
Building an End-to-End Spatial-Temporal
Convolutional Network for Video Super-Resolution

Jun Guo and Hongyang Chao
School of Data and Computer Science, and

SYSU-CMU Shunde International Joint Research Institute,
Sun Yat-sen University, Guangzhou, People’s Republic of China

Abstract

We propose an end-to-end deep network for video super-
resolution. Our network is composed of a spatial component
that encodes intra-frame visual patterns, a temporal compo-
nent that discovers inter-frame relations, and a reconstruction
component that aggregates information to predict details. We
make the spatial component deep, so that it can better lever-
age spatial redundancies for rebuilding high-frequency struc-
tures. We organize the temporal component in a bidirectional
and multi-scale fashion, to better capture how frames change
across time. The effectiveness of the proposed approach is
highlighted on two datasets, where we observe substantial im-
provements relative to the state of the arts.

Introduction

Video Super-Resolution (VSR) is a classical problem in
computer vision. This problem targets at estimating high-
resolution (HR) frames from a low-resolution (LR) video
sequence. To date, as the popularity of high-resolution de-
vices such as HDTV, there is great demand for converting
low-resolution sequences into high-quality high-resolution
sequences, so that they can be pleasantly viewed on those
devices. What’s more, various visual tasks (e.g., pedestrian
detection (Daniel Costea and Nedevschi 2016), action recog-
nition (Alfaro, Mery, and Soto 2016), and video segmenta-
tion (Kundu, Vineet, and Koltun 2016)) largely rely on the
quality of input videos for high performance. As a result,
VSR has attracted more and more attention.

For VSR, an LR video is usually treated as a blurred,
down-sampled and noisy version of the corresponding HR
video. This task is highly ill-posed, as most high-frequency
information has been lost during the irreversible blurring
and down-sampling operations. Practical VSR approaches
assume that much high-frequency information is redundant
and thus may be reconstructed from LR videos. In general,
these approaches can be divided into two categories: single-
frame approaches, and multi-frame approaches.

Single-frame approaches mainly come from the area
of image super-resolution. Given an LR video, these ap-
proaches process each video frame individually, map-
ping LR frames to the HR space and then concatenat-
ing them to form an HR sequence. Early works model
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the mapping via simple interpolation, e.g., bicubic, and
Lanczos (Duchon 1979). Recent approaches are mostly
learning-based. Among them, Convolutional Neural Net-
works (CNNs) are well received. In the pioneer work of SR-
CNN (Dong et al. 2014), a 3-layer CNN was constructed to
learn the mapping end-to-end. VDSR (Kim, Kwon Lee, and
Mu Lee 2016a) further extended SRCNN to a much deeper
(20-layer) network, and has achieved the best performance
among single-frame approaches. Nevertheless, single-frame
approaches completely ignore valuable temporal informa-
tion, whereas adjacent frames within a video usually share
similar contents. If an approach can correctly capture frame
variations over time, intuitively it can better reconstruct an
HR frame by utilizing details of its adjacent LR frames. In
consequence, single-frame approaches used to produce un-
satisfactory results.

On the contrary, multi-frame approaches take the un-
derlying relation of frames into account. Many previous
works (Katsaggelos, Molina, and Mateos 2007; Babacan,
Molina, and Katsaggelos 2011; Liu and Sun 2011; Ma et al.
2015) regularize the LR to HR mapping via motion-related
priors. For example, Babacan et al. (2011) reconstructed HR
videos subject to rotation and translation among LR frames.
Liu and Sun (2011) utilized a more complex motion form,
estimating optical flow, noise level, and blur kernel simulta-
neously from LR data. DEL (Liao et al. 2015) realized that
accurately estimating motion by a single algorithm is diffi-
cult. To resolve this issue, it employed various optical flow
algorithms to generate HR candidates (called “drafts”) and
then learned a CNN to select the best draft. DEL runs much
faster, and has become the state-of-the-art multi-frame ap-
proach on VSR. Despite the success of DEL, we still find
its limitations in three aspects: 1) The draft generation pro-
cedure is independent of the training of the CNN, so their
powers cannot be well combined; 2) Motion is only one kind
of temporal information. Other information like color vari-
ations is not well explored in DEL; 3) The CNN in DEL is
not deep enough (i.e., has only 4 layers), which limits its
capability of exploiting high-frequency redundancies.

