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Abstract

Attributes, or mid-level semantic features, have gained popu-
larity in the past few years in domains ranging from activity
recognition to face verification. Improving the accuracy of at-
tribute classifiers is an important first step in any application
which uses these attributes. In most works to date, attributes
have been considered independent of each other. However,
attributes can be strongly related, such as heavy makeup and
wearing lipstick as well as male and goatee and many others.
We propose a multi-task deep convolutional neural network
(MCNN) with an auxiliary network at the top (AUX) which
takes advantage of attribute relationships for improved clas-
sification. We call our final network MCNN-AUX. MCNN-
AUX uses attribute relationships in three ways: by sharing the
lowest layers for all attributes, by sharing the higher layers for
spatially-related attributes, and by feeding the attribute scores
from MCNN into the AUX network to find score-level rela-
tionships. Using MCNN-AUX rather than individual attribute
classifiers, we are able to reduce the number of parameters in
the network from 64 million to fewer than 16 million and re-
duce the training time by a factor of 16. We demonstrate the
effectiveness of our method by producing results on two chal-
lenging publicly available datasets achieving state-of-the-art
performance on many attributes.

Introduction

Attributes are mid-level representations used for the recog-
nition of activities, objects, and people (Duan et al. 2012)
(Zheng et al. 2014) (Zhang et al. 2014a). Attributes provide
an abstraction between low-level features and high-level ob-
ject, or identity labels. They have seen the most success in
face recognition and verification (Kumar et al. 2009) (Kumar
et al. 2011). In this domain, attributes include gender, race,
age, hair color, facial hair, etc. These semantic features are
very intuitive, and they allow for human-understandable de-
scriptions of objects, people, and activities. Reliable estima-
tion of facial attributes is useful for many different tasks.
HCI applications may require information about gender in
order to properly greet a user (i.e. Mr. or Ms.) and other at-
tributes such as expression in order to determine the mood of
the user. Facial attributes can be used for identity verification
in low quality imagery, where other verification methods
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may fail. Persons of interest - suspects, or missing persons
- are often described in terms of their physical attributes,
and so attributes can be used to automatically search for in-
dividuals in surveillance videos. Attributes have also found
success in image search and retrieval as they can be used to
search a database of images very quickly (Kumar et al. 2009)
(Kumar et al. 2011) (Siddiquie, Feris, and Davis 2011).

Improving the accuracy of attribute classifiers is a chal-
lenging problem in itself and has been of recent interest due
to the release of several large-scale attribute datasets (Liu
et al. 2015). Convolutional neural networks (CNNs) have
replaced most traditional methods for feature extraction in
many computer vision problems (Krizhevsky, Sutskever, and
Hinton 2012) (Vinyals et al. 2015). They have proven to
be effective in attribute classification as well (Zhang et al.
2014a) (Abdulnabi et al. 2015) (Levi and Hassner 2015).
However, with few exceptions, attributes have been treated
as independent from each other. From a simple example - a
woman wearing lipstick and earrings - we can see that this
is not the case. If the subject is wearing lipstick and ear-
rings, the probability that they are women is much higher
than if they did not exhibit those attributes, and the re-
verse is also true. Treating each attribute as independent fails
to use the valuable information provided by the other re-
lated attributes. Attributes fit nicely into a multi-task learn-
ing framework, where multiple problems are solved jointly
using shared information (Argyriou, Evgeniou, and Pon-
til 2007) (Parameswaran and Weinberger 2010) (Caruana
1997).

We propose a multi-task deep CNN (MCNN) with an aux-
iliary network (AUX) at the top. The MCNN-AUX network
utilizes information provided by all attributes in three ways:
first, by sharing the lower layers of the MCNN for all at-
tributes; second, by sharing the higher layers for similar at-
tributes; and finally by utilizing all attribute scores from the
trained MCNN in AUX in order to capture attribute relation-
ships at the score level. We are able to achieve state-of-the-
art performance on most attributes for two large-scale pub-
licly available datasets: CelebA and LFWA (Liu et al. 2015).

