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Abstract

Matrix completion algorithms have been popularly used to
recover images with missing entries, and they are proved
to be very effective. Recent works utilized tensor comple-
tion models in video recovery assuming that all video frames
are homogeneous and correlated. However, real videos are
made up of different episodes or scenes, i.e. heterogeneous.
Therefore, a video recovery model which utilizes both video
spatiotemporal consistency and variation is necessary. To
solve this problem, we propose a new video recovery method
Sectional Trace Norm with Variation and Consistency Con-
straints (STN-VCC). In our model, capped �1-norm regular-
ization is utilized to learn the spatial-temporal consistency
and variation between consecutive frames in video clips.
Meanwhile, we introduce a new low-rank model to capture
the low-rank structure in video frames with a better approxi-
mation of rank minimization than traditional trace norm. An
efficient optimization algorithm is proposed, and we also pro-
vide a proof of convergence in the paper. We evaluate the
proposed method via several video recovery tasks and exper-
iment results show that our new method consistently outper-
forms other related approaches.

Introduction

Image recovery task can be treated as a matrix completion
problem, and it is proved to be really effective (Buades,
Coll, and Morel 2005; Ji et al. 2010; Liu et al. 2009;
Wang, Nie, and Huang 2014). In this task, pixels in an image
are missing because of noise or occlusion, and we need to
make use of observed information to reconstruct the original
image without deviating too much from it. Rank minimiza-
tion regularization is proposed to solve matrix completion
problems, and has already achieved great success in other
fields (Bennett and Lanning 2007). However, it leads to a
non-convex and NP-hard problem. To solve this problem,
trace norm is introduced to approximate rank minimization,
and since then many algorithms have been invented to solve
matrix completion problems using trace norm regularization
(Shamir and Shalev-Shwartz 2014; Cai, Candès, and Shen
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2010). However, trace norm is not the best approximation
for rank minimization regularization. If a non-zero singular
value of a matrix varies, the trace norm value will change si-
multaneously, but the rank of the matrix keeps constant. So,
there is a big gap between trace norm and rank minimiza-
tion, and a better model to approximate rank minimization
regularization is desired for learning a low-rank structure.

In a recent work (Liu et al. 2009), Liu applied low-rank
model to solve image recovery problem. He assumed that
video is in low-rank structure, however, videos are not ho-
mogeneous, and they may contain sequences of images from
different episodes. If we simply project all the video into a
low-rank subspace, it is very likely to lose important infor-
mation in the original video. More recently, Wang et al. in-
troduced a spatiotemporal consistency low-rank tensor com-
pletion method (Wang, Nie, and Huang 2014). They pro-
posed to utilize the content continuity within videos by im-
posing a new �2-norm smoothness regularization. However,
this �2-norm smoothness regularization tends to force two
consecutive frames to be similar, and it can not capture spa-
tiotemporal variation properly.

In this paper, we propose a novel video recovery model
Sectional Trace Norm with Variation and Consistency Con-
straints (STN-VCC). Our contributions are summarized as
following: firstly, we utilize capped �1-norm smoothness
function to capture the spatiotemporal variation and consis-
tency between consecutive frames in video clips; secondly,
we introduce a new sectional trace norm to capture the low-
rank structure, which is a better approximation of rank min-
imization than the traditional trace norm. Thirdly, instead of
using Alternating Direction Method of Multipliers (ADMM)
which was used by previous video recovery models, we use
proximal gradient descent method to optimize and prove that
our method is guaranteed to converge.

Video Recovery with Capped Norm

Constrained Variation and Consistency

Capture Spatiotemporal Consistency and Variation
in Video Clip via Capped �1-norm

In (Wang, Nie, and Huang 2014), authors proposed a �2-
norm regularization ||E||2 to maintain spatiotemporal con-
sistency in video clips, it is reasonable to suppose that two
consecutive frames in video clips are alike. However, not
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all video sequences share the same content, spatiotempo-
ral variation is also very frequent in video clips. �1-norm
is a common alternative to �2-norm, and it is known for its
robustness to outliers. It is intuitive to utilize �1-norm reg-
ularization to capture both spatiotemporal consistency and
variation. However, one video clip is usually made up of
many different episodes, and it is natural that two consec-
utive frames are from different scenes and backgrounds.
In this case, most of the pixels in two consecutive frames
are different, and even �1-norm regularization fails. In this
paper, we propose to use capped �1-norm regularization∑
e∈E

min(|e|, ε) to capture the spatiotemporal consistency

and variation in video clips. Capped �1-norm function is able
to ignore the errors larger than ε, penalize the errors smaller
than ε, and it is also used to handle outliers (Zhang 2009;
Gong et al. 2013; Huo, Nie, and Huang 2016; Gao et al.
2015; Jiang, Nie, and Huang 2015). In this paper, it prop-
erly solves the problem of spatiotemporal consistency and
variation in video clips.

