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Abstract

Points of interest (POI) recommendation has been drawn
much attention recently due to the increasing popularity of
location-based networks, e.g., Foursquare and Yelp. Among
the existing approaches to POI recommendation, Matrix Fac-
torization (MF) based techniques have proven to be effec-
tive. However, existing MF approaches suffer from two ma-
jor problems: (1) Expensive computations and storages due
to the centralized model training mechanism: the centralized
learners have to maintain the whole user-item rating matrix,
and potentially huge low rank matrices. (2) Privacy issues:
the users’ preferences are at risk of leaking to malicious at-
tackers via the centralized learner. To solve these, we present
a Decentralized MF (DMF) framework for POI recommen-
dation. Specifically, instead of maintaining all the low rank
matrices and sensitive rating data for training, we propose a
random walk based decentralized training technique to train
MF models on each user’s end, e.g., cell phone and Pad. By
doing so, the ratings of each user are still kept on one’s own
hand, and moreover, decentralized learning can be taken as
distributed learning with multi-learners (users), and thus al-
leviates the computation and storage issue. Experimental re-
sults on two real-world datasets demonstrate that, compar-
ing with the classic and state-of-the-art latent factor models,
DMF significantly improvements the recommendation per-
formance in terms of precision and recall.

Introduction

Nowadays, location-based networks, e.g., Foursquare and
Yelp, are becoming more and more popular. These platforms
provide kinds of point of interests (POIs) such as hotels,
restaurants, and markets, which makes our lives much eas-
ier than before. Meanwhile, the problem of “where to go”
starts to bother people, since it is time-consuming for peo-
ple to find their desired places from so many POIs. POI rec-
ommendation appears to address such a problem by helping
users filter out uninteresting POIs and saving their decision-
making time (Ye et al. 2011; Gao et al. 2015).

Among the existing research from POI recommendation
communities, Matrix Factorization (MF) techniques draws
a lot of attention (Cheng et al. 2011; 2012; Yang et al.
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Figure 1: Comparison between centralized learning and de-
centralized learning.

2013), and it has proven to be attractive in many recom-
mendation applications (Koren et al. 2009; Chen et al. 2014;
Koenigstein, Dror, and Koren 2011; Chen et al. 2016).
However, existing MF approaches train the recommendation
model in a centralized way. That is, the recommender sys-
tem, actually the organization who built it, first needs to col-
lect the action data of all the users on all the POIs, and then
trains a MF model. The shortcomings of this kind of cen-
tralized MF methods are mainly three-folds. (1) High cost
of resources. Centralized MF not only needs large storage
to store the collected user action data on POIs, but also re-
quires huge computing resources to train the model, espe-
cially when datasets are large. (2) Low model training effi-
ciency. Centralized MF model is trained on a single machine
or a cluster of machines. Thus, the model training efficiency
is restricted to the number of machines available. (3) Shal-
low user privacy protection. In recommender systems, user
privacy is an importance concern (Canny 2002), especially
in POI scenarios. Most people do not want to release their
activities on location based network, not only to other peo-
ple, but also to the platforms, for privacy concerns. How-
ever, centralized MF trains model on the basis of having all
the users’ activities data. In fact, the safest way is that users’
data are kept in their own hand, without sending them to
anyone or any organization (platform).

To solve the above problems caused by centralized train-
ing of MF, we propose Decentralized MF (DMF) frame-
work. That is, instead of training user and item latent fac-
tors in a centralized way by obtaining all the ratings, we
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train MF model in each user’s end, e.g., user’s cell phone
and Pad. Figure 1 shows the difference between centralized
and decentralized learning. DMF treats each user’s device
as an autonomous learner (individual computation unit). As
we know, the essence of MF is that user and item latent
factors are learnt collaboratively, so should be DMF. Three
key challenges exist when making users collaborate in DMF
meanwhile preserving user privacy. The first challenge is
which user should be communicated. We answer this ques-
tion by analyzing the data in POI recommendation scenar-
ios, and propose nearby user communication on user adja-
cent graph, which is built based on users’ geographical infor-
mation. Along with this, the second challenge naturally ap-
pears: how far should users communicate with their neigh-
bors. To address this, we present a random walk method
to enhance local user communication. That is, we use ran-
dom walk technique to intelligently select users’ high-order
neighbors instead of only their direct neighbors. The third
and also the most serious challenge is what information
should users communicate with each other without leaking
their data privacy. To solve this challenge, we decompose
item preference into global (common) and local (personal)
latent factors, and allow users communicate with each other
by sending the gradients of the global item latent factors.

