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Abstract

Automatically describing video content with natural language
is a fundamental challenging that has received increasing
attention. However, existing techniques restrict the model
learning on the pairs of each video and its own sentences,
and thus fail to capture more holistically semantic relation-
ships among all sentences. In this paper, we propose to model
relative relationships of different video-sentence pairs and
present a novel framework, named Long Short-Term Memory
with Listwise Supervision (LSTM-LS), for video captioning.
Given each video in training data, we obtain a ranking list of
sentences w.r.t. a given sentence associated with the video us-
ing nearest-neighbor search. The ranking information is rep-
resented by a set of rank triplets that can be used to assess
the quality of ranking list. The video captioning problem is
then solved by learning LSTM model for sentence generation,
through maximizing the ranking quality over all the sentences
in the list. The experiments on MSVD dataset show that our
proposed LSTM-LS produces better performance than the
state of the art in generating natural sentences: 51.1% and
32.6% in terms of BLEU@4 and METEOR, respectively. Su-
perior performances are also reported on the movie descrip-
tion M-VAD dataset.

Introduction

Accelerated by the tremendous increase in Internet band-
width and storage space, video data has been generated, pub-
lished and spread explosively, becoming an indispensable
part of today’s big data. This has encouraged the develop-
ment of advanced techniques for a broad range of video un-
derstanding applications. A fundamental issue that underlies
the success of these technological advances is the recogni-
tion. Previous research has predominantly focused on rec-
ognizing videos with a predefined set of individual words
(tags). Recently, researchers have strived to automatically
describe video content with a complete and natural sentence,
which is illustrated in Figure 1. However, the need to under-
stand not only video content (e.g., key objects, scenes and
motions) but also express their spatio-temporal relationships
in a natural sentence makes the task very challenging.

Despite the difficulty of this problem, there have been sev-
eral attempts being proposed for attacking video captioning

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Examples of video description generation.

(Venugopalan et al. 2015a; Yao et al. 2015; Pan et al. 2016a)
and its closely related task of image captioning (Vinyals et
al. 2015; Yao et al. 2016). The basic idea is to employ Con-
volutional Neural Networks (CNN) to encode video/image
content and Recurrent Neural Networks (RNN) to decode
a sentence. We follow this philosophy for generating video
description in this work.

While encouraging performances are reported, most exist-
ing works perform model learning on labeled video-sentence
pairs separately, leaving the semantic relationships between
sentences associated with different videos not fully ex-
ploited. A relative relationship indicates the correctness and
logic of a sentence describing a video with respect to other
sentences. Indeed, we observe that relative relationship is a
semantically rich way by which humans describe and com-
pare visual properties in the world. For example, in Figure 1,
it is difficult to predict the correct objective “motorcycle” in
the sentence generated by LSTM model (Venugopalan et al.
2015b) trained locally on video-sentence pairs. By leverag-
ing relative relationship, i.e., “a man is riding a motorcycle”
is more accurate than “a man is riding a car” to describe the
given video, we could allow access to more human supervi-
sion and thus generate more informative sentence.

How can we learn relative properties for video caption-
ing? In this paper, we present a novel Long Short-Term
Memory with Listwise Supervision (LSTM-LS) architec-
ture, as shown in Figure 2. Specifically, given a video, a 2-D
and/or 3-D Convolutional Neural Networks (CNN) is uti-
lized to extract visual features of selected video frames/clips,
while video representation is produced by mean pooling
over these visual features. For each sentence associated with
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the given video, a sentence list is obtained by ranking all
the sentences in terms of textual similarity in between and
the list is regarded as a ground-truth ranking list. Then, a
LSTM for generating video sentence is learnt and a proba-
bility score is produced for each sentence in the list. We for-
mulate the learning of the LSTM model as an optimization
problem, in which the objective is to minimize the difference
between the ground-truth ranking list and the ranking de-
rived from the probability scores of sentences. As such, the
relative strength of different sentences relevant to the given
video could be estimated and integrated into the sentence
generation model.

The main contribution of this work is the proposal of
LSTM-LS framework by incorporating semantic relation-
ships among all sentences for boosting video captioning.
This issue also leads to a view of how to model and exploit
the relative relationships of different video-sentence pairs
for sentence generation, which is not yet fully explored in
the literature.

