
Mutter and Kundisch 2014). The latter two rely on a goal-
gradient hypothesis, i.e., users become more active closer to
a badge. For example, Anderson et al. introduced a game-
theoretic model in which the badge always confers a value
to a user in each step after she receives it. Optimal user pol-
icy for that model is then a (mentioned above) goal-gradient
behavior, that is then sought in empirical evaluation. How-
ever, the plots they present show results that were averaged
over all the users, whereas we observe that many individu-
als diverge from this behavior. Therefore, in contrast to the
previous works, we decided to take a data-driven approach
where, apart from quantifying the badge effect, we also relax
assumptions about the behavior of users, e.g., we focus on
mean changes in user behavior around the time of badge
awarding. In consequence, we are able to study badge-related
patterns on a more granular (i.e., individual user) level.

4http://github.com/tkusmierczyk/badges2

Problem Formulation

In this section, we present the problem of determination of
badge influence on a user in a formal way, and introduce a
point process model of user behavior in context of a badge.
Notation: Badges and Users. A digital threshold badge b
can be represented with a tuple:

b := (τ
↑

introduction

,

desired actions type
↓
a, T

↑
threshold

),

where τ is the badge introduction time (= the time when the
badge started being awarded), a is an assigned action type,
and T is the badge threshold (= the number of type a actions
that need to be performed by a user in order to be awarded
the badge).

User u ∈ U in context of the badge b can be represented
by a tuple:

u := ( �xu
↑

user features

,

action times
↓

{tu}, su
↑

start time

,
end time

↓
eu, bu

↑
badge awarding

,

badge attraction
↓
iu ),

where �xu is a vector of badge covariates (e.g., user charac-
teristics), {tu} is a set of timestamps of desired (=type a)
actions, su and eu designate user activeness interval (time
span in which we test badge effect), bu is the time when user
u received badge b (=achieved level of T actions). If the user
u has not received the badge yet (i.e., |{tu}| < T ), we set
bu = ∞. Finally, the binary variable iu informs if the user
is/was attracted by the badge reward perspective or not (the
fact that user received a badge does not necessary imply that
she had any interest in that – it could be just a side-effect of
her normal activity).

Additionally, to simplify some of the later formulations, we
define: lu = eu−su, l0u = bu−su, l1u = eu−bu, nu = |{tu}|,
n0
u = |{tu : tu < bu}|, n1

u = |{tu : tu ≥ bu}|.
Influenced Users Validation and Prediction. We distin-
guish users influenced by the badge b from those not attracted
via the binary variable iu. Unfortunately, the variable is usu-
ally hidden. Its value recovery can be done in two practical
settings:

I. Validation: user received the badge (bu < ∞) and we
verify if it did not happen just by chance.

II. Prediction: user has not received the badge yet
(bu = ∞) and we try to forecast if she may be in-
terested in receiving it.

For neither of the tasks we know the truth. Therefore,
we rely only on our assumptions relating badge influence
with temporal traces ({tu}) and users’ general characteristics
(encoded in �xu).
Temporal Traces Model. It might be hard to observe if users
attracted by the badge change their behavior when they re-
ceive it. However, temporal fluctuations and impact of com-
peting factors can be reduced with averaging over time. In
particular, inspired by the survival model from the work
by (Kusmierczyk and Gomez-Rodriguez 2017), we assume
the following model of underlying temporal traces, where
user u’s action times are drawn from the non-homogeneous
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Poisson process (Daley and Vere-Jones 2002) controlled by
the intensity λu(t) that takes one of the two forms: λ0

u(t) or
λ1
u(t), depending on the latent variable iu:
– iu = 0 (user not attracted by the badge): intensity is a

constant (user does not change her behavior over time)
– iu = 1 (user attracted by the badge): actions mean

intensity changes when the badge is awarded at bu
Formally, the model is expressed as follows:

{tu} ∼ PP (λiu
u (t))

λ0
u(t) =

{
0 if t < su ∨ t > eu
λ0(u) otherwise

(1)

