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Abstract

Network embedding, aiming to project a network into a low-
dimensional space, is increasingly becoming a focus of net-
work research. Semi-supervised network embedding takes
advantage of labeled data, and has shown promising perfor-
mance. However, existing semi-supervised methods would
get unappealing results in the completely-imbalanced label
setting where some classes have no labeled nodes at all. To
alleviate this, we propose a novel semi-supervised network
embedding method, termed Relaxed Similarity and Dissimi-
larity Network Embedding (RSDNE). Specifically, to benefit
from the completely-imbalanced labels, RSDNE guarantees
both intra-class similarity and inter-class dissimilarity in an
approximate way. Experimental results on several real-world
datasets demonstrate the superiority of the proposed method.

1 Introduction

Network embedding is a fundamental problem in network
analysis. The goal is to learn a low-dimensional vector for
each node as its representation. The learned representations
have shown their effectiveness in many network analysis
tasks, such as node classification (Perozzi, Al-Rfou, and
Skiena 2014), link prediction (Grover and Leskovec 2016)
and network visualization (Tang et al. 2016).

One basic requirement of network embedding is to pre-
serve the inherent network structure in the embedding space.
Early studies, like IsoMap (Tenenbaum, De Silva, and Lang-
ford 2000) and LLE (Roweis and Saul 2000), ensure the em-
bedding similarity among linked nodes. Now, more research
activities focus on preserving the unobserved but legitimate
links in the network. For example, DeepWalk (Perozzi, Al-
Rfou, and Skiena 2014) exploits the node co-occurring re-
lationships in the truncated random walks over a network.
LINE (Tang et al. 2015) considers both the first-order and
second-order proximities of a network.

To take advantage of labeled data, semi-supervised net-
work embedding has recently attracted considerable interest.
Typical studies include LSHM (Jacob, Denoyer, and Galli-
nari 2014), LDE (Wang et al. 2016), and MMDW (Tu et
al. 2016). Their basic ideas are similar, i.e., jointly train-
ing a network structure preserving model (e.g., DeepWalk
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(a) Input: network and labels (b) Output: embeddings

Goal: Learn discriminative embeddings 

to reflect underlying category differences.

Figure 1: Illustration of the semi-supervised network embed-
ding with completely-imbalanced labels. This toy network
actually contains three classes of nodes, but only two classes
provide labeled nodes, i.e., blue and red nodes. The remain-
ing nodes (including all the nodes of Class 3) are unlabeled.

and LINE) and a classification model (e.g., SVM (Hearst et
al. 1998)). Influenced by the learned classifier, the embed-
ding results therefore become more discriminative and have
shown state-of-the-art performance.

1.1 Problem and Contribution

Most semi-supervised network embedding methods (Jacob,
Denoyer, and Gallinari 2014; Wang et al. 2016; Tu et al.
2016) all assume the labeled data is generally balanced,
i.e., every class has at least one labeled node. In this pa-
per, we consider a more challenging scenario in which some
classes have no labeled nodes at all (shown in Fig. 1), i.e.,
the completely-imbalanced case. This case deserves spe-
cial attention for two reasons. Firstly, it has many practi-
cal applications. For example, considering Wikipedia which
can be seen as a set of linked web pages on various top-
ics (de Melo 2017), it is difficult to collect labeled sam-
ples for all topics exactly and not miss any one. Secondly,
and more importantly, without considering this issue, tradi-
tional semi-supervised methods would yield unappealing re-
sults. To verify this, we carry out an experiment on Citeseer
dataset (McCallum et al. 2000), in which the nodes from un-
seen classes are excluded from the labeled data. We test three
typical semi-supervised methods and evaluate their perfor-
mance on node classification task. As shown in Fig. 2, their
performance declines obviously compared with their coun-
terparts trained with the balanced labels. This decline might
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Figure 2: Traditional semi-supervised methods do not work
well in the completely-imbalanced label setting. Here: we
use M(b) and M(-t) to denote method M use the bal-
anced and completely-imbalanced labeled data with t un-
seen classes, respectively.

be caused by the classification models used in these meth-
ods, since general classifiers are very likely to get biased
results on imbalanced data (He and Garcia 2009). We refer
to Sects. 6 and 7 for more detailed discussion.