Our proposed DMF framework successfully deals with
the shortcomings of centralized MF. (1) Each user only
needs to store his own latent factor, and items’ latent fac-
tors. The computation is also cheap: each user only need to
update the corresponding user and item latent factors when
he (his neighbors) rates (rate) an item. (2) Since each user
updates the DMF model on his own side, it can be taken
as a distributed learning system with #users as #machines,
which makes the model efficient to train. (3) The ratings of
each user on items are still kept on one’s own hand, which
avoids user’s privacy being disclosed.

We summarize our main contributions as follows:
• We propose a novel DMF framework for POI recommen-

dation, which is scalable and is able to preserve user pri-
vacy. To our best knowledge, it is the first attempt in liter-
ature.

• We propose an efficient way to train DMF. Specifically,
when a user rates an item on his side, the user and item
gradients are first calculated. We then present a random
walk based technique for users to send the item gradient
to their neighbors. Finally, the corresponding user/item la-
tent factors are updated using stochastic gradient descent.

• Experimental results conducted on two real-world data-
sets demonstrate that DMF can achieve even better per-
formance compared with the classic and state-of-the-art
latent factor models in terms of precision and recall. Pa-
rameter analysis also shows the effectiveness of our pro-
posed random walk based optimization method.

Background

In this section, we review some necessary backgrounds
which form the basis of our work, i.e., (1) Matrix Factoriza-
tion (MF) in POI Recommendation, (2) decentralized learn-
ing.

Matrix Factorization in POI Recommendation

MF aims to learn user and item (POI) latent factors through
regressing over the existing user-item ratings (Koren et al.
2009; Mnih and Salakhutdinov 2007), which can be formal-
ized as follows,

min
ui,vj

I∑
i=1

J∑
j=1

(
rij − uT

i vj
)2

+ λ

(
I∑

i=1

||ui||2 +
J∑

j=1

||vj ||2
)
,

(1)

where ui and vj denote the latent factors of user i and item
j, respectively, and rij denotes the known rating of user i on
item j. We will describe other parameters in details later.

MF and its variants have been extensively applied to POI
recommendation due to their promising performance and
scalability (Cheng et al. 2011; 2012; Yang et al. 2013). How-
ever, these methods are all trained by using the centralized
mechanism. This centralized MF training results in expen-
sive resources required, low model training efficiency, and
shallow protection of user privacy.

Decentralized Learning

Decentralized learning appears to solve the above problems
of centralized learning (Nedic and Ozdaglar 2009; Yan et
al. 2013). Recently, it has been applied in many scenarios
such as multiarmed bandit (Kalathil, Nayyar, and Jain 2014),
network distance prediction (Liao, Geurts, and Leduc 2010),
hash function learning (Leng et al. 2015), and deep networks
(Shokri and Shmatikov 2015; McMahan et al. 2016).

The most similar existing works to ours are decentralized
matrix completion (Ling et al. 2012; Yun et al. 2014). How-
ever, we summarize the following two major differences. (1)
They either allow each learner (user) to communicate with
those who have rated the same items or communicate with
all the learners, and thus have low accuracy or high commu-
nication cost. In practice, users always collaborate with their
affinitive users. To capture this, in this paper, we propose a
random walk approach for users from the adjacent graph to
collaboratively communicate with each other. (2) They al-
low directly exchange of item preference among learners,
which may cause information leakage. For example, it is
easy to be hacked by using the idea of collaborative filtering
(Sarwar et al. 2001), i.e., similar items tend to be preferred
by similar users. Assume user i is a malicious user, he has
his own latent factor of item j (vij). He also gets the latent
factor of item j from user i′ (vi

′
j ). If i likes item j, and vij

and vi
′
j are similar, then i will know i′ likes j as well. In con-

trast, in this paper, we propose a gradient exchange scheme
to limit the possibility of privacy leakage.