To overcome these issues, in this paper, we propose a
deep Spatial-Temporal CNN (STCN) as an end-to-end map-
ping between LR and HR video frames. Our model con-
sists of three components: a spatial component, a temporal
component, and a reconstruction component. Motivated by
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VDSR, the spatial component of our STCN is a very deep
CNN, aiming at discovering spatial redundancies in each in-
put frame. This component turns inputs into highly nonlin-
ear representations. Based on its outputs, the temporal com-
ponent captures how frames change during a time period.
Recurrent Neural Networks (RNNs), especially those based
on LSTM (Hochreiter and Schmidhuber 1997), are widely
adopted as temporal models to cope with sequential inputs.
We extend LSTM to work in a bidirectional, multi-scale, and
convolutional fashion, so that it is better at perceiving tem-
poral information. Finally, the reconstruction component ag-
gregates the outputs of the temporal component to predict an
HR video. Note that our end-to-end design puts the whole
model in a unified optimization framework, so we can avoid
the aforementioned first issue when training. In addition, our
STCN does not try to model frame relations explicitly (e.g.,
by optical flow). We argue that explicit modeling may be
insufficient for exploring temporal information, as there are
too many kinds of temporal relations (object motion, color
transition, and patch similarity for instances) to be exhaus-
tively modeled. Hence, in our STCN, temporal information
is implicitly discovered via hidden layers, in order to resolve
the second issue. Besides, the third issue doesn’t bother our
STCN either, as our STCN is organized as a very deep net-
work. Extensive experiments prove its superior accuracy.

Related Works

Our work is mainly related to the two state of the arts, i.e.,
VDSR and DEL. Therefore, we focus on introducing these
two approaches in the following.

Interestingly, both VDSR and DEL are based on
CNNs. CNNs date back decades (LeCun et al. 1989) and
have recently shown explosive successes in both high-
level (Krizhevsky, Sutskever, and Hinton 2012; Sun et al.
2015) and low-level vision tasks (Dong et al. 2014). In par-
ticular, Dong et al. (2014) showed that lots of single-frame
approaches for super resolution (Chang, Yeung, and Xiong
2004; Yang et al. 2010; 2012; Bevilacqua et al. 2012; Tim-
ofte, De Smet, and Van Gool 2013) could be re-interpreted
as a CNN. In their work, a 3-layer network called SRCNN
was built for patch extraction, non-linear LR to HR mapping
and reconstruction. Kim et al. (Kim, Kwon Lee, and Mu Lee
2016a) proved that such a simple CNN had only a small
receptive field and thus was not sufficient for discovering
spatial context. Instead, they built a 20-layer CNN named
VDSR by cascading many small filters and have achieved
promising results. However, VDSR processes frames inde-
pendently, and thus cannot leverage temporal information.

For VSR, multi-frame approaches are more welcomed
as they can utilize temporal relations. Previous ap-
proaches (Tsai and Huang 1984; Elad and Hel-Or 2001;
Farsiu et al. 2004; Katsaggelos, Molina, and Mateos
2007; Belekos, Galatsanos, and Katsaggelos 2010; Baba-
can, Molina, and Katsaggelos 2011; Liu and Sun 2011;
Ma et al. 2015) usually involve a few components for mo-
tion estimation on LR frames. These approaches often re-
quire users to manually tune motion estimation parameters
for each input. To address this problem, DEL (Liao et al.

2015) trained a CNN to automatically select the best mo-
tion estimation from a set of candidates. More precisely,
DEL consists of two components. The first component pro-
poses plentiful motion estimates, so as to generate many HR
drafts, using several existing optical flow algorithms along
with various parameters. After that, the second component
feeds drafts into a CNN to find the best HR reconstruction.
Unfortunately, as pointed out in the Introduction, these two
components are independent. Hence, errors introduced by
the first component are hard to be removed in the second
component. Besides, DEL pays little attention to other tem-
poral relations except for motion. Its relatively shallow CNN
also imposes restrictions on its capability.