To address this problem, in this paper, we present a novel
semi-supervised network embedding method termed RS-
DNE. The basic idea is to guarantee both intra-class sim-
ilarity and inter-class dissimilarity in an approximate way,
so as to benefit from completely-imbalanced labels. Specif-
ically, we relax the intra-class similarity requirement by al-
lowing the same labeled nodes to lie on the same manifold
in the embedding space. On the other hand, we approxi-
mate the inter-class dissimilarity requirement by removing
the known connections between the nodes with different la-
bels. As such, our method can reasonably guarantee these
two requirements and also avoid the biased results. We fur-
ther formalize these approximations into a unified embed-
ding framework, and give an efficient learning algorithm. In
summary, our main contributions are as follows:

1. We study the problem of network embedding with
completely-imbalanced labels. To our best knowledge, lit-
tle work has addressed this problem.

2. We propose an effective method RSDNE which can learn
discriminative embeddings by approximately guarantee-
ing both intra-class similarity and inter-class dissimilarity.

3. We conduct extensive experiments on three real-world
datasets to demonstrate the superiority of our method.

In addition, it is worth highlighting that in the balanced label
setting, our method could still achieve comparable perfor-
mance to state-of-the-art semi-supervised methods, although
our method is not specially designed for this setting. There-
fore, our method would be favorably demanded by the sce-
nario where the quality of labels cannot be guaranteed.

2 Related Work

Semi-supervised Network Embedding The goal of semi-
supervised network embedding is to learn the representa-
tions of both labeled and unlabeled nodes. Existing meth-
ods mainly share the similar basic idea: i.e., jointly training
a network structure preserving model and a class classifica-

tion model. For example, LDE (Wang et al. 2016) consid-
ers the first-order proximity (Tang et al. 2015) of the net-
work and jointly trains a 1-nearest neighbor classification
model (Dasarathy 1990). MMDW (Tu et al. 2016) adopts
the matrix form of DeepWalk to preserve the network struc-
ture, and jointly trains an SVM classification model (Hearst
et al. 1998). However, these methods all assume the labeled
data is generally balanced (i.e., label information covers all
classes), otherwise would get unappealing results. In prac-
tice, the quality of labeled data is hard to guarantee. There-
fore, to enhance the applicability, we investigate network
embedding in the completely-imbalanced label setting.

Imbalanced Data Learning A training dataset is called
imbalanced if at least one of the classes are represented by
significantly less number of instances than the others. This
topic has been identified in several vital research areas, such
as classification (Sun et al. 2007), clustering (Yen and Lee
2009), and data streams (Yan et al. 2016). We refer to (He
and Garcia 2009) and (Krawczyk 2016) for a comprehen-
sive survey. However, in the area of network embedding, lit-
tle previous work considers the imbalanced problem, not to
mention the completely-imbalanced problem.

3 Problem Statement

The network is defined as G = (V, E , C), where V is a set
of n nodes, E ⊆ (V,V) is a set of links between them, and
C is the node category set. In addition, there exists some
labeled nodes whose label set is Cs, i.e., Cs are the classes
which have been seen. The goal of semi-supervised network
embedding is to learn a continuous low-dimensional vector
ui ∈ R

d (d�n) for each node i, so that nodes close to each
other in the network structure or with the same class label
are close in the embedding space.

Different from existing semi-supervised network embed-
ding setting Cs=C, this paper considers a more practical
and challenging case where Cs⊂C, i.e., the completely-
imbalanced case.