The Proposed Model

In this section, we first formally describe the Decentralized
Matrix Factorization (DMF) problem. We then discuss a
nearby user communication scheme for users to collaborate
with each other. Next, we propose an enhanced version by
applying random walk theory. Then, we present a privacy
preserving nearby user collaboration algorithm to optimize
DMF. We analyze the model complexity in the end.
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Preliminary

Formally, let U and V be the user and item (POI) set with
I and J denoting user size and item size, respectively. Let
(i, j) be an interaction between user i ∈ U and item j ∈ V ,
and rij be the rating of user i on item j. Without loss of
generality, we assume rij ∈ [0, 1] in this paper. Let O be
the training dataset, where all the user-item ratings in it are
known.

For the traditional centralized MF, it first collects all the
rij ∈ O, and then learns U ∈ R

K×I and V ∈ R
K×J

using MF technique (Equation 1). Here, U ∈ R
K×I and

V ∈ R
K×J denote the user and item latent factor matrices,

with their column vectors ui and vj be the K-dimensional
latent factors for user i and item j, respectively.

For DMF, to guarantee the privacy of each user, we need
to keep all the known ratings and latent factors on each user’s
end during the whole training procedure. To do this, we use
U ∈ R

K×I to denote user latent factor matrix, with each
column vector ui denotes the K-dimensional latent factors
for user i. We also use V ∈ R

I×K×J to denote item la-
tent factor tensor, with Vi ∈ R

K×J denotes the item latent
factor matrix for user i, and further with vij denotes the K-
dimensional latent factors for item j of user i. Thus, each
user i only needs to store i’s own K-dimensional latent fac-
tor ui, and i’s item latent factor matrix Vi.

Besides, users need to collaboratively learn their stored
factors, i.e., ui and Vi, in DMF scenario. For centralized
MF, all the users share the same item latent factor matrix,
i.e., Vi = Vi′ , ∀ i, i′ ∈ U . For DMF, each user stores his
ui and Vi, and they should be trained collaboratively with
other users—which we call ‘neighbors’. Suppose we have
a user adjacent graph G, we use W ∈ R

I×I to denote user
adjacency matrix, where each element wi,i′ ∈ [0, 1] denotes
the degree of relationship between user i and i′. Of course,
user i and i′ have no relationship if wi,i′ = 0. We use N d(i)
to denote the dst order neighbors of i on G, |N d(i)| as the

neighbor size, and |ND(i)| =
D∑

d

|N d(i)|. Obviously, N 1(i)

denotes the direct neighbors of i. Besides, to save commu-
nication cost, we use N to denote the maximum number of
direct neighbors of each user.

DMF aims to learn ui and Vi for each user, and the model
learning procedure is performed on one’s own side, e.g., cell
phone and Pad.

Nearby User Communication

The essence of MF is that the user and item latent factors are
learnt collaboratively, so should be DMF. Thus, which user
should be communicated under DMF framework becomes
the first challenging question. We answer this question by
first analyze the data in POI recommendation scenarios.

Observation. Figure 2 shows the user-POI check-in dis-
tributions on two real datasets, i.e., Foursquare and Alipay.
Both datasets contain user-item-check-in-location records,
and we divide locations into different cities. We randomly
select the user-item check-in records in five cities from both
datasets, and plot their check-in distributions in Figure 2,

(a) Foursquare dataset (b) Alipay dataset

Figure 2: Data analysis of Foursquare and Alipay datasets.

where each dot denotes a user-item check-in record. From
it, we have the following observation: in POI scenarios, most
users are only active in a certain city, and we call it “loca-
tion aggregation”. Only a few users be active in multi-cities,
which is neglectable.