Related Work
There are generally two categories of methods for video cap-
tioning: template-based models (Kojima, Tamura, and Fuku-
naga 2002; Rohrbach et al. 2013; 2014; Guadarrama et al.
2013; Xu et al. 2015) and sequence learning models (e.g.,
RNN) (Donahue et al. 2015; Pan et al. 2016a; Venugopalan
et al. 2015a; Yao et al. 2015; Venugopalan et al. 2015b;
Pan et al. 2016b). The former predefines the special rule for
language grammar and then parses the sentence into several
parts (e.g., subject, verb, object). With such sentence frag-
ments, the bulk of works associate each part with detected
words from visual content by object recognition and then
generate a sentence with the templates. The latter is to uti-
lize sequence learning model as a decoder to directly gener-
ate sentence conditioned on video content.

Template-based Model

Most works in this direction primarily rely on the prede-
fined templates of sentence and always generate sentence
with syntactical structure. For example, (Kojima, Tamura,
and Fukunaga 2002) builds a concept hierarchy of actions
for natural language description of human activities. CRF
is leveraged in (Rohrbach et al. 2013) to model the rela-
tionships between different components of the input video
for video captioning. Furthermore, by incorporating seman-
tic unaries and hand-centric features, Rohrbach et al. utilize
CRF-based approach to generate coherent video description
(Rohrbach et al. 2014). In (Guadarrama et al. 2013), Guadar-
rama et al. utilize semantic hierarchies to choose an appro-
priate level of the specificity and accuracy of sentence frag-
ments. Recently, Xu et al. design a unified framework in
(Xu et al. 2015), which consists of a compositional seman-
tics language model, a deep video model and an embedding
model to capture the joint video-language relationship for
video sentence generation.

Sequence Learning Model

Different from template-based models, sequence learning
methods utilize RNN decoder to generate novel sentence

with more flexible syntactical structure. Donahua et al. em-
ploy a CRF to predict activity, object, and location from
the input video and then concatenate them into an input se-
quence, followed by LSTM model for sentence generation
(Donahue et al. 2015). Later in (Venugopalan et al. 2015b),
an end-to-end LSTM-based system is designed to gener-
ate video descriptions with the input sequence of frames.
The framework is then extended by inputting both frames
and optical flow images into an encoder-decoder LSTM in
(Venugopalan et al. 2015a). Furthermore, Pan et al. addition-
ally consider the relevance between sentence semantics and
video content as a regularizer in LSTM based architecture
(Pan et al. 2016a). Unlike the method of producing video
representations by mean pooling the visual features over all
frames in (Venugopalan et al. 2015b), Yao et al. propose to
utilize the temporal attention mechanism to exploit tempo-
ral structure for video captioning (Yao et al. 2015). Most
recently, in (Pan et al. 2016b), high-level semantic attributes
are shown to be complementary knowledge of video rep-
resentations for enhancing video captioning when injected
into existing RNN-based sequence learning models.

In summary, our work belongs to sequence learning
model. Different from these pervious models which inde-
pendently utilize video-sentence pairs for training, our ap-
proach contributes by guiding our sequence learning model
with listwise supervision derived from video and its corre-
sponding sentence ranking lists.

Video Captioning with Listwise Supervision
The main goal of our Long Short-Term Memory with List-
wise Supervision (LSTM-LS) is to guide the learning of
LSTM for sequence modeling in video captioning with list-
wise supervision. The training of LSTM-LS is performed
by minimizing the difference between the ranking list gen-
erated from the sentences pool and the ranking produced by
the log probabilities of corresponding sentences given the
same target video. The approach overview is shown in Fig-
ure 2. In the following, we will first define the representation
of video and the sequential words in sentence respectively,
and the natural semantic ranking list for sentence, followed
by sequence modeling in video captioning. Then the triplet
representation for ground-truth sentence ranking list is pro-
vided. Finally, the overall objective and training strategy of
LSTM-LS are presented.

Notation

Suppose we have a video V with Nv sample frames/clips
(uniform sampling) to be described by a textual sentence S ,
where S = {w1, w2, ..., wNs} consisting of Ns words. In or-
der to effectively represent the visual content of a video, we
first use a 2-D and/or 3-D CNN, which is powerful to pro-
duce a rich representation of each sampled frame/clip from
the video. Then, we perform “mean pooling” process over
all the frames/clips to generate a single Dv-dimensional vec-
tor v for each video V . As a sentence consists of a sequence
of words, a sentence can be represented by a Dw ×Ns ma-
trix W ≡ [w0,w1, ...,wNs

], with each word in the sentence
as its column vector. Furthermore, we denote another fea-
ture vector s for representing a sentence as a whole, which
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Figure 2: The overview of Long Short-Term Memory with Listwise Supervision (LSTM-LS) for video captioning.

is produced by the feature vectors wt (t = 1, 2, ..., Ns) of
each word in the sentence. We first encode each word wt as
“one-hot” vector (binary index vector in a vocabulary), thus
the dimension of feature vector wt, i.e. Dw, is the vocabu-
lary size. Then the binary TF weights are calculated over all
words of the sentence to produce the integrated representa-
tion of the entire sentence, denoted by s ∈ R

Dw , with the
same dimension as wt.