We perform an experiment to illustrate the advantage of
capped �1-norm over �2-norm and �1-norm. The objective
function of this task is

min
X

||X −D1||2F + λ reg(X −D2) (1)

where D1, D2 ∈ R
288×352 are two distinct consecutive im-

age matrices, and reg(E) = ||E||2F , reg(E) = ||E||1 or
reg(E) =

∑
e∈E

min(|e|, ε) for three models. In this experi-

ment, we set λ = 0.5 and ε = 100. We use stochastic gradi-
ent method to optimize and learning rate is 0.1.
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Figure 1: We compare �2-norm, �1-norm and capped �1-
norm regularization.

In Figure 1, as we know that �2-norm regularization pe-
nalizes all the differences, after the optimization, all differ-
ences tend to be zero, and this is not what we want if there
are spatiotemporal variations in video clips. The result of �1-
norm and capped �1-norm are much better than �2-norm. It

is also clear that capped �1-norm outperforms �1-norm. In
large difference ranges, |Difference| ≥ 100 in the exper-
iment, capped �1-norm does not penalize these differences
for they represent different objects or episodes.

Sectional Trace Norm Based Low-Rank Model

Recently, the low-rank model and its approximation have
been successfully applied to recover the images and videos
with missing pixel. Most of these works used trace norm
to recover the low-rank structure of the image matrix. For
a low-rank matrix X ∈ R

n×m, rank(X) = r, so its k-
smallest singular values should be zero, where k = d − r
and d = min(n,m). Note that trace norm ||X||∗ denotes
the sum of singular values. If the non-zero singular values
of matrix X change, ||X||∗ will change as well, but the
rank of X keeps constant. Thus, there is a big gap between
trace norm ||X||∗ and rank(X).

In this paper, we propose a new sectional trace norm
to uncover the low-rank structure of a matrix, ||X||str =
k∑

i=1

σ2
i (X). In the sectional trace norm regularization, we

minimize the sum of k-smallest singular value squares of X
and ignore the other larger singular values. When the non-
zero singular values increase largely, they are excluded by
our sectional trace norm such that the norm value keeps con-
stant.

Alternatively, in (Hu et al. 2013), truncated trace norm
was proposed to minimize the sum of k-smallest singular
values, and it can also avoid the effect of large singular
values, and is better than the traditional trace norm. How-
ever, minimizing the sum of k-smallest singular values is
a �1 minimization problem, which leads to sparse solution,
namely some k-smallest singular values will be zero, but
some of them may get large values. Our sectional trace norm
can solve this issue. When we minimize the sectional trace
norm, the sum of square of k-smallest singular values is min-
imized so that all of them will be shrunk near to zero.

We perform a low-rank matrix approximation experiment
to illustrate the advantage of sectional trace norm over trun-
cated trace norm. The objective function of this task is:

min
X

||X −D||2F + λ reg(X) , (2)

where D ∈ R
288×352 is an image matrix, and reg(X) =

k∑
i=1

σi(X) or reg(X) =
k∑

i=1

σ2
i (X) for two models. We

compute a low-rank matrix X and rank(X) = 12, so
k = 276 and λ = 1000.

In Figure 2a, although there is a big gap between 12th and
13th singular values, some singular values after 12th are still
large, and this is not what we expect. However, in Figure 2b,
it is obvious that the singular values after 12th singular value
are nearly zero. Thus our sectional trace norm is a better
approximation of rank function than existing models, and
is more suitable to be used for low-rank matrix completion
tasks.