User Adjacent Graph. We represent the affinities among
users based on the definition of a user adjacency graph. It
can be built using whatever information that is available,
e.g., rating similarity (Su and Khoshgoftaar 2009) and user
social relationship (Yang et al. 2011). However, in DMF
for POI recommendation scenario, users’ ratings are on
their own hand, and social relationship is not always avail-
able. Thus, we focus on using user geographical informa-
tion to build user adjacent graph, similar as the existing re-
searches (Ye et al. 2011; Cho, Myers, and Leskovec 2011;
Cheng et al. 2012). Specifically, suppose di,i′ is the distance
between user i and i′, the relationship degree between i and
i′ is defined as

wi,i′ = I i,i
′ · f(di,i′), (2)

where wi,i′ ∈ [0, 1], Ii,i
′

is the indicator function that equals
to 1 if i and i′ are in the same city and 0 otherwise, and
f(di,i′) is a mapping function of distance and relationship
degree, and the smaller the distance of i and i′ is, the big-
ger their relationship degree is. Existing research has pro-
posed different such mapping functions (Zhao, King, and
Lyu 2016). In practice, it’s extremely expensive if we main-
tain the communications for those super-users who have a
huge number of neighbors. Thus, we set N to be the maxi-
mum number of neighbors each user can have. With nearby
user communication schema, the first question is answered.

Random Walk Enhanced Nearby User
Communication

With the adjacency matrix W representing the communica-
tion graph among users, how far should users communica-
tion with their neighbors becomes the second challenging
question. Practically, a user’s decision on an item is not only
affected by his direct neighbors, but also the further neigh-
bors, e.g., the neighbors of neighbors. Thus, when a user i
rates an item j, this information should not only be sent to
the directly neighbors of user i, but also his further neigh-
bors, as shown in Figure 3. The challenge remains to be how
far to explore the network, since there is a tradeoff between
decentralization and communication/computation cost: the
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Figure 3: Random walk enhanced nearby user communica-
tion. User i0 communicates with his neighbors once he has
an interaction with POI j3.

further the communication is, the more users can collabo-
rate, meanwhile, the more communication and computation
need to be done. We propose to solve this challenge by us-
ing random walk theory, which has been used to model trust
relationship between users (Jamali and Ester 2009).

Random walk. We aim to find an intelligent way to de-
termine how far a user communicate with his neighbors. As-
suming user i wants to communicate with his direct neigh-
bors (k ∈ N 1(i)), we define ni as the activity of user i se-
lecting a user from his neighbor set, and thus

P (ni = k) =
wik∑

i′∈N1(i)

wii′
. (3)

According to the Markov property (Aldous and Fill 2002),
the probability of user i choosing his 2st order of neighbors
(k′ ∈ N 2(i)) is

P (ni = k′) =
∑
k

P (ni = k)P (nk = k′) ∝
∑
k

wikwkk′ . (4)

We use D to denote the max distance of random walk, and
generally, the adjacent matrix of dst order of neighbors is
W d. With random walk theory on user adjacent graph, the
second question is answered.

DMF: Privacy Preserving Nearby User
Communication.

The random walk based nearby user communication is an
intelligent way for selecting neighbors to be communicated
within POI recommendation scenarios, but the third chal-
lenging question remains: what information should users
communicate with each other, that is, how should users col-
laboratively learn the DMF model without leaking their data
privacy. The original rating, of course, can clearly reflect
his preference on this item. However, the rating itself dis-
closes the user’s privacy too much. Inspired by the work
(Yan et al. 2013), we propose a privacy preserving collabo-
rative approach for decentralized POI recommendation sce-
narios. Specifically, we suppose that for each user, the cor-
responding j-th item latent factor vij can be decomposed as
follows:

vij = pj + qij , (5)

which implies that the latent factor of item j for user i is the
sum between one common (global) latent factor pj and one
personal (local) latent factor qij , where the common factor
represents the common preference of all the users while the
personal factor shows the personal favor of user i. Under this
assumption, the DMF model can be formulated as

min
ui,v

i
j∈RK

L =

I∑
i=1

l(r, ui, v
i) +

α

2

I∑
i=1

||ui||2F

+
β

2

J∑
j=1

||pj ||2F +
γ

2

I∑
i=1

J∑
j=1

||qij ||2F

s.t. vij = pj + qij ,

(6)

where l(r, ui, V
i) can be least square loss

l(r, ui, V
i) =

1

2

J∑
j=1

(
rij − uT

i v
i
j

)2
, (7)

which minimizes the error between real ratings and pre-
dicted ratings (Mnih and Salakhutdinov 2007), or listwise
loss (Shi, Larson, and Hanjalic 2010), as well as pairwise
loss (Rendle et al. 2009). In this paper, we will take least
square loss as an example. The last three terms in Equation
(6) are regularizers to prevent overfitting.