The contributions of our work are as follows:

e We develop MCNN, a multi-task deep CNN for attribute
classification.

e We develop AUX, an auxiliary network for MCNN which



allows for learning of attribute relationships at the score
level.

e We combine MCNN and AUX to create MCNN-AUX,
a multi-task attribute network which utilizes implicit and
explicit attribute relationships for improved classification.

e We demonstrate the effectiveness of our approach by eval-
uating on two challenging publicly available datasets:
LFWA and CelebA.

e We achieve state-of-the-art performance for many at-
tributes, some showing up to a 15% improvement over
other methods, without the expensive pre-training, align-
ment, or part extraction steps.

o We significantly decrease the number of parameters - over
four times - and the amount of training time - over 16
times - required for the attribute classifier.

The remainder of the paper is organized as follows: We
first discuss the related work in CNNs, multi-task learning,
and attribute classification. This is followed by a discussion
of the proposed MCNN and MCNN-AUX architectures. In
the final sections, we detail our extensive experiments and
results, and discuss the impact of our work.

Related Work

There are large bodies of work on CNNs, multi-task learn-
ing, and attributes. We draw from all three areas to design
the proposed method, MCNN-AUX. The relevant literature
is reviewed in the following sections.

CNN

Deep CNNs have been widely used for feature extraction
and have shown great improvement over hand-crafted fea-
tures for many problems including object recognition, au-
tomatic caption generation, face detection, face recognition
and verification, and activity recognition (Girshick et al.
2014) (Krizhevsky, Sutskever, and Hinton 2012) (Vinyals
et al. 2015). CNNs have quickly gained popularity since
the introduction of open-source software tools which al-
low for straight-forward construction, training, and testing
of deep CNNs. Caffe, Torch, and TensorFlow are among
the most popular packages for implementing CNNs (Jia
et al. 2014)(Abadi et al. 2015). The first big success for
deep CNNs on a large-scale problem was in the 2012 Im-
agenet Challenge with a network that significantly outper-
formed the then existing methods for object recognition
(Krizhevsky, Sutskever, and Hinton 2012). Since then, a
wide variety of CNN architectures have been proposed for
many computer vision problems.

CNNs have dominated the field of face recognition and
verification. One of the most notable works in this domain is
that of DeepFace, which utilized a large dataset and applied
both a deep Siamese CNN and a classification CNN in order
to maximize the distance between impostors and minimize
the distance between true matches (Taigman et al. 2014).
Motivated by the success on the challenging LFW dataset,
researchers focused more on CNNs for face recognition and
the networks have become deeper and more complex (Sun
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et al. 2014) (Sun, Wang, and Tang 2014a) (Sun, Wang, and
Tang 2014b) (Sun et al. 2015).

In this work, we take advantage of the discriminative
power of the CNN to learn semantic attribute classifiers as
a mid-level representation for subsequent use in recognition
and verification systems.

Multi-Task Learning

Multi-task learning (MTL) is a way of solving several re-
lated problems simultaneously, utilizing shared information
(Argyriou, Evgeniou, and Pontil 2007) (Parameswaran and
Weinberger 2010) (Caruana 1997). MTL has found success
in the domains of facial landmark localization, pose esti-
mation, action recognition, face detection, and many more
(Zhang et al. 2014b) (Zhou et al. 2013) (Yim et al. 2015)
(Zhang and Zhang 2014) (Devries, Biswaranjan, and Taylor
2014) (Ranjan, Patel, and Chellappa 2015).

In (Wang and Forsyth 2009), (Wang and Mori 2010),
and (Hwang, Sha, and Grauman 2011) attributes and object
classes are learned jointly to improve overall object classifi-
cation performance. (Wang and Forsyth 2009) use Multiple
Instance Learning to detect and recognize objects in images
by learning attribute-object pairs. (Wang and Mori 2010) use
an undirected graph to model the correlation amongst at-
tributes in order to improve object recognition performance.
In (Hwang, Sha, and Grauman 2011), attributes and objects
share a low-dimensional representation allowing for regu-
larization of the object classifier. In our work, all attributes
share the lower layers in the CNN, so information common
to all the attributes can be learned. Applying MTL to at-
tribute prediction is very natural given the strong relation-
ships among the facial attributes.