To sum up, our new video recovery model which uses sec-
tional trace norm with consistency and variation constraints
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Figure 2: We compare two different rank minimization ap-
proximations. (a) minimizing the sum of k-smallest singular
values. (b) minimizing the sum of k-smallest singular value
squares.

can be represented as:

min
Xl|s1

s−1∑
l=1

∑
p,q

min(|Xpq,l+1 −Xpq,l|, ε)

+λ
s∑

l=1

(

k∑
i=1

σ2
i (Xl))

s.t. |Xpq,l −Dpq,l| ≤ γ, ∀(p, q) ∈ Ωl, ∀l (3)

where X ,D ∈ R
n×m×s, and there are s frames in a video,

and each frame is a matrix of n×m. Xpq,l denotes the pre-
dicted value in frame l at position (p, q), D denotes the orig-
inal video tensor, Ωl denotes the observed pixel in frame i.
ε is the threshold value and γ is the error upper bound.

Optimization Algorithm

In previous papers, they use ADMM to optimize the objec-
tive function. ADMM makes it easy to handle constraints
in the objective function, however it is hard to prove con-
vergence. In this paper, we use proximal gradient method to
optimize our model, and in the next section, we will prove
the convergence of our method.

Define Xl = UΣV T , where Σ is diagonal singular ma-
trix in ascending order. Let Fl = U1:k, where U1:k means k
smallest singular vectors:

Tr
(FT

l XlX T
l Fl

)
=

k∑
i=1

σ2
i (Xl) (4)

First, we find out that we only need calculate FlFT
l , in-

stead of computing matrix Fl, in the optimization process.
We introduce an efficient way to compute FlFT

l as a whole
term. Suppose singular value decomposition of XlX T

l =
UΣUT , where U is the eigenvector matrix and Σ is the diag-
onal matrix in ascending order. Denote U = [U1, U2], where
U1 ∈ R

n×k, and U2 ∈ R
n×(n−k), then Fl = U1. It is easy

to see that UUT = U1U
T
1 + U2U

T
2 = I . We have:

FlFT
l = I − U2U

T
2 (5)

where U2 ∈ R
n×(n−k) is n − k largest singular vectors.

We suppose that XlX T
l is a low-rank matrix, so n − k is a

small value. Truncated SVD method can be applied in this
procedure, and it is much more efficient to compute FlFT

l
in this way. Each Fl is updated independently according to
function (5) for each Xl.

To handle capped �1-norm term in our objective function
(3), we define tensor S as:

Spq,l =

{
1

2|Xpq,l+1−Xpq,l| if |Xpq,l+1 −Xpq,l| < ε

0 otherwise
(6)

Then, as per function (5) and (6), our objective function
is transformed to:

min
Xl|s1

1

2

s−1∑
l=1

∑
p,q

Spq,l(Xpq,l+1 −Xpq,l)
2

+
1

2
λ

s∑
l=1

Tr
(FT

l XlX T
l Fl

)
s.t. |Xpq,l −Dpq,l| ≤ γ, ∀(p, q) ∈ Ωl, ∀l (7)

Each Xl is also solved independently and alternatively,
and for any 1 < l < s, this subproblem is,

min
Xl

1

2

∑
p,q

Spq,l(Xpq,l+1 − Xpq,l)
2

+
1

2

∑
p,q

Spq,l−1(Xpq,l − Xpq,l−1)
2
+

1

2
λTr

(
FT

l XlXT
l Fl

)

s.t. |Xpq,l − Dpq,l| ≤ γ, ∀(p, q) ∈ Ωl (8)

We use proximal gradient method to solve the subproblem
above. Its gradient with respective to Xl is

Δ = Sl ◦ (Xl −Xl+1) + Sl−1 ◦ (Xl −Xl−1) + λFlFT
l Xl (9)

Xl = Xl − αΔ (10)

where α is the step size.
According to the constraint |Xpq,l −Dpq,l| ≤ γ. We need

to project updated Xl to this constraint domain. The optimal
solution to this projection can be obtained by

P (Xpq,l) =

{ Xpq,l Dpq,l − γ ≤ Xpq,l ≤ Dpq,l + γ
Dpq,l + γ Xpq,l > Dpq,l + γ
Dpq,l − γ Xpq,l < Dpq,l − γ

(11)
As for l = 1 or l = s, we just need to ignore one of the

two loss functions in (8), and follow the proximal gradient
method steps to update Xl.

Our optimization method is summarized in Algorithm. 1.

Algorithm 1 Algorithm to solve problem (3).

Input: D,Ω ∈ R
n×m×s, α

Output: X ∈ R
n×m×s

while not converge do
Update F via (5).
for l = 1 to s do

1. Update Sl via (6) if l < s.
2. Update X̃l via (9), (10).
3. Project to Xl via (11)

end for
end while
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Convergence Analysis

Using the algorithm above, we can solve our original non-
smooth and non-convex objective function (3). In this sec-
tion, we prove the convergence of our optimization algo-
rithm, and that a local solution can be obtained in the end.
Theorem 1 Through Algorithm. 1, the objective function
(3) will converge, or the values of objective function (3) are
non-increasing monotonically.