The factors ui and qij only depend on the information
stored in user i, while the item common latent factor pj de-
pends on the information of all the users. Practically, in de-
centralized learning scenario, pj is also saved on each user’s
(learner’s) hand, and thus, for each user i, pj is actually
saved as pij . Consequently, Equation (5) becomes

vij = pij + qij . (8)

Thus, it needs one protocol for users to exchange pij to learn
a global pj . To solve this issue, inspired by (Yan et al. 2013),
we propose to send the gradient of the loss L with respect to
pj , i.e., pij for each user i, to his neighbors, to help learn a
global pj . This gradient exchange method has been success-
fully applied in decentralized learning scenarios (Nedic and
Ozdaglar 2009; Yan et al. 2013), which not only guarantees
model convergency, but also protects the privacy of user raw
data. For each user i, the gradients of L with respect to ui,
pij , and qij are:

∂L
∂ui

= −
(
rij − uT

i v
i
j

)
vij + αui, (9)

∂L
∂pij

= −
(
rij − uT

i v
i
j

)
ui + βpij , (10)

∂L
∂qij

= −
(
rij − uT

i v
i
j

)
ui + γqij . (11)

Based on the above gradient exchange protocol, users col-
laboratively learn a global pj . Figure 3 shows a demo of this
protocal: i0 will send ∂L/∂p03 to his neighbors, to collab-
oratively learn p3. Combining our proposed random walk
enhanced nearby user communication method and gradient
exchange protocol, we summarize our proposed privacy pre-
serving DMF optimization framework for POI recommenda-
tion (Equation 6) in Algorithm 1. As we can see that users
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Algorithm 1: Random Walk Enhanced Nearby Col-
laborative DMF Optimization

Input: training ratings (O), learning rate (θ), user
adjacency matrix (W ), regularization
strength(α, β, γ), maximum random walk
distance (D), and maximum iterations (T )

Output: user latent factor (ui), common item latent
factor (pij), and personal item latent factor
(qij)

1 for i = 1 to I do

2 Initialize ui, pij , and qij
3 end
4 for t = 1 to T do
5 Shuffle training data O
6 for rij in O do

7 Calculate ∂L
∂ui

based on Equation (9)
8 Calculate ∂L

∂pi
j

based on Equation (10)

9 Calculate ∂L
∂qij

based on Equation (11)

10 Update ui by ui ← ui − θ ∂L
∂ui

11 Update pij by pij ← pij − θ ∂L
∂pi

j

12 Update qij by qij ← qij − θ ∂L
∂qij

13 for user i′ in N d(i), d ∈ {1, 2, ..., D} do

14 Receive ∂L
∂pi

j
from user i

15 Update pi
′
j by

pi
′
j ← pi

′
j − θ|N d(i)|Wii′

∂L
∂pi

j

16 end

17 end

18 end

19 return ui, pij , and qij

communicate with each other by sending the common item
latent factor gradients instead of raw data, i.e., ratings, which
significantly reduces the possibility of information leakage.
With the gradient exchange protocol, the third question is
answered.

From the objective function of DMF in Equation (6), we
can easily make the following observations:
• If β is very large, then pj → 0, and thus users will not ex-

change item common preferences, which means that item
preference is learnt only based on their own data.

• If γ is very large, then qij → 0, which indicates that users
will not save their personal favor on items anymore. It will
work more like centralized MF.
The values of β and γ determine how well item (com-

mon and personal) preferences are learnt. We will empiri-
cally study their effects on our model performance in exper-
iments.