Attributes

(Kumar et al. 2009) introduced the concept of attributes as
image descriptors for face verification. They used a collec-
tion of 65 binary attributes to describe each face image. They
later extended this work with the addition of eight attributes
and applied their method to the problem of image search in
addition to face verification (Kumar et al. 2011). Berg et al.
created classfiers for each pair of people in a dataset and then
used these classifiers to create features for a face verifica-
tion classifier (Berg and Belhumeur 2012). Here, rather than
manually identifying attributes, each person was described
by their likeness to other people. This is a way of automat-
ically creating a set of attributes without having to exhaus-
tively hand-label attributes on a large dataset. Prior to this,
there were decades of research on gender and age recogni-
tion from face images (Fu, Guo, and Huang 2010)(Ng, Tay,
and Goi 2012).

CNNs have been used for attribute classification recently,
demonstrating impressive results. Pose Aligned Networks
for Deep Attributes (PANDA) achieved state-of-the-art per-
formance by combining part-based models with deep learn-
ing to train pose-normalized CNNs for attribute classifi-
cation (Zhang et al. 2014a). Focusing on age and gender,
(Levi and Hassner 2015) applied deep CNNs to the Adience
dataset. Liu et al. used two deep CNNs - one for face local-
ization and the other for attribute recognition - and achieved
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Figure 1: Overview of MCNN. The input image on the left
is cropped to 227x227 and the training mean is subtracted.
The red attributes indicate the absence of that attribute and
the green attributes indicate a positive instance.

impressive results on the new CelebA and LFWA datasets,
outperforming PANDA on many attributes (Liu et al. 2015).
Unlike these methods, our MCNN-AUX requires no pre-
training, alignment or part extraction.

Past work has generally considered attributes to be inde-
pendent, with (Kumar et al. 2009), (Zhang et al. 2014a),
and (Liu et al. 2015) training a separate classifier for each
attribute. There are a few exceptions, however. (Siddiquie,
Feris, and Davis 2011) use the correlation amongst attributes
to improve image ranking and retrieval, learning pairwise
correlations based on the outputs of independently trained
attribute classifiers. Our method goes above and beyond this
by training a single attribute network which classifies 40 at-
tributes, sharing information throughout the network, and by
learning the relationships among all 40 attributes, not just
attribute pairs. (Abdulnabi et al. 2015) use a multi-task net-
work to learn attributes for animals and clothing, rather than
faces. They utilize groupings as in (Jayaraman, Sha, and
Grauman 2014), but impose constraints at the feature level
according to the groups. We incorporate groupings directly
into the network by sharing layers amongst attributes in a
single grouping. Using a deep CNN, unlike the RBM-based
method of (Ehrlich et al. 2016), we achieve higher prediction
accuracies.

Multi-Task CNN

The proposed MCNN takes an image as input and outputs
40 separate attribute scores, which are then thresholded to
obtain binary outputs. We describe the details of the archi-
tecture below.

Architecture

Figure 1 shows the MCNN architecture. Convl consists of
75 7x7 convolution filters, and it is followed by a ReL U, 3x3
Max Pooling, and 5x5 Normalization. Conv2 has 200 5x5
filters and it is also followed by a ReLU, 3x3 Max Pooling,
and 5x5 Normalization. Conv1 and Conv2 are shared for all
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Group Attributes
Gender Male
Nose Big Nose, Pointy Nose
Mouth Big Lips, Lipstick, Mouth Slightly Open, Smiling
Eyes Arched Eyebrows, Bags Under Eyes, Bushy
Eyebrows, Eyeglasses, Narrow Eyes
Face Attractive, Blurry, Heavy Makeup, Oval Face, Pale
Skin, Young
Balding, Bangs, Black Hair, Blond Hair, Brown
AroundHead Hair, Earrings, Gray Hair, Hat, Necklace, Necktie,
Receding Hairline, Straight Hair, Wavy Hair
. . 5 o’clock Shadow, Goatee, Mustache, No Beard,
FacialHair X
Sideburns
Cheeks High Cheekbones, Rosy Cheeks
Fat Chubby, Double Chin

Table 1: Attributes and their corresponding groupings.