In order to prove Theorem 1, at first, we need the follow-
ing Lemmas.
Lemma 2 According to (Theobald 1975), any two hermi-
tian matrices A,B ∈ Rn×n satisfy the inequality (σi (A),
σi (B) are singular values sorted in the same order)

n∑
i=1

σi (A)σn−i+1 (B) ≤ Tr
(
ATB

) ≤ n∑
i=1

σi (A)σi (B)

(12)
Lemma 3 Let X = UΣV T , σi are singular values of X
in ascending order,

∑k
i=1 σ

2
i (X) is the sum of k smallest

singular value squares of X . Similarly X̂ = Û Σ̂V̂ T , σ̂i are
singular values of X̂ in ascending order,

∑k
i=1 σ̂

2
i (X̂) is the

sum of k smallest singular value squares of X̂ . So it is true
that:

k∑
i=1

σ̂2
i (X̂)− Tr

(
k∑

i=1

uiu
T
i X̂X̂T

)

≤
k∑

i=1

σ2
i (X)− Tr

(
k∑

i=1

uiu
T
i XXT

)
(13)

Proof: Because X = UΣV T , it is obvious that

Tr

(
k∑

i=1

uiu
T
i XXT

)
=

k∑
i=1

σ2
i (X) (14)

Via Lemma 2, we know

Tr

(
k∑

i=1

uiu
T
i X̂X̂T

)
= Tr

(
U1:kU

T
1:kÛ Σ̂2ÛT

)

≥
k∑

i=1

σ̂2
i (X̂) (15)

Above all, we have,

0 =

k∑
i=1

σ2
i (X)− Tr

(
k∑

i=1

uiu
T
i XXT

)

≥
k∑

i=1

σ̂2
i (X̂)− Tr

(
k∑

i=1

uiu
T
i X̂X̂T

)
(16)

Lemma 4 If

d =

{
1

2|e| if |e| < ε

0 otherwise
(17)

Then,

min{|ê|, ε} − dê2 ≤ min{|e|, ε} − de2 (18)

Proof: As we all know

|e| − 2|ê|+ |e|−1|ê|2 = |e|−1
(|e|2 − 2|e||ê|+ |ê|2)

= |e|−1 (|e| − |ê|)2 ≥ 0 (19)

so,

|ê| − |ê|2
2|e| ≤

|e|
2

(20)

If |e| < ε, d = 1
2|e| , it is clear that min{|ê|, ε} ≤ |ê|, and

min{|ê|, ε} − ê2

2|e| ≤ |ê| − ê2

2|e|
≤ |e|

2
= min{|e|, ε} − e2

2|e| (21)

On the other hand, if |e| ≥ ε, d = 0 the following in-
equality always holds,

min{|ê|, ε} ≤ min{|e|, ε} (22)

Lemma 5 Function value of (8) is non-increasing through
proximal gradient descent method.

Proof: Firstly, function in (8) is convex, and its gradient Δ is
Lipschitz continuous. Secondly, projection in (8) is convex
and closed. According to (Beck and Teboulle 2010), if step
size is small enough, proximal gradient descent method is
able to improve the objective function value at each step.

Now, we are able to prove Theorem 1 by applying these
Lemmas above.

Proof: From Lemma 3 and definition of Fl, the inequality
holds:

s∑
l=1

k∑
i=1

σ̂2
i (X̂l)−

s∑
l=1

Tr
(
FT

l X̂lX̂ T
l Fl

)

≤
s∑

l=1

k∑
i=1

σ2
i (Xl)−

s∑
l=1

Tr
(FT

l XlX T
l Fl

)
(23)

Applying Lemma 4 to each element Xpq,l and X̂pq,l, we
have:

s−1∑
l=1

∑
p,q

min(|X̂pq,l+1 − X̂pq,l|, ε)−
s−1∑
l=1

∑
p,q

Spq,l(X̂pq,l+1 − X̂pq,l)
2

≤
s−1∑
l=1

∑
p,q

min(|Xpq,l+1 −Xpq,l|, ε)−
s−1∑
l=1

∑
p,q

Spq,l(Xpq,l+1 −Xpq,l)
2 (24)