For any specific video V , we can get the ranking list of
sentences L =

{
W(1),W(2), . . . ,W(K)

}
by performing

nearest neighbor search on the sentence representations be-
tween the video’s corresponding ground truth sentence W
and sentences from sentence pool, where K is the number
of returned top semantically similar sentences for W. Let
d (W,L) = {d1, d2, . . . , dK} denote the list of Euclidean
distances for the associated sentences. If di < dj , it indi-
cates that sentence W(i) is more semantically relevant to
sentence W than sentence W(j) and vice versa.

Sequence Modeling in Video Captioning

Inspired by the recent successes of probabilistic sequence
models leveraged in machine translation (Bahdanau, Cho,
and Bengio 2015; Sutskever, Vinyals, and Le 2014), we aim
to formulate our video captioning model in an end-to-end
fashion based on RNN which first encodes the given video
into a fixed dimensional vector and then decodes it to the
target output sentence, which consists of sequential words.
Hence, given the video, the problem about sequence model-
ing for target sentence we exploit here can be formulated by
minimizing the following energy loss function:

E(v,W) = − log Pr (W|v), (1)

which is the negative log probability of the correct textual
sentence given the video. As the model produces the sen-
tence word by word, it is natural to apply chain rule to model
the joint probability over the sequential words. Thus, the log
probability of the sentence is given by the sum of the log

probabilities over the word:

log Pr (W|v) =
Ns∑
t=1

log Pr (wt|v,w0, . . . ,wt−1). (2)

By minimizing this loss, the contextual relationship among
the words in the sentence can be guaranteed given the video.

As our video captioning task is formulated as a variable-
length sequence to sequence problem, we naturally model
the parametric distribution Pr (wt|v,w0, . . . ,wt−1) in
Eq.(2) with Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber 1997). The vector formulas for a LSTM
layer forward pass are given below. For timestep t, xt and
ht are the input and output vector respectively, T are in-
put weights matrices, R are recurrent weight matrices and
b are bias vectors. Sigmoid σ and hyperbolic tangent φ are
element-wise non-linear activation functions. The dot prod-
uct of two vectors is denoted with �. Given inputs xt, ht−1

and ct−1, the LSTM unit updates for timestep t are:

gt = φ(Tgx
t+Rgh

t−1+bg), i
t = σ(Tix

t+Rih
t−1+bi),

f t = σ(Tfx
t+Rfh

t−1+bf ), ct = gt�it+ct−1�f t,

ot = σ(Tox
t+Roh

t−1+bo), ht = φ(ct)�ot,

where gt, it, f t, ct, ot, and ht are cell input, input gate, for-
get gate, cell state, output gate, and cell output of the LSTM.

As mentioned above, the LSTM model is utilized to pre-
dict each word in the sentence given the video content and
previous words. We inject the embedded video representa-
tion at the initial time to inform the whole memory cells in
LSTM about the visual content. Given the video v and the
corresponding sentence W ≡ [w0,w1, ...,wNs

], the LSTM
updating procedure is as following:

x−1 = Tvv, (3)

xt = Tswt, t ∈ {0, . . . , Ns − 1} , (4)

ht = f
(
xt) , t ∈ {0, . . . , Ns − 1} , (5)
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where De is the dimensionality of LSTM input, and Tv ∈
R

De×Dv and Ts ∈ R
De×Dw are the transformation

matrices for video representation and textual feature of
word, respectively, and f is the updating function within
LSTM unit. Please note that for the input sentence W ≡
[w0,w1, ...,wNs

], we take w0 as the start sign word to in-
form the beginning of sentence and wNs

as the end sign
word which indicates the end of sentence, both of the special
sign words are included in our vocabulary. Most specifically,
at the initial time step, the video representation is trans-
formed as the input for LSTM, and then in the next steps,
word embedding xt will be input into the LSTM along with
the previous step’s hidden state ht−1. In each time step (ex-
cept the initial step), we use the LSTM cell output ht to
predict the next word. Here a softmax layer is applied after
the LSTM layer to produce a probability distribution over all
the Dw words in the vocabulary as

Prt+1 (wt+1) =

exp

{
T
(wt+1)
h ht

}
∑

w∈W
exp

{
T

(w)
h ht

} , (6)

where W is the word vocabulary space and T
(w)
h is the pa-

rameter matrix in softmax layer.