attributes. This allows for learning of implicit relationships
amongst attributes at a lower level. After Conv2, groupings
are used to separate the layers. We use nine groups in our
work: Gender, Nose, Mouth, Eyes, Face, AroundHead, Fa-
cialHair, Cheeks, and Fat. The attributes in each group are
listed in table 1. There are six Conv3s: one each for Gen-
der, Nose, Mouth, Eyes, and Face, and one for the remain-
ing groups - Conv3Other. Each Conv3 has 300 3x3 filters
and is followed by a ReLU, 5x5 Max Pooling and 5x5 Nor-
malization. The Conv3s are followed by fully connected lay-
ers, FC1. There are 9 FCl1s - one for each group. Each FC1
is fully connected to the corresponding previous layer, with
Conv3Other connected to the FC1s for AroundHead, Facial-
Hair, Cheeks, and Fat. Every FC1 has 512 units and is fol-
lowed by a ReLU and a 50% dropout to avoid overfitting.
Each FCl is fully connected to a corresponding FC2, also
with 512 units. The FC2s are followed by a ReL.U and a 50%
dropout. Each FC2 is fully connected to one output node for
each of the attributes in that group. For example, FC2Nose
is connected to output nodes for Big Nose and Pointy Nose.
The grouping of attributes in the Conv3, FC1, and FC2 lay-
ers allows for the learning of explicit relationships among
attributes from similar locations in the face image.

The nine groups were manually chosen according to at-
tribute location. Some groupings were separated from others
and some were absorbed into others through experimenta-
tion on the validation portion of the CelebA dataset giving
the groupings in table 1. Male was kept separate from all
other attributes as we found that male classification was im-
proved by sharing layers with other attributes, but the clas-
sification of the other attributes suffered. We found the best
compromise was to include male in the shared Convl and
Conv2 layers and then to have separate Conv3, FC1, and
FC2 layers.

We use the Caffe software for our implementation, train-
ing, and testing of MCNN and MCNN-AUX (Jia et al.
2014). We use a sigmoid cross-entropy loss for all attribute
scores to facilitate training. As preprocessing steps, the
training mean is subtracted from the images and they are
cropped randomly with a size of 227x227. This helps the
network to be robust to shifts in the input. Unlike other at-
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Figure 2: AUX network architecture. The output of the
MCNN is fully connected to the final layer creating the 2-
layer AUX network.

tribute classification methods, we do not perform any align-
ment or part extraction in the preprocessing stage. Both
alignment and part extraction are expensive and error-prone
processes, and so we save time and avoid problems associ-
ated with poor and misalignment by skipping these steps.
Our method is also more applicable to real-world imagery
for which alignment may be challenging.

If we were to use an independent CNN for each attribute,
following the architecture of one path in the MCNN - 3 con-
volutional layers and 3 fully connected layers - each CNN
would have over 1.6 million parameters. So, for all 40 at-
tributes, there would be over 64 million parameters. Using
MCNN, we reduce the number of parameters to fewer than
16 million, over four times fewer.

MCNN-AUX

After training the MCNN, we add one fully connected layer
after the output of the trained MCNN. This layer creates the
two-layer AUX network. Figure 2 shows the connection be-
tween MCNN and AUX. The input to AUX is the attribute
scores from the trained MCNN, and the output is the final
attribute scores. Starting with the weights from the trained
MCNN, we learn the weights for the AUX portion of the
network, keeping the weights from the MCNN constant. The
AUX network allows for learning of score-level attribute re-
lationships. The AUX network only adds 16000 parameters
to the fewer than 16 million from MCNN.

Experiments
Data

In our experiments, we used two challenging, publicly avail-
able datasets: CelebA and LFWA. LFW was originally col-
lected for verification; binary labels were recently added for
40 different attributes making it LFWA (Huang et al. 2007).
CelebA was collected for attribute classification and was la-
beled with the same 40 attributes from LFWA (Zhang et al.
2012). Both datasets are extremely challenging, with large
variations in subject pose, illumination and image quality.
The CelebA dataset consists of 200,000 images: 160,000
for training and 20,000 each for validation and testing. The
LFWA dataset contains 13,143 images with 6,263 for train-
ing and 6,880 for testing. Since the CelebA dataset is so
large, we did not need to augment it in any way. If we did
not augment the LFWA dataset, the network would severely
overfit to the training data due to the large number of pa-
rameters. We augmented the LFWA dataset by jittering the
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original images by increments of 10 pixels. After jittering,
we had over 75,000 images for training.