4 The Proposed Method

4.1 Modeling Network Structure with DeepWalk

To capture the topological structure of a network, Deep-
Walk performs random walks over a network to get
node sequences. By regarding each node sequence ω =
{v1, ..., v|ω|} as a word sequence, it adopts the well-known
language model Skip-Gram (Mikolov et al. 2013) to maxi-
mize the likelihood of the surrounding nodes given the cur-
rent node vi for all random walks ω ∈ Ω:

MLE =
∑
ω∈Ω

[
1

|ω|
|ω|∑
i=1

∑
−r≤j≤r

logPr(vi+j |vi)] (1)

where r is the radius of the surrounding window, and the
probability Pr(vj |vi) is obtained via the softmax:

Pr(vj |vi) = exp(uj · ui)∑
t∈V exp(ut · ui)

(2)

where ui is the representation vector of node vi, and · is the
inner product between vectors.
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(Yang et al. 2015) has proved that DeepWalk actually
factorizes a matrix M whose entry Mij is formalized as:

Mij = log [ei(A+A2 + · · ·+At)]
/
t (3)

where A is the transition matrix which can be seen as a
row normalized network adjacency matrix, and ei denotes
an indicator vector whose i-th entry is 1 and the others are
all 0. To balance speed and accuracy, (Yang et al. 2015)
finally factorized the matrix M=(A+A2)/2 instead, since
sparse matrix multiplication can be easily parallelized and
efficiently calculated.

More formally, the matrix factorization model of Deep-
Walk aims to find a (node embedding) matrix U ∈ R

n×d

and a (context embedding) matrix H ∈ R
d×n via solving

the following optimization problem:

min
U,H

JDW= ‖M − UH‖2F + λ(‖U‖2F + ‖H‖2F ) (4)

where λ is the regularization parameter to avoid overfitting.
In this paper, we adopt this model (i.e., Eq. 4) as our basic
network structure preserving model.

4.2 Modeling Intra-class Similarity

In this completely-imbalanced setting, the labeled nodes all
come from the seen classes. Intuitively, we should ensure
the intra-class similarity, i.e., the nodes sharing the same la-
bel should be close to each other in the embedding space.
To satisfy this, traditional semi-supervised methods employ
various classifiers to reduce the intra-class embedding vari-
ance. However, this would yield unappealing results with
completely-imbalanced labels (shown in Fig. 2).

To alleviate this, we relax this similarity requirement by
allowing the same labeled nodes to lie on the same mani-
fold, i.e., a topological space which can be Euclidean only
locally (Roweis and Saul 2000). Although the underlying
manifold is unknown, we can build a sparse adjacency graph
to approximate it (Belkin and Niyogi 2007). In other words,
each labeled node only needs to be close to k (k�n, and
k=5 in our experiments) same labeled nodes. However, we
do not know how to select the best k nodes, since the optimal
node alignments in the new embedding space is unknown. A
simple solution is to randomly select k same labeled nodes,
which may not be optimal.

In this paper, we solve this problem in an adaptive way.
For notational convenience, for a labeled node i, we call the
selected k nodes as i’s intra-class neighbors. Suppose we
use S∈{0, 1}n×n to denote the intra-class neighbor relation-
ship among nodes, i.e., Sij=1 when node j is the intra-class
neighbor of node i, otherwise Sij=0. Mathematically, S can
be obtained by solving the following optimization problem:

min
U,S

Jintra=
1

2

n∑
i,j=1

‖ui − uj‖2F Sij

s.t. ∀i ∈ L, s′i1 = k, Sii = 0

∀i, j ∈ L, Sij ∈ {0, 1}, if Cs
i = Cs

j

∀i, j, Sij = 0, if i /∈ L or Cs
i �= Cs

j

(5)

where L is the labeled node set, and si∈Rn×1 is a vector
with the j-th element as Sij (i.e., s′i is the row vector of

matrix S), and 1 denotes a column vector with all entries
equal to one, and Cs

i and Cs
j are the (seen) class labels of

node i and j respectively.