Proposed Method

Formulation

Consider an input sequence of LR frames, we first upscale
it to the desired size using bicubic interpolation. Denote the
interpolated LR frames as X = {X−T , · · · ,X0, · · · ,XT }.
Here T is the radius of temporal neighborhood. Our goal
is to recover an HR frame Y0 from the corresponding LR
frame X0, using a nonlinear mapping F . That is, we hope to
find a trainable mapping which satisfies F (X0;X ) ≈ Y0.
Note that the output of F is not just dependent on X0, since
some of its parameters are shared over the whole sequence
X for exploiting temporal information. For the ease of pre-
sentation, in the following we still call X−T , · · · ,XT as LR
frames, although they have the same size as Y0. Especially,
we refer X0 / Y0 as the target LR / HR frame.

In this paper, we develop the non-linear mapping F as
a deep Spatial-Temporal CNN (STCN). Fig. 1 provides
an overview for our STCN. Conceptually, our STCN has
three major components, including the spatial component,
the temporal component, and the reconstruction component.
Next we describe them in details.

The Spatial Component

CNN-based approaches are often adopted to utilize the
spatial continuity property of normal images. Inspired by
VDSR, we use a series of very deep (LS-layer) CNNs as
the spatial component, to recover high-frequency details by
exploiting spatial redundancies, e.g., similarity between im-
age patches. The t-th CNN operates on the t-th frame, re-
spectively. Each layer of a CNN extracts non-linear repre-
sentations from the previous layer, and its output is further
feed into the next layer to form another set of representa-
tions. The representation extraction is finished by applying
convolutions on inputs, and the non-linearity is obtained by
applying PReLU (He et al. 2015) on filter responses. Math-
ematically, the i-th layer of the t-th CNN is formulated as:

Si,t(Xt) = PReLU(Wi,t ∗ Si−1,t(Xt) + bi,t), (1)

where ∗ denotes a convolution operator, Wi,t and bi,t are
the filters and biases, and Xt is the t-th LR frame. By stack-
ing a large number of non-linear layers, the capability of the
spatial component can be significantly strengthened, so that
more complicated redundancies may be discovered.

4054



Figure 1: Our STCN contains three components. Given a series of LR frames, the spatial component captures spatial redundan-
cies within each frame. The temporal component captures how frame changes over time. The reconstruction component maps
the outputs of the temporal component back to the pixel domain to generate HR frames.

In this paper, all layers except the first are of the same
type: every layer contains 64 filters of size 3 × 3 × 64, i.e.,
each filter operates on 3× 3 spatial regions across 64 chan-
nels. The first layer also contains 64 filters, but the filter size
is 3× 3× Cin, where Cin is the channel number of an input
LR frame. This filter configuration is inspired by the VG-
GNet (Simonyan and Zisserman 2014), which showed that a
deep network with very small filters was usually superior to
a relatively shallow network with large filters.

The Temporal Component

The temporal component is built on top of the spatial com-
ponent. It tries to implicitly discover frames variations over
time with respect to the target frame. RNNs, especially
those based on LSTM, have attracted significant attention in
exploiting temporal information. Recently, LSTM was ex-
tended to 2D inputs (e.g., images) by introducing the con-
volution operator into its gate computation (Xingjian et al.
2015; Toderici et al. 2015). More precisely, this extension
(literally named Convolutional LSTM, C-LSTM) replaces
fully connections between weights and inputs / states inside
an LSTM with convolutions. We also borrow the power of
this extension. As the initial version, the temporal compo-
nent is defined as a multi-layer network, with each layer
containing a C-LSTM. For Layer i, let Zi,t, Ci,t and Hi,t

denote its input, cell and hidden states at the t-th frame,
respectively. Given the current input Zi,t, the previous cell
state Ci,t−1, and the previous hidden state Hi,t−1, we com-

pute the new states Ci,t and Hi,t as follows:
⎛
⎜⎝

F
I
O
G

⎞
⎟⎠=

⎛
⎜⎝

sigm
sigm
sigm
tanh

⎞
⎟⎠ (Ui ∗ Zi,t +Vi ∗Hi,t−1 + bi) (2)

Ci,t = F�Ci,t−1 + I�G (3)
Hi,t = O� tanh(Ci,t) (4)

where � denotes element-wise multiplication, Ui is the fil-
ters on inputs, Vi is the filters on hidden states, bi is the
bias, and sigm denotes the sigmoid function. Note that Ui,
Vi, and bi are shared over time, so temporal relations be-
tween frames can be encoded.