According to Lemma 5, after we minimize the function
(7) by using proximal gradient descent, it is guaranteed:

s−1∑
l=1

∑
p,q

Spq,l(X̂pq,l+1 − X̂pq,l)
2 + λ

s∑
l=1

Tr
(
FT

l X̂lX̂ T
l Fl

)

≤
s−1∑
l=1

∑
p,q

Spq,l(Xpq,l+1 −Xpq,l)
2 + λ

s∑
l=1

Tr
(FT

l XlX T
l Fl

)
(25)

When we combine inequalities (23), (24) and (25), we can
finally obtain:
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s−1∑
l=1

∑
p,q

min(|X̂pq,l+1 − X̂pq,l|, ε) + λ
s∑

l=1

k∑
i=1

σ̂2
i (X̂l)

≤
s−1∑
l=1

∑
p,q

min(|Xpq,l+1 −Xpq,l|, ε) + λ
s∑

l=1

k∑
i=1

σ2
i (Xl)

(26)
So far, it is clear that the value of our proposed objective

function will not increase by using our optimization algo-
rithm, so we prove the Theorem 1 that our optimization al-
gorithm is non-increasing monotonically. We also know that
the objective function (3) is larger than zero at least, so it is
lower bounded. We can conclude that our optimization algo-
rithm converges, and a local solution is to be obtained in the
end.

Experiments

In this section, we evaluate our proposed video recovery
model and compare it with other five related methods:
Tucker algorithm (Tucker) (Eldén 2007), low-rank tensor
completion (LRTC) (Liu et al. 2009), low-rank tensor com-
pletion with considering consistency (�2Tensor) (Wang, Nie,
and Huang 2014), low-rank tensor completion with consid-
ering consistency and variation (capTensor), sectional trace
norm with considering consistency (kmsv-�2), and our sec-
tional trace norm with considering both consistency and
variation.

In the experiments, error bound γ = 0.05
∑ |X |/(n ×

m × s). Relative square error (RSE) in (Wang, Nie, and
Huang 2014) is used as performance metric criterion for
comparison. R, G and B layer of each colorful video are rep-
resented as a 3D tensor and put into the model respectively
and combined as final outputs.

Data Sets

• UCF11 Dataset: It contains 11 action categories: basket-
ball shooting, biking, diving, golf swinging and so on.
This dataset is very challenging due to large variations in
camera motion, object appearance, pose and so on (Liu,
Luo, and Shah 2009) .

• YUV Video Sequences Dataset: It includes video se-
quences of commonly used video test sequences in the
4:2:0 YUV format, e.g. Elephant Dream video, Highway,
News and Stephan1.

• Hollywood Human Actions Dataset: It contains video
clips, i.e. short sequences from 32 movies: American
Beauty, As Good As It Gets, Being John Malkovich, Big
Fish and so on(Laptev et al. 2008).

Selection of k and ε

In this section, we evaluate the influence of parameters k-
smallest singular value and ε outliers bound on recovery per-
formance. According to the optimization analysis, instead of
selecting parameter k, we take r = n−k, the rank of matrix,
as the input. In the experiment, the value of ε is generated

1http://trace.eas.asu.edu/yuv/index.html

automatically by setting the number of outliers Nε. We per-
form experiment on the Sales video clip data. In this exper-
iment, we tune the parameters through grid search strategy,
r = {5, 10, 15, 20, 25, 30} and Nε = {1, 10, 102, 103, 104},
and plot the results in Figure 3.
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Figure 3: Influence of rank r = n − k and the number of
outliers Nε on our method’s performance.

As we can see in Figure 3a, the choice of rank value r
is nontrivial. In this experiment, if r < 10 or r > 10,
RSE value rises. So, in order to derive the best perfor-
mance, it is of great importance to select an optimal rank
value. Figure 3b indicates that when the value of outliers
number ranges from 1 to 10000, the performance of our
method remains stable. So, in the optimization, we do not
need to spend to much time on this parameter. As for pa-
rameter λ, in the experiment, we search an optimal value
from {10−2, 10−1, 1, 10, 102}

Video Recovery on Synthetic Video Clips

We mix two different video clips from UCF11 Dataset and
YUV Video Sequences Dataset to simulate video consis-
tency and variation. There are six synthetic video clips.
SaleS, combination of Salesman and Suzie clip, size 144 ×
176 × 3 × 50. NewsF, combination of News and Fore-
man clip, size 288 × 352 × 3 × 50. MotherW, combina-
tion of Mother And Daughter clip and Waterfall clip, size
288 × 352 × 3 × 50. Horse, Bike, and Basketball datasets
are combinations of corresponding specific action category
videos. All these three videos are of size 240×320×3×50.