Triplet Representation of Ranking List

Here we translate the sentence ranking list L generated from
sentences pool into a set of ranking triplets, which can be
represented as a ranking triplet matrix and fed into the se-
quence learning paradigm. Given the list of Euclidean dis-
tances d (W,L) for sentece W, we use a ranking triplet
S
(
W;W(i),W(j)

) ∈ R to represent the listwise supervi-
sion, which is defined as

S
(
W;W(i),W(j)

)
=

⎧⎨
⎩

1 , di < dj
0 , di = dj
−1, di > dj

. (7)

Hence, we can represent the ranking list as a ground-truth
ranking triplet matrix S(W) ∈ R

K×K with its element
S(W) (i, j) = S

(
W;W(i),W(j)

)
.

LSTM with Listwise Supervision

Different from previous video captioning models which
always model the LSTM learning with video-sentence
pairs for training, our LSTM-LS architecture further
incorporates listwise supervision into LSTM to better
guide the LSTM learning with video and correspond-
ing sentence ranking list. In the training stage, given
the video v and its top K sentences ranking list L ={
W(1),W(2) . . . ,W(K)

}
, to represent sentences ranking

list by rank triplets for each given video, the negative log
probability of each sentence given the video in Eq.(1) is di-
rectly utilized to measure the similarity of video and sen-
tence. Accordingly, we can get the LSTM-based ranking
list LE =

{
E(v,W(1)), E(v,W(2)), . . . , E(v,W(K))

}
.

Here we again use triplets to assess the quality of the
ranking list LE based on video-sentence similarity mea-
sured by LSTM. If sentence W(i) is ranked higher than

sentence W(j), indicated by the ground-truth ranking
triplet as S

(
W;W(i),W(j)

)
= 1, it is expected that

the LSTM-based video-sentence similarity should satisfy
E(v,W(i)) < E(v,W(j)), otherwise E(v,W(i)) >
E(v,W(j)). Hence, we can compute the ranking triplet for
the LSTM-based ranking list LE as

S̃(v) (i, j) = −sgn
(
E(v,W(i))− E(v,W(j))

)
. (8)

The objective function is designed to measure the quality
of the LSTM-based ranking list LE by

min
Tv,Ts,Th,θ

−
K∑

i,j=1

S̃(v) (i, j)S(v) (i, j), (9)

where θ are the parameters of LSTM, S̃(v) (i, j) is the
LSTM-based ranking triplet and S(v) (i, j) is the ground-
truth ranking triplet.

Please note that the non-differentiable terms (i.e., sgn(•))
in Eq.(8) makes the optimization problem difficult to be
solved. To address this problem, we relax the ranking triplet
for the LSTM-based ranking list by replacing the signum
function in Eq.(8) with its signed magnitude as

S̃(v) (i, j) ≈ −
(
E(v,W(i))− E(v,W(j))

)
. (10)

Let N denote the number of video and its corresponding
sentences list in the training set, the overall objective func-
tion can be written as

min
Tv,Ts,Th,θ

− 1
N

N∑
m=1

K∑
i,j=1

S̃(v(m)) (i, j)S(v(m)) (i, j)

+ ‖Tv‖22 + ‖Ts‖22 + ‖Th‖22 + ‖θ‖22
, (11)

where the first term is the overall loss for listwise supervi-
sion, while the rest are regularization terms for video em-
bedding, sentence embedding, softmax layer and LSTM.

To solve the optimization according to overall loss objec-
tive in Eq.(11), we design a listwise loss layer on the top of
each LSTM with shared parameters for video and its spe-
cific sentences from sentence ranking list, which does not
have any parameter. During training, this listwise loss layer
evaluates the model’s violation of listwise supervision infor-
mation, and back-propagates the gradients to LSTM so that
LSTM and the lower layers can adjust their parameters to
minimize the overall loss.

Experiments

We evaluate and compare our proposed LSTM-LS with
state-of-the-art approaches by conducting video captioning
on two benchmarks, i.e., Microsoft Research Video Descrip-
tion Corpus (MSVD) (Chen and Dolan 2011) and Montreal
Video Annotation Dataset (M-VAD) (Torabi et al. 2015).