] o
g | F| 2 | 2z | =
Attribute i 3 g % z
2 3] | 2| ¢
£
= =
5 o’clock Shadow 90.01 | 91 | 93.94 | 9441 | 94.51
Arched Eyebrows 7155 | 79 | 83.16 | 83.55 | 8342
Attractive 5041 | 81 | 8222 | 8294 | 83.06
Bags Under Eyes 7973 | 79 | 84.83 | 84.89 | 84.92
Bald 97.88 | 98 | 98.85 | 98.87 | 98.90
Bangs 84.42 | 95 | 9599 | 96.04 | 96.05
Big Lips 6729 | 68 | 70.80 | 7120 | 71.47
Big Nose 7879 | 78 | 8447 | 8450 | 84.53
Black Hair 72.83 | 88 | 89.41 | 89.87 | 89.78
Blond Hair 86.67 | 95 | 9588 | 9597 | 96.01
Blurry 9494 | 84 | 96.07 | 96.08 | 96.17
Brown Hair 82.03 | 80 | 88.75 | 88.99 | 89.15
Bushy Eyebrows 87.04 | 90 | 92.87 | 92.80 | 92.84
Chubby 94.69 | 91 | 9555 | 95.66 | 95.67
Double Chin 9542 | 92 | 9643 | 96.41 | 96.32
Earrings 79.33 | 82 | 90.35 | 90.32 | 90.43
Eyeglasses 93.54 99 99.67 99.63 99.63
Goatee 9541 | 95 | 97.13 | 97.30 | 97.24
Gray Hair 96.81 97 | 98.07 | 98.20 | 98.20
Hat 9579 | 99 | 9897 | 99.04 | 99.05
Heavy Makeup 59.50 | 90 | 90.95 | 91.37 | 91.55
High Cheekbones 51.81 | 88 | 87.34 | 8755 | 8758
Lipstick 52,18 | 93 | 93.80 | 9395 | 94.11
Male 61.34 98 98.02 98.16 98.17
Mouth Slightly Open | 50.49 | 92 | 93.99 | 93.74 | 93.74
Mustache 96.13 | 95 | 96.67 | 96.93 | 96.88
Narrow Eyes 85.13 | 81 | 87.22 | 87.16 | 87.23
Necklace 8620 | 71 | 86.41 | 86.82 | 86.63
Necktie 9299 | 93 | 96.71 | 96.53 | 96.51
No Beard 8536 | 95 | 9593 | 96.11 | 96.05
Oval Face 7043 | 66 | 7470 | 75.81 | 75.84
Pale Skin 9579 | 91 | 97.07 | 97.01 | 97.05
Pointy Nose 7142 | 72 | 7747 | 7747 | 7747
Receding Hairline 91.51 | 89 | 9341 | 93.81 | 93.81
Rosy Cheeks 92.82 | 90 | 95.02 | 95.13 | 95.16
Sideburns 9536 | 96 | 97.77 | 97.82 | 97.85
Smiling 50.03 | 92 | 92.65 | 92.66 | 92.73
Straight Hair 79.01 | 73 | 8262 | 8339 | 83.58
Wavy Hair 63.59 | 80 | 8324 | 83.92 | 8391
Young 7571 | 87 | 8798 | 8330 | 88.48

Table 2: Results for CelebA. The highest accuracy for each
attribute is in bold.

Independent CNNs

We train independent CNNs for all the 40 attributes for
both datasets in order to compare these results with those
from MCNN and MCNN-AUX. We use one portion of our
MCNN network for this. Each independent CNN has 3 con-
volutional layers, and 3 fully connected layers with the pa-
rameters specified in previous sections. We train these net-
works for 22 epochs for both datasets and use a batch size
of 100. The independent CNNs each take about an hour to
train for the CelebA dataset and about 30 minutes for the



LFWA dataset. For all 40 attributes, training independent
CNNs takes over 40 hours for CelebA and over 20 hours
for LFWA.

MCNN

To train MCNN, we use batches of size 100, and we train
for 22 epochs for both datasets. Training takes about 2.5
hours for the CelebA dataset and about 1 hour for the LFWA
dataset. We see a significant reduction in training time from
40 hours to 2.5 hours for CelebA and 20 hours to 1 hour for
LFWA using MCNN over independent CNNS.