λ1
u(t) =

⎧⎪⎨
⎪⎩
0 if t < su ∨ t > eu
λ1
0(u) if su < t ≤ bu

λ1
1(u) otherwise

Learning Attracted Users via Poisson

Processes Clustering

In this section, we introduce a novel model-based algorithm
to cluster Poisson processes, that we use to identify users
influenced by the badge. Its extended version employs covari-
ates to regularize clusters assignment priors and allows for
new users prediction.
Basic Model. We assume that the fraction of users attracted
by the badge (having iu = 1) is π, and the intensities λ
(expressed in Eq. 1) come from the shared prior gamma
distributions:

iu ∼ Bernoulli(π)

λ0(u) ∼ Gamma(α0, β0)

λ1
0(u) ∼ Gamma(α1

0, β
1
0) (2)

λ1
1(u) ∼ Gamma(α1

1, β
1
1)

The full model then has seven hyperparameters: θ0 =
{α0, β0}, θ1 = {α1

0, β
1
0 , α

1
1, β

1
1} steering the behavior of

users with respectively iu = 0 and iu = 1, and π controlling
the fraction of users attracted by the badge. Latent variables
are iu and action intensities λ0(u) and {λ1

0(u), λ
1
1(u)}.

The model can be factorized thanks to independence be-
tween user probabilities and independence between Poisson
processes on non-overlapping intervals, and then simplified
via marginalization of latent intensities. The procedure leads
to the following conditional user probabilities:

P ({tu}|θ0, iu = 0) =
β0α

0

(lu + β0)α0+nu

Γ(α0 + nu)

Γ(α0)

P ({tu}|θ1, iu = 1) =
β1
0
α1
0

(l0u + β1
0)

α1
0+n0

u

Γ(α1
0 + n0

u)

Γ(α1
0)

· (3)

· β1
1
α1
1

(l1u + β1
1)

α1
1+n1

u

Γ(α1
1 + n1

u)

Γ(α1
1)

The model collapses to a mixture-model with two clusters
determined by iu = 0 and iu = 1 and controlled by hy-
perparameters θ0 and θ1, and with mixing factor π. Cluster
assignments and hyperparameters in this class of models are
typically inferred with an EM-like procedure that consists of
two alternating steps taking in our case the following form:

I. Maximization: hyperparameters are updated:⎧⎨
⎩
θ0new

θ1new

πnew

⎫⎬
⎭ = argmax

θ0,θ1,π

∑
u

logP ({tu}, iu|θ0, θ1, π)

where the complete-data likelihood per user relies on
per-cluster user likelihoods expressed in Eq. 3:

logP ({tu}, iu|θ0, θ1, π) =
γ(iu)(logP ({tu}|θ1, iu = 1) + log π)+

(1− γ(iu))(logP ({tu}|θ0, iu = 0) + log(1− π))

A closed-form solution to the optimization problem
does not exist. Instead, we first find cluster probabilities:

πnew =

∑
u∈U γ(iu)

|U | (4)

and then resort to numerical optimization with positivity
constraints to find θ0new and θ1new

II. Expectation: posterior cluster responsibilities are found
in the usual way:

γ(iu) =
P ({tu}|θ1, iu = 1)π

P ({tu}|θ1, iu = 1)π + P ({tu}|θ0, iu = 0)(1 − π)

Including Covariates. Badges attract users of similar char-
acteristics and therefore user influence covariates �xu can
be applied for clustering improvement as a form of regular-
ization. We incorporate them in the our hierarchical model
similar to (Liang et al. 2016) by replacing the constant cluster
membership prior with user personalized ones, i.e., π → πu
that we furthermore posit to have a functional form:

πu = f( �xu, �w) ∈ [0, 1] (5)

where �w are parameters of the function f . In general,
f can be any function (for example neural network) but
due to its simplicity we choose logistic regression, i.e.,
f( �xu, �w) = sigmoid(�w · �xu).