4.3 Modeling Inter-class Dissimilarity

Although Eq. 5 models the similarity within the same class,
it neglects the inter-class dissimilarity, i.e., the nodes with
different labels should be far away from each other in the
embedding space. Traditional semi-supervised methods em-
ploy different classification models to enlarge the inter-class
embedding variance. Nevertheless, this would yield unap-
pealing results with completely-imbalanced labels (shown
in Fig. 2).

To alleviate this, we approximate this dissimilarity re-
quirement by removing the known connections between the
nodes with different labels. As we adopt the matrix form of
DeepWalk (i.e., matrix M in Eq. 4) to model the connections
among nodes, this approximation leads to the following op-
timization problem:

min
U

Jinter=
1

2

n∑
i,j=1

‖ui − uj‖2F Wij (6)

where W is a weighted matrix whose element Wij=0 when
labeled nodes i and j belong to different categories, other-
wise Wij = Mij .

4.4 The Unified Model: RSDNE

With modeling the network structure (Eq. 4), intra-class sim-
ilarity (Eq. 5) and inter-class dissimilarity (Eq. 6), the pro-
posed method is to solve the following optimization prob-
lem:

min
U,H,S

J=JDW + α(Jintra + Jinter)

s.t. ∀i ∈ L, s′i1 = k, Sii = 0

∀i, j ∈ L, Sij ∈ {0, 1}, if Cs
i = Cs

j

∀i, j, Sij = 0, if i /∈ L or Cs
i �= Cs

j

(7)

where α is a balancing parameter. Since both the relaxed
similarity and dissimilarity requirements of labels have been
considered, we call the proposed method as Relaxed Simi-
larity and Dissimilarity Network Embedding (RSDNE).

A Light Version of RSDNE For each labeled node i, to
identify its optimal k intra-class neighbors, RSDNE needs to
consider all the nodes which have the same label with i. This
would become inefficient when more labeled data is avail-
able (some theoretical analysis can be found in Sect. 6.2).
Therefore, we give a light version of RSDNE (denoted as
RSDNE∗). The idea is that: for a labeled node i, at the be-
ginning, we can randomly select m (k<m�n) same labeled
nodes to gather i’s intra-class neighbor candidate set Oi.
Based on this idea, this light version RSDNE∗ is to solve
the following optimization problem:

min
U,H,S

J=JDW + α(Jintra + Jinter)

s.t. ∀i ∈ L, s′i1 = k, Sii = 0

∀i ∈ L, j ∈ Oi, Sij ∈ {0, 1}
∀i, j, Sij = 0, if i /∈ L or Cs

i �= Cs
j

(8)
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5 Optimization

5.1 Optimization for RSDNE

The objective function in Eq. 7 is a standard quadratic pro-
gramming problem with 0/1 constraints, which might be dif-
ficult to solve by the conventional optimization tools. In this
study, we propose an efficient alternative optimization strat-
egy for this problem.

Update U As Given H and S When S is fixed, the objec-
tive function in Eq. 5 can be rewritten as Tr(U ′LsU), where
Ls = Ds − (S + S′)/2 and Ds is a diagonal matrix whose
i-th diagonal element is

∑
j(Sij +Sji)/2. Similarly, the ob-

jective function in Eq. 6 can be rewritten as Tr(U ′LwU)
where Lw = Dw − (W +W ′)/2 and Dw is a diagonal ma-
trix whose i-th diagonal element is

∑
j(Wij + Wji)/2. As

such, when H and S are fixed, problem (7) becomes:

min
U

JU= ‖M−UH‖2
F +α(Tr(U

′
LsU)+Tr(U

′
LwU))+λ ‖U‖2

F

(9)
The derivative of JU w.r.t. U is:

∂JU

∂U
= 2(−MH ′ + UHH ′+α(Ls+Lw)U+λU) (10)

Update H As Given U and S When U and S are fixed,
problem (7) becomes:

min
H

JH= ‖M − UH‖2F + λ ‖H‖2F (11)

The derivative of JH w.r.t. H is:
∂JH

∂H
= 2(−U ′M + U ′UH + λH) (12)