MCNN-AUX

Taking the trained MCNN, we fix the weights for that
portion of the MCNN-AUX network and only train the
AUX network. This takes about twenty minutes to train for
CelebA and about 10 minutes for LFWA.
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Figure 3: Heatmap of AUX network weights on CelebA.
Along the x-axis, we have the MCNN output units and on
the y-axis, the AUX units. Red indicates a strong relation-
ship, and blue indicates a strong inverse relationship. Best
viewed in color.

Results

We present results for our independent CNNs, MCNN, and
MCNN-AUX. For comparison, we also provide the state-of-
the-art by Liu et al., and a baseline of always choosing the
most common label for each attribute.

We can see from Table 2 that our independent CNNs out-
perform Liu et al. on most attributes for CelebA. The in-
dependent CNNs improve on Liu et al. by 15% for neck-
lace, 12% for blurry, 9% for straight hair, and 8% for big
nose. MCNN makes even further improvements, and finally
MCNN-AUX gives the highest accuracy for most attributes.
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5 o’clock Shadow 58.64 | 84 | 77.39 | 77.70 | 77.06
Arched Eyebrows 74.88 82 81.4 82.36 | 81.78
Attractive 62.87 | 83 | 80.20 80.42 | 80.31
Bags Under Eyes 58.29 83 83.24 83.51 83.48
Bald 89.37 | 88 | 91.51 91.99 | 91.94
Bangs 8359 | 83 | 90.47 89.99 | 90.08
Big Lips 62.86 | 75 79.06 | 79.21 | 79.24
Big Nose 68.59 | 81 84.43 84.76 | 84.98
Black Hair 87.63 | 90 | 91.84 | 9235 | 92.63
Blond Hair 9574 | 97 | 97.23 9745 | 9741
Blurry 84.02 | 74 | 86.71 85.30 | 85.23
Brown Hair 64.56 | 77 80.84 80.94 | 80.85
Bushy Eyebrows 5370 | 82 84.79 85.11 | 84.97
Chubby 6392 | 73 | 7585 | 7690 | 76.86
Double Chin 62.44 | 78 | 82.00 81.17 | 81.52
Earrings 86.86 | 94 | 94.73 9491 | 94.95
Eyeglasses 81.99 | 95 | 92.15 91.22 | 91.30
Goatee 74.68 | 78 | 83.34 82.52 | 82.97
Gray Hair 8425 | 84 | 88.98 89.04 | 88.93
Hat 85.52 | 88 89.79 | 90.20 | 90.07
Heavy Makeup 89.20 | 95 95.63 95.84 | 95.85
High Cheekbones 67.74 | 88 88.02 88.25 | 88.38
Lipstick 85.53 | 95 | 94.68 94.89 | 95.04
Male 7877 | 94 | 93.27 93.66 | 94.02
Mouth Slightly Open | 58.70 | 82 82.41 83.47 | 83.51
Mustache 86.62 | 92 | 93.69 | 93.53 | 9343
Narrow Eyes 65.50 | 81 82.48 82.73 | 82.86
Necklace 80.49 | 83 | 89.98 89.66 | 89.94
Necktie 64.09 | 79 80.34 80.50 | 80.66
No Beard 70.05 | 79 81.45 82.13 | 82.15
Oval Face 51.49 | 74 | 77.06. | 77.38 | 77.39
Pale Skin 52.09 | 84 | 9431 93.41 | 93.32
Pointy Nose 71.10 | 80 | 84.41 84.18 | 84.14
Receding Hairline 59.84 | 85 86.00 | 86.26 | 86.25
Rosy Cheeks 79.65 | 78 | 89.46 87.52 | 87.92
Sideburns 68.72 | 77 81.70 82.73 | 83.13
Smiling 60.50 | 91 92.22 | 91.75 | 91.83
Straight Hair 64.44 | 76 | 81.54 | 7872 | 78.53
‘Wavy Hair 5549 | 76 | 81.58 81.96 | 81.61
Young 79.60 | 86 | 85.11 85.37 | 85.84

Table 3: Results for LFWA. The highest accuracy for each
attribute is in bold.