Unobserved rating sample. A universal problem appears
in POI recommendation is that the observations are ex-
tremely sparse. Unless we have access to negative obser-
vations, we will probably obtain an estimator that tends to

predict all the unknown (i, j) as 1. Following the existing
researches (Yang et al. 2011), we solve this problem by sam-
pling unobserved (i, j) during SGD optimization. Specifi-
cally, for each rij ∈ O, we randomly sample m missing
entries rij′,j′=1:m and treat them as negative examples, i.e.,
rij′ = 0. However, a missing entry rij′ can denote either i
does not like j′ or i does not know the existing of j′. There-
fore, we decrease the confidence of rij′ to 1/m.

Complexity Analysis

Here we analyze the communication and computation com-
plexity of Algorithm 1. Recall that K denotes the dimension
of latent factor, N denotes the maximum number of direct
neighbors of each user, D denotes the max distance of ran-
dom walk, O as the training data, and |O| as its size.

Communication Complexity. The communication cost
depends on both the length of item gradient and number
of neighbor to be communicated. Each item gradient con-
tains 4K bytes information, since it is a K dimensional
real-valued vector. For user i, the max number of neigh-
bors to be communicated of Dst order random walk is
min(|Ci|,ND(i)), where |Ci| is the number of users in
the current city of i. Thus, for each rij ∈ O, the com-
munication cost is min(|Ci|,ND(i)) · 4K bytes. It will be
|O| · min(|Ci|,ND(i)) · 4K bytes for passing the training
dataset once. The values of N , D, and K are usually small,
and thus the communication cost is linear with the training
data size.

Computation Complexity. The computation cost mainly
relies on two parts, (1) calculating gradients, i.e., Line 7− 9
in Algorithm 1, and (2) updating user and item latent factors,
i.e., Line 10−12, 15 in Algorithm 1. For a single pass of the
training data, the time complexity of (1) is |O| ·K, and the
time complexity of (2) is |O| ·min(|Ci|,ND(i)) ·K. There-
fore, the total computational complexity in one iteration is
|O| ·min(|Ci|,ND(i)) ·K. The values of N , D, and K are
usually small, and thus the time complexity is linear with the
training data size.

The above communication and computation complexity
analysis shows that our proposed approach is very efficient
and can scale to very large datasets.

Experiments

In this section, we empirically compare the performance of
DMF with the classic centralized MF models, we also study
the effects of parameters on model performance.

Setting

We first describe the datasets, metrics, and comparison
methods we use during our experiments.

Datasets. We use two real-world datasets, i.e., Foursquare
and Alipay. Foursquare is a famous benchmark dataset for
evaluating a POI recommendation model (Yang, Zhang, and
Qu 2016). We randomly choose two cities for each country
from the original dataset, and further remove the users and
POIs that have too few or too many interactions1. Our Ali-
pay dataset is sampled from user-merchant offline check-in

1The reason we sample a small dataset is: we mock decen-
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Table 1: Dataset statistics.
Dataset #user #item #rating #cities

Foursquare 6,524 3,197 26,186 117
Alipay 5,996 7,404 18,978 298

records during 2017/07/01 to 2017/07/31, and we also per-
form similar preprocess on it. Table 1 shows the statistics af-
ter process for both datasets, with which we randomly sam-
ple 90% as training set and the rest 10% as test set.

Metrics. We adopt two metrics to evaluate our model per-
formance, i.e., P@k and R@k, which are commonly used
to evaluate POI recommendation performance (Cheng et al.
2012; Gao et al. 2015). For user i, they are defined as

P@k =
|ST

i ∩ SR
i |

k
, R@k =

|ST
i ∩ SR

i |
|ST

i |
,

where ST
i denotes the visited POI set of user i in the test

data, and SR
i denotes the recommended POI set of user i

which contains k POIs.
Comparison methods. Our proposed DMF framework is

a novel decentralized algorithm for POI recommendation,
which is a decentralized version for the classic MF model
(Mnih and Salakhutdinov 2007). We compare our proposed
DMF with the following classic and state-of-the-art latent
factor models, including several variants of DMF:
• MF (Mnih and Salakhutdinov 2007) is a classic central-

ized latent factor model which uses least square loss.
• Bayesian Personalized Ranking (BPR) (Rendle et al.