Update S As Given U and H When U and H are fixed,
problem (7) becomes:

min
S

JS =
α

2

n∑
i,j=1

‖ui − uj‖2F Sij

s.t. ∀i ∈ L, s′i1 = k, Sii = 0

∀i, j ∈ L, Sij ∈ {0, 1}, if Cs
i = Cs

j

∀i, j, Sij = 0, if i /∈ L or Cs
i �= Cs

j

(13)

As problem (13) is independent between different i, we can
deal with the following problem individually for each la-
beled node i 1:

min
si,i∈L

n∑
j=1

‖ui − uj‖2F Sij

s.t. s′i1 = k, Sii = 0

∀j, Sij = 0, if j /∈ L
∀j ∈ L, Sij ∈ {0, 1}, if Cs

i = Cs
j

(14)

The optimal solution to problem (14) is (proved in
Sect. 6.1):

Sij =

{
1, if j ∈ Nkc(i);

0, otherwise.
(15)

where set Nkc(i) contains the top-k nearest and same la-
beled nodes to i in the current calculated embedding space.

For clarity, we summarize the complete RSDNE algo-
rithm for network embedding in Alg. 1.

1For an unlabeled node i, the solution is s′i = 0.

Algorithm 1 RSDNE
Require: Matrix form of DeepWalk M , label information,

learning rate η, and parameters α and λ ;
Ensure: The learned network node embedding result U ;

1: Initialize U , H and S;
2: repeat
3: Update U by U = U − ηJU

∂U ;
4: Update H by H = H − ηJH

∂H ;
5: Update S by solving problem (13) ;
6: Change the learning rate η according to some rules,

such as Armijo (Bertsekas 1999);
7: until Convergence or a certain iterations;
8: return U .

5.2 Optimization for RSDNE∗

The optimization approach for RSDNE∗ is almost the same
as Alg. 1. The only difference is that: when updating S as
given U and H , for each labeled node i, we only need to
sort the nodes in (it’s intra-class neighbor candidate set) Oi

to get the top-k nearest and same labeled neighbors, so as to
get the optimal solution of S.

6 Algorithm Analysis

6.1 Optimization Algorithm Solving Problem (14)

Theorem 1. The optimal solution of problem (14) is Eq. 15.

Proof. By contradiction, suppose a labeled node i has got-
ten its optimal intra-class neighbor set Nkc which contains
a node p not in i’s top-k nearest and same labeled nodes.
As such, there must exist a node q /∈ Nkc which is one
of i’s top-k nearest and same labeled nodes. Then, we get
‖ui − up‖2F > ‖ui − uq‖2F . Considering our minimization
problem (i.e., Eq. 14), this inequation leads:∑

j∈Nkc

‖ui − uj‖2F >
∑

j∈{Nkc+q}\p
‖ui − uj‖2F (16)

This indicates that {Nkc+q}\p is a better optimal solution
than Nkc, a contradiction.

6.2 Time Complexity

Following (Rao et al. 2015), the time complexity of Alg. 1 is
as below. The complexity for updating U is O(nnz(M)d+
d2n + nnz(L)d), where nnz(·) is the number of non-
zeros of a matrix. The complexity for updating H is
O(nnz(M)d + d2n). The complexity for updating S is
O(|Cs|�2 log �), where � = rn|Cs|/|C| is the average num-
ber of labeled nodes per class, and r is the label rate. As � is
linear with n and nnz(L) is linear with nnz(M), the over-
all complexity of RSDNE is O(τ(nnz(M)d+n2 log n)),
where τ is the number of iterations to converge.