Datasets and Settings

MSVD. MSVD contains 1,970 video snippets collected
from YouTube. There are roughly 40 available English de-
scriptions per video. In our experiments, we follow the set-
ting used in prior works (Guadarrama et al. 2013; Pan et al.
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Table 1: BLEU@N and METEOR scores on the MSVD dataset. All values are reported as percentage (%).
Model BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR

LSTM (Venugopalan et al. 2015b) - - - 33.3 29.1
SA (Yao et al. 2015) 80.0 64.7 52.6 41.9 29.6
S2VT (Venugopalan et al. 2015a) - - - - 29.8
LSTM-E (Pan et al. 2016a) 78.8 66.0 55.4 45.3 31.0
LSTM-LS (VGG) 78.1 65.9 56.4 46.5 31.2
LSTM-LS (C3D) 79.2 66.3 56.7 46.9 31.4
LSTM-LS (VGG+C3D) 80.2 69.0 60.1 51.1 32.6

2016a), taking 1,200 videos for training, 100 for validation
and 670 for testing.

M-VAD. M-VAD is a recent collection of large-scale
movie description dataset. It is composed of about 49,000
DVD movie snippets, which are extracted from 92 DVD
movies. Each movie clip is accompanied with single sen-
tence from semi-automatically transcribed descriptive video
service (DVS) narrations.

Settings. In the experiment, we compare our LSTM-
LS approach with one 2-D CNN of 19-layer VGG (Si-
monyan and Zisserman 2015) network pre-trained on Ima-
genet ILSVRC12 dataset (Russakovsky et al. 2015), and one
3-D CNN of C3D (Tran et al. 2015) pre-trained on Sports-
1M video dataset (Karpathy et al. 2014). Specifically, we
take the output of 4096-way fc6 layer from the 19-layer
VGG and 4096-way fc6 layer from C3D as the frame and
clip representation, respectively. The size of hidden layer in
LSTM is set to 1,024. The number of nearest sentences K is
empirically set to 4.

Compared Methods

To fully evaluate our model, we compare our LSTM-LS
model with the following non-trivial baseline methods.

(1) Long Short-Term Memory (LSTM) (Venugopalan et
al. 2015b): LSTM attempts to directly translate from video
pixels to natural language with a single deep neural net-
work including both convolutional and recurrent structure.
The video representation is firstly generated by performing
mean pooling over the frame features across the entire video
and then injected into LSTM every timestep.

(2) Soft-Attention (SA) (Yao et al. 2015): SA combines
frame representation from GoogleNet (Szegedy et al. 2015)
and video clip representation based on a 3-D CNN trained
on Histograms of Oriented Gradients (HOG), Histograms
of Optical Flow (HOF) and Motion Boundary Histogram
(MBH) hand-crafted descriptors. Furthermore, a weighted
attention mechanism is used to dynamically attend to spe-
cific temporal segments of the video while generating sen-
tence.

(3) Sequence to Sequence - Video to Text (S2VT) (Venu-
gopalan et al. 2015a): S2VT incorporates both RGB and op-
tical flow inputs. The encoding of inputs and decoding of
each word in the description are jointly learnt in parallel.

(4) Long Short-Term Memory with visual-semantic Em-
bedding (LSTM-E) (Pan et al. 2016a): LSTM-E utilizes both
2-D CNN and 3-D CNN to learn an effective spatio-temporal
video representation, and jointly explores the learning of
LSTM and visual-semantic embedding for video captioning.

Table 2: METEOR scores (%) on M-VAD dataset.
Model METEOR

SA (Yao et al. 2015) 4.3
LSTM (Venugopalan et al. 2015b) 6.1
S2VT (Venugopalan et al. 2015a) 6.7
LSTM-E (Pan et al. 2016a) 6.7
LSTM-LS (VGG+C3D) 6.9

(5) Long Short-Term Memory with Listwise Supervi-
sion (LSTM-LS): We design three runs for our proposed
approach, i.e., LSTM-LS (VGG), LSTM-LS (C3D), and
LSTM-LS (VGG+C3D). The input frame/clip features of
the first two runs are from VGG and C3D network respec-
tively. The input of the last one is to concatenate the features
from VGG and C3D.