Conditional independence between the priors for cluster
memberships and clusters’ parameters imply that the infer-
ence procedure described above can be adjusted in a simple
way by replacing the updates in Eq. 4 with the following
optimization of vector �w:

�wnew = argmax
�w

∑
u

(f( �xu, �w)− γ(iu))
2

Validation. In the proposed approach the variable iu encod-
ing user attraction towards the badge is also used to select
between clusters. In particular, the posterior probabilities of
cluster assignments can be interpreted as the badge impact
probabilities. Ideally (i.e., with probability 1), users with
iu = 0 should be assigned to the first cluster and with iu = 1
to the second cluster.
Prediction. For a new user without temporal trace we predict
badge attraction only relying on her features and statistics:

P̂ (iu) = f( �xu, �w)
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Learning Attracted Users with NHST and

Covariates Clustering

In this section, we propose a two-phase procedure validating
badge influence on users. In the first phase, we approximately
identify users influenced by the badge with a robust Null
Hypothesis Significance Testing (NHST) procedure. In the
second phase, we refine assignments with a semi-supervised
clustering of covariates.

Robust Validation of Attracted Users

Behavior Change Testing. The alternative that a user u was
or was not attracted by the badge can be expressed in terms
of the null and the alternative hypotheses:

H0 : iu = 0 (badge b did not have an effect on user u)
H1 : iu = 1 (badge b influenced user u)

Under the model in Eq 1 we can restate it in the following
way:

H0 : λiu
u = λ0

u(t)

H1 : λiu
u = λ1

u(t)

Test Statistic. We use a standard log-likelihood ratio be-
tween likelihoods corresponding to H0 and H1 as a test
statistic (Hogg and Craig 1995) which in our case takes the
following form:

LLR(λ0(u), λ1
0(u), λ

1
1(u)) = nu log λ

0(u)− luλ
0(u)+

−n0
u log λ

1
0(u) + l0uλ

1
0(u)− n1

u log λ
1
1(u) + l1uλ

1
1(u)

where we plug-in MLE estimates for respective intensities:
λ̂0(u) = nu

lu
, λ̂1

0(u) =
n0
u

l0u
, λ̂1

1(u) =
n1
u

l1u
and assume that

(0 log 0) = 0.
Robust Estimation of the Test Statistic Distribution.
Asymptotically the test statistic −2LLR for nested mod-
els has an approximate chi-square distribution (Wilks 1938)
with the number of degrees of freedom equal to differ-
ence between compared models, e.g., in our case df = 1.
The test statistic transformation to p-value is then given by:
p ≈ 1− χ2

df (−2LLR) where χ2 is a chi-square CDF.
The standard procedure can detect a change in user be-

havior happening around bu, but is not able to differentiate
between the badge causal effect and other competing factors.
Instead, we design and apply the calibration procedure (sim-
ilar to (Kusmierczyk and Gomez-Rodriguez 2017)) that ac-
counts for them by simulating a counter-factual world where
the badge was never awarded and measuring the strength of
observed changes there. In practice the test statistic empirical
distribution is estimated with the following virtual badges
bootstrapping procedure:

1. Sample B virtual badges b′u ∼ U([su, bu −m] ∪ [bu +
m, eu]) where m is some small margin.

2. Remove the true badge effect by putting
it outside the updated activeness limits:

(s′u, e
′
u) =

{
(su, bu −m) if b′u < bu
(bu +m, eu) otherwise

3. Evaluate LLR′ with simulated b′u, s
′
u, e

′
u and ade-

quately updated {t′u}.
4. Approximate empirical p-value: p = |{LLR′>LLR}|

B

Assignment Refining via Semi-supervised
Clustering of Covariates

NHST Assignments Misclassification. The above testing
procedure applied to each user splits the population into two
groups: positives P for whom we managed to reject H0 at
significance level α and negatives N for whom we failed
to reject H0. Although this can be used as a first approxi-
mation to iu, both groups contain many misclassified cases.
In particular, the false positives rate (FPR) and the false
negatives rate (FNR) depend on the statistical test power
and prevalence of the positives over negatives, that both are
unknown. For example, (Sellke, Bayarri, and Berger 2001;
Colquhoun 2014) estimate FPR to be at least around 25%
when the prior probability of a real effect is 0.5 and α = 0.05.
This means that at least 1/4 of users initially assigned iu = 1
actually have iu = 0. For iu = 0, the fraction of misclassified
cases would be even higher.
Semi-Supervised Clustering with Group Priors. We
achieve the reduction of the above classification error em-
ploying a novel semi-supervised extension to the standard
EM algorithm for gaussian mixtures (Bishop 2006) The ex-
tended algorithm works (=clusters users) in covariates space
but additionally employs the information transferred from the
first (=NHST) phase. In particular, initial user assignments
and our beliefs about misclassification rates we encode in
priors to cluster assignments (=mixing coefficients).