In video recovery tasks, we randomly remove 60% pixels
or a small patch from each frame, and perform six compared
algorithms to recover these video clips. In the experiment,
r = {5, 10, 15, 20, 25, 30} and Nε = 100. Experiment re-
sults are reported in Table 1 from D1 to D6.

It is clear that these methods with capped �1-norm always
show better performance than methods with �2-norm. Thus
the methods considering video consistency and variation si-
multaneously always outperform those methods which just
consider video consistency. We can also find out that sec-
tional trace norm is better at recovering low-rank structure
of image than traditional trace norm. Figure 4 shows the
convergence graph of our method on all the synthetic video
clips. We ignore the first 5 iterations because the value of ε
is learned adaptively during this time. It is obvious that the
objective function value tends to converge after 25 iterations.
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RSE(10−2)
Method D1 D2 D3 D4 D5 D6
Tucker 2.86 2.55 2.51 4.07 4.15 1.38
LRTC 2.60 1.85 2.07 2.35 3.34 1.95

�2Tensor 2.37 1.96 1.33 2.29 3.39 1.56
capTensor 1.30 0.86 0.62 0.90 1.50 0.49
kmsv-�2 1.38 0.87 0.85 1.12 1.54 0.79

Our method 1.24 0.79 0.53 0.71 0.96 0.41

Table 1: The RSE evaluation on SaleS, NewsF, MotherW,
Horse, Bike, and Basketball video.
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(b) NewsF
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(c) MotherW
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(d) Horse
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(e) Bike
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(f) Basketball

Figure 4: Convergence curves of the objective function value
(3).

Video Recovery on Real Movie Clips

In this section, we implement the experiments on original
movie clips from Hollywood Human Actions Dataset. There
are six real video clips: Big Fish 1 and 2, 240×448×3×100;
Casablanca, 240 × 320 × 3 × 100; Butterfly Effect, 240 ×
400× 3× 100; LOR, 240× 560× 3× 100; As Good As It
Gets, 240× 400× 3× 100.

RSE(10−2)
Method D7 D8 D9 D10 D11 D12
Tucker 2.81 2.99 1.63 2.99 4.18 2.54
LRTC 2.33 2.01 1.35 2.74 3.13 2.33

�2Tensor 2.13 1.12 1.01 1.68 2.81 1.58
capTensor 1.42 0.93 0.59 1.43 1.33 1.10
kmsv-�2 1.39 1.07 0.93 1.53 1.87 1.51

Our method 0.75 0.67 0.57 1.03 1.17 0.86

Table 2: RSE evaluation on Big Fish, Casablanca, The But-
terfly Effect, LOR and As Good As It Gets.

In the experiment, we randomly mask 50% pixels or oc-
clude a small patch from each frame, and perform six com-
pared methods on these video clips. Parameters are set the
same as in last section. Final performance are listed in the
Table 2 from D7 to D12. Figure 5 shows the convergence
graph of our method on all these six movie clips.

In Figure 6, we can see that the recovered images of our

Iteration

5 7 9 11 13 15 17 19 21 23 25

O
b

je
c
ti

v
e
 f

u
n

c
ti

o
n

 v
a
lu

e

×10
9

0

2

4

6

8

10

12

Our Method

(a) Big Fish 1
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(b) Big Fish 2
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(c) Casablanca
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(d) Butterfly Effect
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(e) LOR
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(f) AsGoodAsItGets

Figure 5: Convergence curves of the objective function value
(3).
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Figure 6: Video recovery results of LOR video clip.

method are much better than others. In recovered images of
other methods, the brink of occluded patch is obvious, color
and pattern of the recovered patch is different from the orig-
inal image.

Conclusion

In this paper, we proposed a novel video recovery model,
and prove the convergence of our optimization algorithm.
Capped �1-norm smoothness function is utilized as regu-
larization to impose the video spatiotemporal consistency
and variation. A new sectional trace norm is introduced to
approximate rank minimization which is tighter than tra-
ditional trace norm. We evaluate our new video recovery
method on several practical videos and experiment results
show that our proposed method consistently outperforms
other models on video recovery tasks.
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