Similar to the spatial component, the i-th layer of the tem-
poral component takes the hidden state of the (i−1)-th layer
as input: Zi,t = Hi−1,t, except that the first layer operates
on the outputs of the spatial component: Z1,t = SLS ,t(Xt).

Exploiting Multi-Scale Spatial Information At first
glance, it may be strange that we hope the temporal com-
ponent can cope with spatial information. We argue that it is
necessary to aggregate multi-scale information when frames
are processed jointly. As a simple example, suppose there
is an object whose size varies over time. When the spatial
component processes each frame individually, it is encour-
aged not to be scale-invariant, as keeping the actual scale of
the object is very important for reconstruction. Hence, when
the temporal component receives outputs from the spatial
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Figure 2: An overview of the transform function P in an
MC-LSTM. Zi,t and Hi,t−1 are concatenated and then feed
into 3 × 3 convolutions of various depths. The outputs are
concatenated and compressed by a 1× 1 convolution.

component, it needs to perform scale alignment on the ob-
ject. That is, it should revise the representations of adjacent
frames with respect to the target frame.

Look back on the aforementioned C-LSTM. In Eq. (2),
only one type of filters are applied to inputs / hidden states.
Thus, the exploration of multi-scale information is limited.
To perform multi-scale analyses, we generalize Eq. (2) as:
⎛
⎜⎝

F
I
O
G

⎞
⎟⎠=

⎛
⎜⎝

sigm
sigm
sigm
tanh

⎞
⎟⎠P (concat(Zi,t,Hi,t−1);Wi,bi) (5)

where “concat” is a concatenation operator along channel,
and P is a transform function with weights Wi and biases
bi. It can be seen that Eq. (2) is just a special case of Eq. (5).

Now the key issue is how to develop a suitable P . Here
we still follow the convolutional fashion. To capture multi-
scale information, a typical way is to convolve inputs (i.e.,
concat(Zi,t,Hi,t−1)) with various filter sizes, and then con-
catenate their responses. Notice that by convolving an input
N times with 3× 3 filters, a network can capture visual pat-
terns of size (2N + 1) × (2N + 1). Thus, we can replace
large filters with multiple small 3× 3 filters to reduce com-
putational cost. For example, a 5×5 convolution can be sub-
stituted by two 3× 3 convolutions. This trick is also used in
the later version of GoogLeNet (Szegedy et al. 2015). We in-
sert PReLU after each convolution to increase non-linearity.
In addition, a 1 × 1 convolution is placed after the concate-
nation of filter responses to reduce dimension, which allow
the temporal component to explore multi-scale information
without largely increasing the dimension of states.

We call such a Multi-scale C-LSTM as an MC-LSTM.
Fig. 2 illustrates the transform function P .

Exploiting Bidirectional Temporal Information The
aforementioned temporal component is unidirectional. In
contrast, videos are temporally continuous in both direc-
tions: A target frame is not only similar to its previous
frames, but also related to its following frames. Therefore,
it is natural to integrate temporal information from the fu-
ture as well as the past to reconstruct a target frame.

Bidirectional LSTM (B-LSTM) (Graves, Fernández, and
Schmidhuber 2005) have been widely used in processing
sequential data. To our best knowledge, this extension was
only applied to traditional fully-connected LSTMs, but has
not been seen on C-LSTMs. Following the idea of B-LSTM,

MC-LSTM MC-LSTMMC-LSTM

MC-LSTM MC-LSTMMC-LSTM

1x1 conv 1x1 conv 1x1 conv

PReLUPReLU PReLU

C−i,t

C+
i,t

C−i,t+1

C+
i,t+1

C−i,t−1

C+
i,t−1

H−
i,t

H+
i,t

H−
i,t+1

H+
i,t+1

H−
i,t−1

H+
i,t−1

Zi,t Zi,t+1Zi,t−1

Hi,t Hi,t+1Hi,t−1

i-th Backward Layer

i-th Forward Layer

Figure 3: An overview of the BMC-LSTM. The structure
surrounding by a dotted rectangle is a BMC-LSTM at the
t-th frame. Its input, Zi,t, is passed to two MC-LSTMs of
opposite directions, whose outputs, H+

i,t and H−i,t, are then
aggregated to form the output of the BMC-LSTM, Hi,t.

we stack a forward MC-LSTM and a backward MC-LSTM
to form a Bidirectional MC-LSTM (BMC-LSTM). More
specifically, we provide the same input to two MC-LSTMs
that work in opposite directions, and then concatenate their
outputs (i.e., hidden states). In addition, we introduce a 1×1
convolution after concatenation to aggregate bidirectional
information and keep the dimension as same as the unidi-
rectional version. PReLU is again applied to increase non-
linearity. The BMC-LSTM is depicted in Fig. 3.