NHST classification splits users into two groups, where P
and N are respectively users initially classified as positives
and negatives. For each group G ∈ {P,N} we propose to use
separate mixing coefficients �πG with Dirichlet hyperpriors,
i.e., �πG ∼ Dirichlet(α0

G, ..., α
K
G ), where K is a standard

parameter controlling the number of clusters (in contrast to
Poisson processes clustering, in covariates space we can have
arbitrary number of clusters). In order to be able to interpret
clustering results, for each cluster we assign either iu = 1
(clusters denoted as C1) or iu = 0 (clusters denoted as C0).
Finally, we can initialize the algorithm as follows:

αc
G =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ |P |·FPR
|C0| if c ∈ C0 ∧G = P

σ |P |·(1−FPR)
|C0| if c ∈ C1 ∧G = P

σ |N|·(1−FNR)
|C1| if c ∈ C0 ∧G = N

σ |N|·FNR
|C1| if c ∈ C1 ∧G = N

Values of αc
G encode beliefs of how many users from group

G should end up in cluster c according to our trust in the
initial classification based on NHST. Parameter σ balances
between classification and clustering impact and informs how
sure we are about the values of FPR and FNR. For example,
we use FPR = 0.25, FNR = 0.4 and σ = 1.0.

The model fitting is performed in a standard way via EM,
apart from two differences: (1) when calculating expectations
new priors �πG are used, and (2) in the maximization step
πc
G are updated per group: πc

G ∼ αc
G +

∑
u∈G γ(zcu), where

γ(zcu) are posterior cluster responsibilities.
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Validation. The above procedure results in assigning each
user a vector of cluster probabilities. The probability of the
badge influencing a user can be then calculated as a total
probability of clusters with iu = 1.
Prediction. Prediction of new users can be performed via co-
clustering. Specifically, users for which we could not perform
the statistical test we include into the clustering as a new
group X with uninformative priors, for example αc

X = 1.
The rest of the method remains unaltered.

Co-clustering of users with badge and without badge can
improve classification results in both validation and predic-
tion, but the data distributions must be similar in terms of
grouping attracted and not-attracted users. This assumption
may be hard to ensure for real data. Therefore, to improve
robustness and prediction quality, we propose to first cluster
users with badge using the above procedure and then employ
clustering results to train a standard classifier with better
generalization properties, for example logistic regression.

Synthetic Data Evaluation

In this section, we compare with the help of synthetically
generated data the effectiveness of the proposed approaches
for validation and prediction of users attracted by the badge.
Basic Setting. We simulate the behavior of N = 1000 users:
N/2 users with both temporal dynamics {tu} and covariates
�xu, and N/2 users with only covariates �xu, that imitate new
users. For each user we assign a latent variable iu: with
probability π: iu = 1 and with probability 1− π: iu = 0.

The users’ temporal traces {tu} we sample according to
intensities expressed in Eq. 1. The intensities λ0(u) and
λ1
1(u) we draw according to Eq. 2 where we fix variances

Var(λ0(u)) = Var(λ1
1(u)) = 25 and means E(λ0(u)) =

10, E(λ1
1(u)) = 10−Δλ, and intensity λ1

0(u) we fix respec-
tively to λ1

0(u) = λ1
1(u) + 2Δλ. The parameter Δλ controls

the strength of the simulated badge effect. In the basic setting,
randomness in individual user temporal trace {tu} appears
due to point processes sampling procedure.

Users are independent, and therefore without loss of gen-
erality we can assume start times for all users su = 0. Fur-
thermore, we set badge awarding time to bu = 100/λ0(u)
for users with iu = 0, and bu = 100/λ1

0(u) for users
with iu = 1. User end times we set to eu = bu + u · bu
(u ∼ U [0, 1]).