Performance Comparison

Table 1 shows the BLEU@N (Papineni et al. 2002) and ME-
TEOR (Banerjee and Lavie 2005) performance of all runs
on MSVD dataset. Overall, our proposed LSTM-LS outper-
forms the other runs. Specifically, LSTM-LS (C3D) outper-
forms LSTM-LS (VGG) and reach 31.4% METEOR. When
combining with VGG, LSTM-LS (VGG+C3D) further im-
proves the performance to 32.6%, which makes the relative
improvement over the two state-of-the-art methods S2VT by
9.3% and LSTM-E by 5.2%, respectively.

There is a performance gap among three runs LSTM, SA
and S2VT. Though three runs are all purely based on MSVD
dataset, they are fundamentally different in the way of mod-
eling temporal structure in the video. The performance of
LSTM and SA is as a result of linearly fusing visual rep-
resentations of video frames by mean pooling and soft at-
tention respectively, while S2VT is by encoding the video
frames in a sequential manner. As indicated by our results,
the strategy of sequence to sequence learning performs bet-
ter. Compared to LSTM, LSTM-E which additionally incor-
porates the relevance between sentence semantics and video
content as a regularizer in LSTM exhibits significantly better
performance. Furthermore, LSTM-LS performs consistently
better than LSTM-E, which verifies the advantage of explor-
ing semantic relationships holistically between all sentences
and the video than in the video-sentence pairwise manner.

The METEOR scores on M-VAD are given in Table 2.
Our LSTM-LS (VGG+C3D) approach consistently outper-
forms the state-of-the-art methods on the movie dataset. In
particular, the METEOR scores of LSTM-LS (VGG+C3D)
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Figure 3: Examples of sentence generation results on MSVD. The videos are represented by sampled frames, the output sen-
tences generated by 1) LSTM, 2) our proposed LSTM-LS, and 3) Ground Truth: Randomly selected two ground truth sentences.

Table 3: The effect of the number of nearest sentences K in
our LSTM-LS framework on MSVD dataset.

k BLEU@4 METEOR

2 49.7 32.3
3 50.0 32.3
4 51.1 32.6
5 49.8 32.4

can achieve 0.069, which is so far the highest performance
reported on M-VAD dataset.

Figure 3 shows a few sentence examples generated by
different methods and human-annotated ground truth (GT).
From these exemplar results, it is easy to see that all of
these automatic methods can generate somewhat relevant
sentences. When looking into each word, our LSTM-LS pre-
dict more relevant Subject, Verb and Object (SVO) terms.
For example, compared to verb term “running,” “skiing” is
more precise to describe the video content in the first video.
Similarly, the predicted object term “potato” is more rele-
vant than “cake” in fifth video.

Effect of the Number of Nearest Sentences

The number of nearest sentences is an important parameter
for modeling listwise supervision. In the previous experi-
ments, the number is fixed to 4. Next, we conduct experi-
ments to evaluate the performances of LSTM-LS on MSVD
dataset with the number of nearest sentences in the range
of {2, 3, 4, 5}. The BLEU@4 and METEOR of LSTM-LS
with different number of nearest sentences are shown in Ta-
ble 3. As illustrated in the table, the optimal K is happened
at 4 for LSTM-LS on MSVD dataset. This is also expected,
as for few nearest sentences may not be enough to represent
the relative relationships between sentences and the video
while too many sentences will include noisy ones.

Table 4: The effect of hidden layer size in our LSTM-LS
framework on MSVD dataset.

Hidden
layer size

BLEU@4 METEOR
Parameter

number

128 45.4 31.4 3.6M
256 46.9 31.6 7.5M
512 48.7 31.9 16.0M
1024 51.1 32.6 36.2M

The Size of Hidden Layer of LSTM

In order to show the relationship between the performance
and hidden layer size of LSTM, we compare the results of
the hidden layer size in the range of 128, 256, 512 and 1024.
The results shown in Table 4 indicate increasing the hidden
layer size can generally lead to performance improvements.
Considering that the number of parameters increases expo-
nentially at the meantime, the hidden layer size is empir-
ically set to 1,024 and no further increased in our experi-
ments.

Conclusions

In this paper, we have proposed a novel model named
LSTM-LS to generate video description. In particular, list-
wise supervision from sentence lists generated for each
video is additionally incorporated into LSTM learning. As
such, the semantic relationships between all sentences and
each video are holistically measured. On the popular MSVD
and M-VAD datasets, the results of our experiments demon-
strate the success of our approach, outperforming the current
state-of-the-art models with a clear margin on sentence gen-
eration. Our future works are as follows. First, as a video
is a temporal sequence, we will further explore the way of
utilizing RNN to better represent the videos. Second, how
to leverage largely available image captioning data in our
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framework for boosting video captioning is worth trying.
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