We see that the largest increase in performance is from
the method of Liu et al. to the independent CNNs, with
smaller improvements being made with MCNN and MCNN-
AUX. From this, we determine that the value in MCNN and
MCNN-AUX is in the increased training speed and the de-
creased parameters, which reduces the chances of overfit-
ting. We do not expect to see an increase in performance
with MCNN-AUX for every attribute, as many attributes
do not have strong relationships with others. Determining
which relationships to use can be done using a set of valida-
tion data, however, in this work we chose not to remove any
relationships in our testing. All three of our methods outper-
form the baseline for every attribute in CelebA.
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Figure 4: Heatmap of AUX network weights on LFWA.
Along the x-axis, we have the MCNN output units and on
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viewed in color.

Figure 3 shows a heatmap of the weights for the AUX
network on the CelebA dataset. From figure 3 we can see
that each attribute contributes the most to its final classifier
score. This is expected as MCNN already produces strong
attribute classification accuracies. Some intuitive relation-
ships can be seen in the heatmap. We see that bald is strongly
related to receding hairline and has an inverse relationship
with straight hair and wavy hair and that no beard has an
inverse relationship with 5 o’clock shadow, mustache, and
sideburns. There are many more just like these. We do see
some unexpected relationships as well, like high cheekbones
and smiling having a strong connection. This would seem to
indicate that people are not very good at determining when
someone has high cheekbones and therefore the labels for
this attribute are somewhat noisy.

Table 3 shows the results for the LFWA dataset. We can
see that the accuracies are lower for this dataset than for
the CelebA dataset. This is likely due to overfitting be-
cause LFWA is much smaller than CelebA. The indepen-
dent CNNs outperform Liu et al. on most attributes with an
improvement of 11% for blurry, 11% for rosy cheeks, 10%
improvement for pale skin, and 5% improvements for both
straight hair and wavy hair. MCNN improved the classifica-
tion accuracy of many attributes, but we see that a few, such
as blurry and eyeglasses, did not improve with MCNN. For
blurry and eyeglasses this makes sense, as both attributes
are relatively unrelated to the other attributes, and therefore
do not gain anything from shared information. We note that
though MCNN-AUX does not improve the results for some
attributes, we do not pre-train the networks using a larger
dataset, as in Liu et al., which used a much larger dataset to
initialize the weights of their networks. Pre-training on ex-
ternal data would likely improve the results, however that is
not the focus of this work.

4073

Figure 4 shows a heatmap of the weights for the AUX net-
work on LFWA. There is much more white in this heatmap
than in that of figure 3 indicating that there are fewer strong
relationships in LFWA than in CelebA. This makes sense, as
the classification accuracies for MCNN on LFWA were not
as high as on CelebA. Again, we believe that this is due to
the small size of the dataset. Though jittering LFWA helps, it
does not compare to having a large amount of unique data as
in CelebA. As with CelebA, we see that each attribute con-
tributes most to its overall classification accuracy, though not
quite as strongly. We again see promising relationships, with
bald and receding hairline being strongly related as well as
heavy makeup and lipstick and several others. We see that
there are some noisy labels as in CelebA with smiling and
highcheekbones being strongly related.

Conclusion

In this paper, we have shown that though facial attributes
have been treated as independent problems in the past, there
is a lot to be gained from shared information amongst at-
tributes. Framing the attribute prediction problem as a multi-
task learning problem is very natural and allows for a large
reduction in training time and in the number of parameters
required for the classifier. The proposed MCNN-AUX re-
duced the number of parameters from 64 million to fewer
than 16 million, and reduced the training time by 16 times.
We demonstrated the effectiveness of our independent CNN,
MCNN, and MCNN-AUX classifiers on the challenging
CelebA and LFWA datasets, achieving state-of-the-art per-
formance for most attributes. Attribute relationships can be
exploited in many ways and we presented three ways in this
paper: by sharing lower layers of MCNN, by grouping simi-
lar attributes in higher layers of MCNN, and by introducing
an auxiliary network (AUX), which learns attribute relation-
ships at the score level. Attribute relationships are learned
implicitly at the lower levels, and explicitly in the higher
grouped layers. Even without pre-training, we were able to
outperform the method of Liu et al. for many attributes. Pre-
training on external data may improve the results, however
that is not the focus of this work. We demonstrated through
experiments that a multi-task framework for attribute pre-
diction outperforms independent classifiers. Taking advan-
tage of implicit and explicit relationships among attributes
allows for improved attribute prediction which will lead to
improved facial recognition.
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