In summary, after plugging the multi-scale extension and
the bidirectional extension, our temporal component is re-
formulated as an LT -layer network, each layer of which is
composed of a BMC-LSTM. We keep the channel number
of all the cell and hidden states to be 64. The sizes of filters
and biases are set accordingly. We denote the output of the
i-th layer at the t-th LR frame as Ti,t:

Ti,t(Xt;X ) = Hi,t. (6)

We include X as a dependency of Ti,t because the parame-
ters in Eq. (5) are shared over an LR sequence.

The Reconstruction Component

As the name implies, the reconstruction component runs af-
ter the temporal component, projecting its outputs back onto
the pixel domain, so that we can obtain reconstructed HR
frames. We define a convolutional layer for projection1:

F (Xt;X ) = Wt ∗ TLT ,t(Xt;X ) + bt (7)

In this paper, the size of Wt is set to 3× 3×CT , where CT

is the channel number of TLT ,t(Xt;X ). The filter number is
Cin, since the reconstructed HR frame should have the same
channel number as an input LR frame.

1We slightly abuse the notations of weights and biases for the
ease of presentation: W and b are repeatedly used in Eq. (1),
Eq. (5) and Eq. (7). Nevertheless, their meanings should be clear
based on context.
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Training STCN

Our STCN is trained end-to-end. The objective function to
be minimized is defined as:

‖F (X0;X )−Y0‖22+λ
∑

Xi∈X−{X0}
‖F (Xi;X )−Yi‖22 (8)

Different from DEL, we not only require our STCN to cor-
rectly reconstruct the target frame, but also encourage it to
be accurate when predicting the other HR frames. In this
way, we can make full use of training data, in contrast to
DEL which completely neglects non-target HR frames dur-
ing training. Initially, we set λ to 1 for utilizing all training
samples. As training progresses, λ decays to 0 to boost the
performance on the target frame.

In practice, we find that replacing Y0 and Yi in Eq. (8)
with (Y0−X0) and (Yi−Xi) respectively makes the train-
ing procedure converge faster, and produces slightly better
results. An intuitive explanation is, when we train STCN to
directly predict HR frames, STCN needs to remember most
pixel values of input LR frames through the whole network,
since an LR frame and its corresponding HR frame are ex-
pected to be similar. Such long-term memory can easily lead
to gradient vanishing or explosion (Hochreiter and Schmid-
huber 1997). Instead, when STCN is trained towards the
residuals between LR and HR frames, long-term memory
is no longer required, leading to simpler optimization.

Ideally, all three components of our STCN should be
trained jointly. However, it would result in huge computa-
tional cost, especially when the radius of temporal neigh-
borhood T is large. Hence, we employ the following training
strategy: only the CNN of the spatial component that oper-
ates on the target frame is always updated together with the
temporal component and the reconstruction component. For
the remaining CNNs of the spatial component, in each iter-
ation we randomly pick up one and update its parameters,
while at the same time the others are unchanged.

We adopt Adam (Kingma and Ba 2014) to train our
STCN. We begin with a step size 10−4 and then decrease it
by a factor of 10 when the validation error stops improving.
The step size of Adam is reduced twice prior to termination.
The other hyper-parameters of Adam are set according to
the guideline provided by the Adam paper. We train a spe-
cific network with batch size 64 for each upscaling factor.

Experiments

In this section, we present experimental results to demon-
strate the effectiveness of the proposed STCN for VSR.

For fair comparisons with existing works, we follow the
protocol of DEL to conduct the first experiment. Three
benchmark sequences, i.e., penguin, temple and city, are
used as our first test set (we denote it as “TriVideos” in
this paper). The training set is built by collecting 160 video
sequences from 26 high-quality 1080p HD video clips. All
videos in the training / test set are trimmed to contain 31
consecutive frames where the central one is regarded as the
target frame. To generate LR frames, HR frames are first
blurred by Gaussian filters for anti-aliasing and then down-
sampled. For more details please refer to the DEL paper.