We sample user features from bivariate (=two features per
user) normal distributions:

�xu ∼
{
N(0,Σ) when iu = 0

N(Δx · smax�vmax,Σ) otherwise

where covariance matrix

Σ ∼ Wishart (10,
[
2 1
1 2

]
),

smax is the largest singular value of Σ corresponding to eigen-
vector �vmax, and Δx controls discrepancy between features
of users from different groups.
Disturbed Data Setting. We study the robustness of our
methods by simulating disturbed data, e.g., temporal fluctua-
tions in user intensities. In particular, we add (typical for real

data) temporal trend, i.e., λiu
u (t) becomes λiu

u (t)(1 + At),
where A controls the extent of the simulated fluctuation.
Evaluation. In contrast to what is the case for real data,
for synthetic data we know user attitude towards the badge
(iu) and therefore we can evaluate prediction results against
it. Specifically, we employ Area Under Curve (AUC) that
accounts for uncertainty in our methods predictions. We mea-
sure AUC separately for users with full information (user
validation problem) and for users with limited data (user pre-
diction problem). Every experiment we repeat 20 times and
then average results.
Results. Figure 2 summarizes the simulation results in the ba-
sic setting for varying badge effects (Δλ) and clusterization
levels (Δx). The methods based on our 2-phase procedure
(we show results only for bootstrap variant; results for theo-
retic variant in the basic setting are identical) improve over
the basic NHST classification and have a superior perfor-
mance over Poisson (processes) clustering. Poisson cluster-
ing fails when intensity differences between user classes are
small (e.g., Δλ ≤ 0.5). We found that the method in the
considered variant (with logistic regression in Eq. 5) does not
benefit sufficiently from differences between users’ covari-
ates (Δx) and as a result underestimates the probabilities of
badges having effect.

Fluctuations in the temporal data lead to performance
degradation. For example, Figure 3 shows how AUC is de-
creasing when divergence from the models (controlled by
trend A) is increasing. The most affected method is 2-phase
theoretic (2-phase procedure with theoretic estimation of the
test statistic distribution). The intermediate results (NHST the-
oretic) confirm that the method tends to overestimate badge
influence when fluctuations are strong. However, the least
affected is Poisson processes clustering, it never outperforms
2-phase bootstrap - the robust variant of our 2-phase proce-
dure.

Finally, we investigate our methods in terms of sensitivity
to class imbalance (Figure 4). Class imbalance has a low
impact on validation performance. It happens because the
main indicator of the badge influence on user is a change in
individual user dynamics around the badge awarding time
and covariates are only ‘regularizers’. On the other hand,
the prediction relies entirely on covariates and if one class
is underrepresented covariates distributions are poorly fitted
and prediction fails, e.g., AUC approaches 0.5 for both very
small and large π.

Real Data Experiments

In this section, we investigate the effectiveness of our meth-
ods when applied to real data, i.e., two sample badges from a
popular Q&A platform.
Data Description and Preprocessing. In the real-data ex-
periments we used a Stack Overflow dataset 5, that contains
timestamped events from between July 2008 and September
2014 and some basic information (profile and actions record)
about registered users. In particular, as badge covariates we

5https://archive.org/details/stackexchange
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Figure 2: Performance (average AUC) of our methods on synthetic data against badge effect (Δλ) and covariates strength (Δx).
The top row shows the validation of badges’ causal effect on users with badge (i.e., having sufficient {tu}). The bottom row
shows the performance for new users (i.e., with only �xu employed).
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Figure 3: Robustness against temporal fluctuations
(e.g., global linear trend; Δλ = Δx = 1, π = 0.5).

used the following user features and statistics (=proxies de-
scribing user activeness level):

– user age and location
– total number of visited pages (page views count), posted

comments, upvotes and downvotes
User statistics was transformed by applying the following
transformation: x → log(x+ 1). From location we extracted
city and state names that we independently embedded using
a pre-trained word2vec model6. Embeddings were clustered
separately into 5+5 clusters using k-means and distances to
cluster centers were subsequently used as covariates: 5 for
city and 5 for state.