For the light version, i.e., RSDNE∗, the complexity of up-
dating S becomes O(|Cs|m2 logm), and all others remain
the same. Hence, as m�n, the overall complexity becomes
O(τ(nnz(M)d+d2n)). As our method typically converges
fast (τ ≤ 15 in our experiments) and d � n, the complexity
of RSDNE∗ is linear to nnz(M) and node number n.
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6.3 RSDNE v.s. Traditional Semi-supervised
Methods

To benefit from the discriminative information (e.g., class la-
bels), the most effective and widely used strategy is to guar-
antee both the intra-class similarity and inter-class dissimi-
larity in the embedding space (Lin and Tang 2006; Kan et al.
2016). For this purpose, traditional semi-supervised network
embedding methods reduce the intra-class embedding vari-
ance and enlarge the inter-class embedding variance by op-
timizing various classification models. However, as the un-
seen class nodes are (partly) linked with the seen class ones
(i.e., seen and unseen class nodes are correlated), only op-
timizing over the seen classes is suboptimal for the whole
network. Moreover, as this suboptimal strategy would im-
pose lots of strict constraints (like the “close-to” constraints
between same labeled nodes) only on seen classes, it may
seriously mislead the jointly trained network structure pre-
serving model and finally lead to very poor results.

In contrast, our method actually relaxes these above-
mentioned strict constraints, e.g., as shown in Eq. 5, we
only adopt a small fraction of “close-to” constraints be-
tween same labeled nodes. This relaxation strategy not only
reasonably guarantees both intra-class similarity and inter-
class dissimilarity, but also avoids misleading the jointly
trained network structure preserving model. Consequently,
our method would benefit from completely-imbalanced la-
bels, which is further verified in our experiments.

7 Experiments
Datasets To facilitate the comparison, we use the exact
same datasets as (Yang et al. 2015) and (Tu et al. 2016).

1. Citeseer (McCallum et al. 2000) is a research paper set. It
contains 3,312 publications and 4,732 connections among
them. These papers come from six classes.

2. Cora (McCallum et al. 2000) is another research paper
set. It contains 2,708 machine learning papers from seven
categories and 5,429 links between them.

3. Wiki (Sen et al. 2008) contains 2,405 Wikipedia pages
from 17 categories and 17,981 links between them. It is
much denser than Citeseer and Cora.

Baseline Methods We compare the proposed method RS-
DNE and its light version against the following baselines:

1. DeepWalk (Perozzi, Al-Rfou, and Skiena 2014) is a
typical unsupervised network embedding method which
adopts the Skip-Gram language model.

2. MFDW (Yang et al. 2015) is the matrix factorization form
of DeepWalk, and is naturally unsupervised.

3. LINE (Tang et al. 2015) is also a popular unsupervised
method which considers the first-order and second-order
proximity information.

4. LSHM (Jacob, Denoyer, and Gallinari 2014) is a semi-
supervised network embedding method which considers
the first-order proximity of a network and jointly learns a
linear classification model.

5. LDE (Wang et al. 2016) is a semi-supervised method
which also considers the first-order proximity and jointly
trains a 1-nearest neighbor classification model.

6. MMDW (Tu et al. 2016) is a semi-supervised method
which adopts MFDW model to preserve the network
structure and jointly trains an SVM model.

Parameters Following (Tu et al. 2016), the embedding
dimension is set to 200. In addition, for DeepWalk, we
adopt the default parameter setting i.e., window size is 5,
walks per vertex is 80. For LINE, we first learn two 100-
dimension embeddings by adopting its first-order proxim-
ity and second-order proximity separately, and then con-
catenate them as suggested in (Tang et al. 2015). To fully
show the limitations of these semi-supervised methods,
we tune their parameters by a grid-search strategy from
{10−2, 10−1, 100, 101, 102} and report the best results. In
contrast, as our two methods are not sensitive to parame-
ters, we fix parameters α=1 and λ=0.1 throughout the ex-
periment. In addition, we simply set the intra-class neigh-
bor number k=5 like most manifold learning methods (Zhu
2006), and set the candidate number m=20k for its light
version RSDNE∗.