Table 1: Comparison on the TriVideos Dataset

Approach Metric penguin temple city

BayesSR PSNR 29.53 29.01 25.49
SSIM 0.9451 0.9375 0.7979

DEL PSNR 31.87 30.23 24.89
SSIM 0.9483 0.9504 0.7610

DRCN PSNR 32.50 30.62 25.57
SSIM 0.9510 0.9567 0.8025

VDSR PSNR 32.59 30.64 25.56
SSIM 0.9512 0.9568 0.8022

STCN PSNR 33.64 31.16 26.01
SSIM 0.9541 0.9627 0.8141

We note that TriVideos may not be a conclusive test set
due to the limited number of test samples. To further in-
crease credibility, we also conduct experiments on the larger
Hollywood2 Scenes dataset (Marszalek, Laptev, and Schmid
2009). This is one of the most famous datasets in the video
community, having 570 training sequences and 582 test se-
quences. Similarly, for each video we only take the middle
31 consecutive frames for training / testing, with the central
frame being the target frame. Blurring and down-sampling
are used to generate LR frames. Following VDSR, on Hol-
lywood2 we only consider the luminance channel (in YCbCr
color space). The two chrominance channels are bicubic in-
terpolated only for display, but not for training / testing.

For all experiments, the validation set is built by re-using
frames that are trimmed from the training set.

Implementation Details

Network Input In the training phase, we uniformly sam-
ple (41×41)-pixel patches from (interpolated) LR and HR
frames with stride 28. Smaller strides have been tried but no
significant performance gains were observed. In the testing
phase, STCN runs as a fully convolutional network (Long,
Shelhamer, and Darrell 2015) for full-frame predictions.

Network Structure The layer numbers of the spatial and
temporal components, i.e., LS and LT , are set to 20 and 3,
respectively. If not specified, the temporal neighborhood ra-
dius T is set to 2, i.e., only 5 adjacent frames are used as in-
puts, though more frames can be utilized theoretically. Zero-
padding is applied before convolutions to keep the output
size equal to the input size. All filters are initialized using
He et al.’s initializer (2015). All states are initialized to 0.

Quantitative Evaluation on TriVideos

We mainly compare results with the state-of-the-art single-
frame approach, VDSR, and the state-of-the-art multi-
frame approach, DEL, under the upscaling factor 4. Two
recent approaches, the single-frame-based DRCN (Kim,
Kwon Lee, and Mu Lee 2016b) and the multi-frame-based
BayesSR (Liu and Sun 2011), are also included. There are
some other recent works like EPSCN (Shi et al. 2016) for
VSR. But these works usually focuses on speed, and their
reported results are worse than VDSR on several datasets.
Therefore, we don’t include them here.
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(a) Bicubic (b) DEL (c) STCN (d) Groundtruth

Figure 4: Comparison on Sequence temple from TriVideos under the upscaling factor 4.

Table 2: Comparison on the Hollywood2 Dataset

Approach Metric x2 x3 x4 x5

Bicubic PSNR 37.25 33.73 31.66 30.31
SSIM 0.9641 0.9248 0.8834 0.8451

DEL PSNR 40.53 36.41 34.01 31.89
SSIM 0.9744 0.9499 0.9176 0.8793

VDSR PSNR 41.06 36.61 34.20 32.27
SSIM 0.9785 0.9514 0.9204 0.8853

STCN PSNR 41.51 37.03 34.58 32.56
SSIM 0.9804 0.9546 0.9259 0.8902

STCN(SS) PSNR 41.27 36.78 34.35 32.38
SSIM 0.9793 0.9524 0.9229 0.8874

STCN(Uni) PSNR 41.39 36.89 34.46 32.43
SSIM 0.9797 0.9538 0.9241 0.8886

As shown in Table 1, our results are promising under both
two objective fidelity metrics. Specifically, the PSNR gains
achieved by STCN are 1.05 dB, 0.52 dB, and 0.44 dB, re-
spectively, in comparison to the next best approach, on three
test videos. DRCN performs almost the same as VDSR. This
is reasonable, as their network structures are nearly equiva-
lent. BayesSR is inferior to the other approaches in general.
Interestingly, DEL seems to be worse than VDSR, though
DEL can leverage temporal information. This phenomenon
demonstrates the insufficiency of the overly simple CNN in
DEL. We present the super-resolution results for Sequence
temple in Fig. 4. It can be seen that our STCN generates
more details and sharper edges than the other approaches,
without introducing any obvious artifact.