2009) is the state-of-the-art centralized latent factor model
which uses pairwise loss.

• Global DMF (GDMF). Users will not save their personal
favor (qij) anymore, and they tend to share similar latent
factor for the same item. This is a special case of our pro-
posed DMF model, i.e., when γ is very large.

• Local DMF (LDMF). Users will not exchange prefer-
ences and they learn the model only based on their own
data. This is also a special case of our proposed DMF
model, i.e., when β is very large.
Note that we do not compare with the state-of-the-art POI

recommendation methods. This is because, (1) most of them
are the improvement of the classic MF model by using ad-
ditional information, e.g. user social information and con-
textual information (Cheng et al. 2012; Yang et al. 2013;
Gao et al. 2015), which are not fair to compare with, and (2)
our focus is to compare the effectiveness of the traditional
centralized latent factor models and our proposed decentral-
ized MF model.

Hyper-parameters. During comparison, we set user reg-
ularizer α = 0.1, learning rate θ = 0.1, and the returned
number of POI k ∈ {5, 10}. We also set the maximum num-
ber of neighbor N = 2, and the number of sampled un-
observed ratings m = 3. After we build the user adjacent

tralized learning during our experiments, that is, there will be
2I × R

K×J POI (global and local) latent matrices in total, which
actually is not a small scale.

Table 2: Performance comparison on Foursquare dataset.
Metrics P@5 R@5 P@10 R@10

Dimension K=5
MF 0.0291 0.1030 0.0242 0.1697
BPR 0.0293 0.1168 0.0247 0.2058

GDMF 0.0307 0.1245 0.0263 0.2115
LDMF 0.0025 0.0125 0.0025 0.0125
DMF 0.0337 0.1562 0.0291 0.2418

Dimension K=10
MF 0.0289 0.1250 0.0263 0.2226
BPR 0.0370 0.1533 0.0302 0.2514

GDMF 0.0281 0.1286 0.0269 0.2398
LDMF 0.0133 0.0565 0.0133 0.1121
DMF 0.0386 0.1553 0.0340 0.2774

Dimension K=15
MF 0.0406 0.1711 0.0316 0.2638
BPR 0.0448 0.1898 0.0342 0.2872

GDMF 0.0316 0.1388 0.0287 0.2500
LDMF 0.0187 0.0714 0.0170 0.1511
DMF 0.0421 0.1801 0.0370 0.3035

graph, we simply set wi,i′ = 1 to eliminate the effect of
mapping function on model performance, since this is not
the focus of this paper. For the latent factor dimension K,
we vary its values in {5, 10, 15}. For the random walk dis-
tance D, we vary its values in {1, 2, 3, 4}. We also vary β
and γ in {10−3, 10−2, 10−1, 100, 101} to study their effects
on DMF. We tune parameters of each model to achieve their
best performance for comparison.

Comparison Results

We report the comparison results on both Foursquare and
Alipay datasets in Table 2 and Table 3, respectively. From
them, we find that:

• All the model performances increase with the dimension
of latent factor (K). This is because the latent factor with
a bigger K contains more information, and thus user and
POI preferences can be learnt more precisely.

• GDMF achieves comparable performance with MF, since
users collaboratively learn the global item latent factor,
which works similarly as the traditional MF.

• LDMF behave the worst, since each user learn item pref-
erence only based on his own check-in data which is very
sparse. This indicates the importance of user collaboration
during recommendation.

• DMF consistently outperforms MF, GDMF, and LDMF,
and even beats the pairwise ranking model (BPR) in most
cases. Take the result of DMF on Alipay dataset for ex-
ample, P@5 and R@5 of DMF improve those of MF by
27.75% and 25.89% when K = 5. This is because, the
item preference of DMF contains not only common pref-
erence that obtained from all the users’ data, but also each
user’s personal preference that learnt from his own data.
Moreover, the random walk technique intelligently help
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(a) Foursquare training loss (b) Foursquare test loss (c) Alipay training loss (d) Alipay test loss

Figure 4: The training and test loss of DMF with respect to the maximum iteration (T ) on Foursquare and Alipay datasets.