7.1 Test with Completely-imbalanced Label

Experimental setting Following (Perozzi, Al-Rfou, and
Skiena 2014), we validate the quality of learned represen-
tations on node classification task. As this study focuses on
the completely-imbalanced label setting, we need to perform
seen/unseen class split and remove the unseen classes from
the training data. Particularly, for Citeseer and Cora, we use
two classes as unseen. Thus, we have C2

6 and C2
7 different

seen/unseen splits for Citeseer and Cora, respectively. As
Wiki contains much more classes, we randomly select five
classes as unseen classes and repeat the split for 20 times.

The detailed experimental procedure is as follows. First,
we randomly sample some nodes as the training set (denoted
as L), and use the rest as the test set. Then, we remove the
unseen class nodes from L so as to obtain the completely-
imbalanced labeled data L′. With the network structure and
L′, we get the representations learned by various methods.
Note that no methods can use the labeled data from unseen
classes for embedding. After that, we train a linear SVM
classifer implemented by Liblinear (Fan et al. 2008) based
on the learned representations and the original label infor-
mation L. At last, the trained SVM classifier is evaluated on
the test data.

Node Classification Performance Following (Perozzi,
Al-Rfou, and Skiena 2014), we vary the percentage of
labeled data from 10% to 90%, and employ Micro-F1
and Macro-F1 (Yang 1999) as our measurements. The
results are presented in Figs. 3 and 4, from which we
have the following observations. Firstly, all compared semi-
supervised baselines become ineffective in this completely-
imbalanced label setting, and some of them even perform
worse than unsupervised methods. For example, LSHM and
LDE achieve lower accuracy than DeepWalk and MFDW
in most cases. In addition, the best semi-supervised base-
line method MMDW2 also fails to benefit from the labeled

2In MMDW, we have to assign a very small weight (like 10−2

or even 10−3) to its classification model part, otherwise its perfor-
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Figure 3: Node classification performance (Micro-F1).
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Figure 4: Node classification performance (Macro-F1).
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Figure 5: 2D visualization on Citeseer (50% label rate with two unseen classes, i.e., {Agents, IR}).

data, and only shows the similar performance as (its unsu-
pervised version) MFDW. This is consistent with our the-
oretical analysis (Sect. 6.3) that these classification-based
semi-supervised methods could get unappealing results with
completely-imbalanced labels. Secondly, our method and its
light version both perform much better than all baselines.
For example, with 50% labeled data, our two methods out-
perform the best baseline MMDW by 7–12% relatively in
term of Micro-F1. The underlying principle is that our ap-
proximation models (i.e., Eq. 5 and Eq. 6) reasonably guar-
antee both intra-class similarity and inter-class dissimilarity,
and meanwhile avoids misleading the jointly trained net-
work structure preserving model. Lastly, the light version
of our method RSDNE∗ is competitive with RSDNE. This
means that we can reduce the intra-class neighbor candidate
number to make our method more efficient.

Network Layouts Following (Tang et al. 2015), we use t-
SNE package (Maaten and Hinton 2008) to map the learned

mance would continue to decline by another 20–30%.

representations of Citeseer into a 2D space. Without loss
of generality, we simply adopt Citeseer’s first two classes
as unseen classes, and set the training rate to 50%. (Due
to space limitation, we only visualize the embeddings ob-
tained by semi-supervised methods.) As shown in Figs. 5(a-
b), although LSHM and LDE better cluster and separate the
nodes from different seen classes, their two kinds of unseen
class nodes heavily mix together. In addition, as shown in
Fig. 5(c), MMDW also fails to benefit from the completely-
imbalanced labels. This is because MMDW has to use a very
small weight for its classification model part to avoid poor
performance.