Quantitative Evaluation on Hollywood2

Here we conduct more experiments on Hollywood2, under 4
upscaling factors (2, 3, 4 and 5). Since BayesSR doesn’t pro-
vide codes for evaluation, and its performance is inferior to
the other approaches on TriVideos, in this section we don’t
report its results. DRCN is also skipped as it performs on par
with VDSR on TriVideos.

The experimental results are shown in Rows 2∼5 of Ta-
ble 2. From the perspective of PSNR, our STCN consistently
outperforms the other approaches by a large margin (≈ 0.4
dB on average). A similar trend can be observed for SSIM,
as well. These quantitative results verify the effectiveness
of the proposed approach. We show some qualitative results

Figure 5: Average PSNR (dB) on the test set of Hollywood2
for various temporal neighborhood radii.

from different approaches under the upscaling factor 5 in
Fig. 6. As can be observed, STCN recovers more structures.
The reconstructed contours are cleaner and more vivid in
STCN, again demonstrating that our approach is not only
superior in objective fidelity metric, but is also visually ap-
pealing. Note that, only our approach perfectly recovers the
two horizontal lines at the top of the pole in Sequence 153.
This is pretty interesting, as both lines are almost indistin-
guishable in the bicubic interpolation result (i.e., Row 3 and
Col 1 of Fig. 6), which is also the target LR frame. It indi-
cates that our STCN can successfully leverage information
from adjacent frames to help reconstruction.

Temporal Neighborhood Radius To investigate the in-
fluence of the temporal neighborhood radius, we evaluate
STCN under various T s, and display the results in Fig. 5. As
can be seen, performance grows as radius increases in gen-
eral. But the performance gain seems to become marginal
when T >=3. This reflects the difficulty in exploring long-
term temporal information, and is reserved for future study.
We regard T =2 as a good balance between reconstruction
quality and computational cost.

Multi Scales We develop a variant of STCN (denoted as
“STCN(SS)”) whose temporal component only works in sin-
gle scale. That is, we replace the two MC-LSTMs in a BMC-
LSTM by two C-LSTMs, and show the results in Row 6 of
Table 2. Compared with Row 5 of Table 2, it is clear that
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(a) Bicubic (b) VDSR (c) STCN (d) Groundtruth

Figure 6: Comparison on Sequence 005 (Row 1), 049 (Row 2) and 153 (Row 3) from Hollywood2 under the upscaling factor 5.

using only one scale leads to performance drop. This exper-
iment confirms the importance of our multi-scale design.

Bidirection In order to verify the effectiveness of bidirec-
tion, we introduce another variant of STCN which only em-
ploys unidirectional MC-LSTMs in its temporal component.
For a fair comparison, for each target frame, this variant
(denoted as “STCN(Uni)”) takes the target frame and the
4 consecutive frames previous to it as input. In this way,
both STCN and STCN(Uni) use 5 LR frames for recon-
struction. The last row of Table 2 shows the performance
of STCN(Uni). In comparison to Row 5 of Table 2, we can
conclude that integrating information from the future is es-
sential for good reconstruction. This is quite intuitive. Given
a target frame, the frames that are most related to it are those
closest to it, in general. Hence, information within 2 previ-
ous frames and 2 next frames are usually more valuable than
that within 4 previous frames.

Conclusions

In this paper, we systematically studied how to build an ef-
fective network for video super-resolution. The proposed ap-
proach, STCN, learns an end-to-end mapping between low-
and high-resolution frames. We presented a very deep CNN
to fully utilize spatial information. We also designed a bidi-
rectional and multi-scale convolutional LSTM to implicitly
leverage temporal information. Experimental results demon-

strated the promise of STCN. In future, we would like to
examine our STCN on other video restoration tasks like de-
noising and compression artifacts reduction.
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