Table 3: Performance comparison on Alipay dataset.
Metrics P@5 R@5 P@10 R@10

Dimension K=5
MF 0.0209 0.0896 0.0134 0.1194
BPR 0.0243 0.1027 0.0166 0.1408

GDMF 0.0209 0.0937 0.0144 0.1231
LDMF 0.0017 0.0042 0.0008 0.0042
DMF 0.0267 0.1128 0.0228 0.1824

Dimension K=10
MF 0.0343 0.1493 0.0261 0.2239
BPR 0.0353 0.1512 0.0286 0.2439

GDMF 0.0304 0.1146 0.0277 0.2202
LDMF 0.0013 0.0065 0.0013 0.0131
DMF 0.0357 0.1612 0.0291 0.2537

Dimension K=15
MF 0.0378 0.1538 0.0266 0.2308
BPR 0.0448 0.1898 0.0342 0.2872

GDMF 0.0355 0.1383 0.0267 0.2123
LDMF 0.0137 0.0684 0.0103 0.0983
DMF 0.0413 0.1942 0.0370 0.3035

users to choose neighbors to communicate with. There-
fore, item preferences are learnt more precisely, to better
match each user’s favor.

Parameter Analysis

Finally, we study the effects of parameters on DMF, includ-
ing item global and local regularizer (β and γ), maximum
random walk distance (D), and maximum iteration (T ).

Effect of β and γ.

The item global regularizer (β) and local regularizer (γ)
controls the proportion of one’s item preference comes from
his own data or other users’ data. The bigger β is, the
more one’s item preference comes from his own data, and
similarly, the bigger γ is, the more one’s item preference
comes from other users’ data through global item gradient
(∂L/∂pij) exchange. Figure 5 shows their effects on DMF
on both datasets. From it, we can find that, with the good
choices of β and γ, DMF can make full use of one’s own
data and his neighbors’ data, and thus, achieves the best per-
formance.

Effect of maximum random walk distance (D). The
maximum random walk distance determinates how many
neighbors will be communicated after a user has interaction

(a) Foursquare (b) Alipay

Figure 5: Effect of β and γ on DMF.

(a) Foursquare (b) Alipay

Figure 6: Effect of D on DMF.

with a POI, as we described in complexity analysis section.
Figure 6 shows its effect on DMF model on both Foursquare
and Alipay datasets, where we set K = 5 and fix other pa-
rameters to their best values. From it, we see that with the
increase of D, our model performance increases, and tends
to be relative stable when D is bigger than 3. This shows
that DMF achieves a good performance with only a small
value of D, which indicates a low cost of communication
complexity.

Effect of maximum iteration (T ). As we analyzed
above, the computing time complexity is linear with the
training data size, and thus, the converge speed determines
how long DMF should be trained. Figure 4 shows the effect
of T on training loss and test loss on both Foursquare and
Alipay datasets. As we can observe, DMF converges steadily
with the increase of T , and it takes about 100 epochs to con-
verge on Foursquare and about 200 epochs on Alipay.

Conclusion and Future Work

In this paper, we proposed a Decentralized MF (DMF)
framework for POI recommendation. Specifically, we pro-
posed a random walk based nearby collaborative decentral-
ized training technique to train DMF model in each user’s
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end. By doing this, the data of each user on items are still
kept on one’s own hand, and moreover, decentralized learn-
ing can be taken as distributed learning with multi-learner
(user), and thus solves the efficiency problem. Experimental
results on two real-world datasets demonstrate that, compar-
ing with the classic and state-of-the-art latent factor models,
DMF significantly improvements the recommendation per-
formance in terms of precision and recall.

We would like to take model compression as our future
work. Currently, each user needs to store the real-valued
item latent matrix. A binary type of latent matrix will sig-
nificantly reduce the storage cost. How to balance the model
storage and model accuracy will be our next stage of work.
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