In contrast, the visualizations of our two methods are
quite clear, with meaningful layout for both seen and un-
seen classes. As shown in Figs. 5(d-e), the nodes of the
same class tend to lie on or close to the same manifold. No-
tably, the nodes from two unseen classes avoid heavily mix-
ing with the wrong nodes. Another surprising observation is
that: compared to RSDNE, the embedding results of its light
version (i.e., RSDNE*) seem to lie on more compact mani-
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Figure 6: Node classification performance w.r.t. different
settings of RSDNE on Citeseer.
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Figure 7: Node classification performance w.r.t. the seen
class number on Citeseer (with 50% label rate).

folds. The reason might be that RSDNE* has a stricter man-
ifold constraint, i.e., a labeled node’s k intra-class neighbors
are adaptively selected from a predetermined candidate set.
The similar observation can be found in traditional mani-
fold learning methods (Roweis and Saul 2000) in which the
neighbor relationships among instances are predetermined.

Effect of Intra-class Similarity and Inter-class Dissim-
ilarity Modeling To investigate the effect of these two
parts, we test the following settings of RSDNE:

1. JDW : only modeling the network structure (Eq. 4).
2. JDW+Jintra: modeling network structure and intra-

class similarity (selecting intra-class neighbors adaptively
(Eq. 5)).

3. JDW+ random(Jintra): modeling network structure and
intra-class similarity (selecting intra-class neighbors ran-
domly).

4. JDW+Jinter: modeling network structure and inter-class
dissimilarity (Eq. 6).

We conduct these variants on Citeseer (in the following
experiments, we only show the results on Citesser, since we
get similar results on the other two datasets.) As shown in
Fig. 6, when either eliminating the effect of intra-class or
inter-class modeling part, the performance degrades. This
suggests that these two parts contain complementary infor-
mation to each other for network embedding. Another in-
teresting observation is that: although randomly selecting
intra-class neighbors (i.e., JDW+ random(Jintra)) does not
show the best result, it still outperforms modeling network
structure alone (i.e., JDW ) significantly, especially when the
labeled data set becomes larger. This again shows the effec-
tiveness of modeling the (relaxed) intra-class similarity.
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Figure 8: Classification performance and objective function
value at different numbers of iterations (label rate is 50% ).
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Figure 9: Averaged node classification performance (Micro-
F1) with balanced labels.

Effect of Seen/Unseen Class Number Without loss of
generality, we set the training rate to 50%, and vary the
seen class number from six to one on Citeseer. As shown
in Fig. 7, our method is the only method which could con-
stantly benefit from the completely-imbalanced labels. For
example, even with only one seen class, our method still out-
performs (its unsupervised version) MFDW. In contrast, all
compared semi-supervised network embedding methods de-
cline significantly when some classes become unseen, and
even perform worse than those unsupervised methods.

Optimization Effectiveness Analysis Figure 8 shows the
classification performance and objective function value w.r.t.
each iteration in Alg. 1. It can be observed that the objec-
tive function value decreases steadily with more iterations.
Meanwhile, the performance increases and quickly reaches
the highest accuracy in less than 15 steps.

7.2 Test with Balanced Labels

We also test the suitation where the labeled data is gener-
ally balanced, i.e., the labeled data covers all classes. Fig-
ure 9 shows the averaged classification performance (train-
ing ratio also varies from 10% to 90%). The first observa-
tion is that all semi-supervised network embedding meth-
ods outperform the unsupervised ones. This observation val-
idates the importance of (balanced) label information for
network embedding. Another interesting observation is that
our two methods obtain comparable performance to those
three semi-supervised methods, although our methods are
not specially designed for this balanced case. This suggests
that our methods would be favorably demanded by the sce-
nario where the quality of the labeled data cannot be guaran-
teed. This also demonstrates the general applicability of our
approximation models (i.e., Eq. 5 and Eq. 6) which could
also be considered in other related applications.
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8 Conclusion

This paper investigates the network embedding problem in
the completely-imbalanced label setting where the labeled
data cannot cover all network classes. We propose a novel
semi-supervised method named RSDNE and its light ver-
sion. To benefit from completely-imbalanced labels, our
methods guarantee both intra-class similarity and inter-class
dissimilarity in an approximate way. We further formalize
these approximations into a unified embedding framework,
and give an efficient learning algorithm. Extensive experi-
ments conducted on several real-world datasets demonstrate
the effectiveness of our methods.
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