User activeness intervals (i.e., time points su and eu) can
be extracted from the posting history, i.e., by taking the times
of respectively the first and the last post (= question, answer,
comment or edit). However, there might be several badges
related to the same action type a (for example, Tag Editor
and Research Assistant are awarded for the 1. and 50. wiki

6https://code.google.com/archive/p/word2vec/
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Figure 4: Sensitivity to class imbalance (Δλ = Δx = 1).

tag edits, respectively). In that case, to avoid interactions
between effects from different badges, only actions in direct
neighborhood of the badge should be considered. In partic-
ular, we update su and eu associated with the badge b in a
way that the awarding time b′u of the other badge b′ would be
located beyond (with a sufficient margin) these limits.

Users who fulfilled the conditions necessary to get the
badge before its introduction time τ could not have been
influenced by it and therefore, we filter them out. Similarly,
we ignore all the users who lost interest in active participation
in the community by that time, i.e., whose end time eu < τ .
Finally, users with incomplete records, e.g., missing age or
location, were also disregarded.

We demonstrate the effectiveness of the proposed ap-
proaches for two sample threshold badges7:

– Research Assistant : awarded to users who edited at least
50 wiki sites describing tags (wiki tag edits). Users with
reputation8 1500 or higher can perform these actions.

7https://meta.stackexchange.com/questions/67397/
8https://stackoverflow.com/help/whats-reputation
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Figure 5: Validation of the effect of two badges: Research Assistant (top) and Copy Editor (bottom). Users are projected onto a
two-dimensional space of age and log number of views, with badge effect represented with color (red=influenced, blue=badge
awarded by chance).

– Copy Editor: awarded to users who performed a total
of 500 post (e.g., question or answer) edits. Users with
reputation 100 or higher can perform these actions.

Results. Figure 5 illustrates validation results from Poisson
processes clustering and 2-phase bootstrap alongside with
intermediate results from NHST bootstrap. The classification
results from different methods agree (=badge effect proba-
bility either larger than 0.5 or smaller than 0.5 in both cases)
to a high degree. For example, for Research Assistant we
observe 70% agreement between Poisson clustering and 2-
phase bootstrap. With p-value < 0.001 we can reject the
hypothesis that it happens by chance. Similarly, for Copy
Editor we report p-value = 0.016.

The validation results suggest that only about half (i.e.,
58% for Research Assistant and 47% for Copy Editor accord-
ing to 2-phase bootstrap) of the users intentionally performed
actions needed to receive the badge. Prediction results are less
conclusive. However, in 2-phase bootstrap classification for
Research Assistant and for Copy Editor we got respectively
53% and 39% of users potentially attracted to the badge (only
users with sufficient reputation included), Poisson processes
clustering classified all new users as unlikely interested in the
badges. We presume that this can happen due to differences
between data distributions of users with and without badge
that are handled differently by the methods. In particular, it
can be a problem if users without badge are predominant in
the used data set.

Examination of fitted models can give deeper insights into
how user characteristics relate to badges influence. In par-
ticular, we ranked covariates according to Kullback-Leibler
divergence between both user classes (iu = 0/1) and re-
ported means of the respective distributions. We observed

that features derived from location best discriminate between
classes. For example, we discovered that users located in the
USA were getting badges more often by chance – due to
their natural high activeness. On the other hand, users from
East Europe and India were more mercenary – their behavior
was more often driven by the perspective of a badge reward.
Similarly, we found out that younger users on average were
more goal-oriented than older ones.

Conclusions

Badges are a popular motivational mechanism used in social
media sites. However, due to complexity of these environ-
ments, the belief that they really work, i.e., are incentivizing
users to perform certain actions, is hard to verify and until
recently there were no tools for that. To address this problem
we designed and evaluated two approaches to verify individ-
ual users attraction towards badges. The proposed methods
applied to real data from Stack Overflow let us to gain inter-
esting insights about users who earn badges. In particular, in
contradiction to previous beliefs we discovered that many of
them receive badges by chance, having no prior intention of
it.

Our work can be extended in many ways. For example, it
would be interesting to see how more advanced features, like
temporal features covering user evolution on early stage, can
improve the performance of our methods. Furthermore, we
focused our research on threshold badges (that are the most
popular ones) but there are many other interesting designs (for
example badges associated to limited resources) for which
the problem of influence validation remains open. Finally, we
believe that our results should affect how badges are designed
and help in making them more effective.
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