
Learning Discriminative Activated
Simplices for Action Recognition

Chenxu Luo,1 Chang Ma,1 Chunyu Wang,2 Yizhou Wang,1
1Nat’l Eng. Lab. for Video Technology, Cooperative Medianet Innovation Center

Key Lab. of Machine Perception (MoE), Sch’l of EECS, Peking University, Beijing, 100871, China
2Microsoft Research

Abstract

We address the task of action recognition from a sequence of
3D human poses. This is a challenging task firstly because
the poses of the same class could have large intra-class varia-
tions either caused by inaccurate 3D pose estimation or vari-
ous performing styles. Also different actions, e.g., walking vs.
jogging, may share similar poses which makes the represen-
tation not discriminative to differentiate the actions. To solve
the problems, we propose a novel representation for 3D poses
by a mixture of Discriminative Activated Simplices (DAS).
Each DAS consists of a few bases and represent pose data
by their convex combinations. The discriminative power of
DAS is firstly realized by learning discriminative bases across
classes with a block diagonal constraint enforced on the basis
coefficient matrix. Secondly, the DAS provides tight charac-
terization of the pose manifolds thus reducing the chance of
generating overlapped DAS between similar classes. We jus-
tify the power of the model on benchmark datasets and wit-
ness consistent performance improvements.

Recent advances in human pose estimation from both color
(Toshev and Szegedy 2014; Chen and Yuille 2015; Cherian
et al. 2014; Wang et al. 2014) and depth images (Shotton et
al. 2013; Girshick et al. 2011) enpower pose-based action
recognition closer to practical applications.

However, there are still some challenges requiring further
study. The first challenge is the large intra-class variations.
This is mostly because: (i) people may perform the same ac-
tion in very different styles, (ii) and the estimated 3D poses
are sometimes inaccurate, e.g., due to occlusions and de-
graded image qualities. The second critical challenge is the
small inter-class distance, i.e., some actions share very sim-
ilar poses which make them very hard to differentiate.

There have been many works aiming to improve the rep-
resentation’s discriminative power. Some works, e.g., (Yao
et al. 2011; Wang et al. 2012b) attempt to solve the problem
by using more effective pose features to represent actions.
Another line of research, instead, focuses on developing or
using powerful classifiers, e.g., SVMs, multiple kernel learn-
ing and data mining techniques, to map pose features to a
new space where classification is easier. However, in spite
of the promising results on some datasets, there is risk of
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over-fitting to noisy/small training data when either features
or classifiers are too complex.

There is a recent work (Wang et al. 2016) which proposes
a novel generative representation called activated simplices
(AS). The AS model represents poses by a mixture of ac-
tivated simplices where each activated simplex (structure)
consists of a few bases whose convex combinations tightly
characterize a portion of the pose manifold. The structures
are representative to cover the variations of the poses, and
also at the same time, discriminative to separate different
classes. The discriminativeness is implicitly realized by re-
quiring the learned AS structure to be tight. In other words,
the learned AS structure for a class can and can only rep-
resent the poses of this class well. For classification, they
learn an AS model for each action class independently, and
then classify a new pose sequence by projecting its poses to
the learned models of all classes respectively and choosing
the class with the smallest projection error. This simple clas-
sifier outperforms the existing state-of-the-arts with a large
margin on three popular benchmark datasets.

However, one limitation of the method (Wang et al. 2016)
is that the AS models are independently learned for each ac-
tion class without considering the data of other classes. So
if two action classes share similar poses, then the learned
models will probably have large overlap and its discrimina-
tive power can be weakened.

Our work improves over the AS model by fortifying its
discriminative power. Firstly, instead of learning the ba-
sis dictionary for each class independently, we propose to
jointly learn a large structured basis dictionary for all classes
together. By enforcing a block diagonal constraint on the
basis coefficient matrix, the poses from a specific class are
encouraged to activate a specific subset of the bases (the
bases of its own class) in the dictionary and are suppressed
to activate others. This results in a distinctive representa-
tion in between different classes. Secondly, considering that
some classes may share poses (e.g. neutral poses), a small
shared basis dictionary is simultaneously constructed which
improves the compactness of the representation. With the
learned discriminative activated simplices (DAS), we per-
form classification/recognition by a simple nearest neighbor
classifier which will be disucssed in detail later.

We validate the discriminative power of the proposed
DAS model by performing action recognition on three pop-
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ular benchmarks and a larger dataset composed ourselves.
The results show that the DAS model outperforms all the
state-of-the-arts on all the datasets even using a simple near-
est neighbor based classifier.

Related Work

We review the related work on 3D action recognition and the
general discriminative dictionary learning strategies which
are not necessarily applied for the task of action recognition.

3D Action Recognition

We classify the existing works on 3D action recognition into
three categories based on the adopted representation (fea-
tures). The first class of works, e.g., (Oreifej and Liu 2013;
Wang et al. 2012a; Li, Zhang, and Liu 2010), takes raw depth
maps as inputs. Since depth maps are high dimensional, it
is critical to sample or extract compact features from them
to prevent from over-fitting. For example, Omar et al. (Or-
eifej and Liu 2013) consider a depth sequence as a surface
in the 4D space and compute a histogram of surface normal
orientations as a global descriptor. Wang et al. (Wang et al.
2012a) propose to uniformly sample subvolumes from the
4D space and compute “random occupancy patterns” which
mainly capture the shape cues of human body. These fea-
tures are usually fast to compute and some of them have
achieved promising performance on existing datasets.

Another line of works represents actions by a set of
3D joint locations, e.g.(Xia, Chen, and Aggarwal 2012;
Wang et al. 2012b; Luo, Wang, and Qi 2014). Xia et al. (Xia,
Chen, and Aggarwal 2012) partition the 3D space into sev-
eral bins and quantize each joint into several nearest bins
with weighted votes. Then they collect the votes in each bin,
form a histogram descriptor and extract discriminative fea-
tures of the histogram by linear discriminant analysis. Wang
et al. (Wang et al. 2012b) compute pairwise joint position
features and use data mining techniques to select the joints
that are most relevant to class labels.

The third line of works groups body joints into a set
of rigid body parts, e.g.(Wang, Wang, and Yuille 2013;
Vemulapalli, Arrate, and Chellappa 2014). Wang et al.
(Wang, Wang, and Yuille 2013) propose a spatial-temporal-
part model to capture the differentiable configurations of
body parts for classification. By breaking holistic human
poses into parts, the representation is robust to situations
where some body joints are inaccurate. A similar idea of
learning mid-level action representations was explored in
(Wang et al. 2015) for video-based action recognition. Vem-
ulapalli et al. (Vemulapalli, Arrate, and Chellappa 2014)
model the geometric relationships between body parts us-
ing rotations and translations which is a member of special
Euclidean group. Human actions are treated as curves in Lie
groups. They also use SVMs as classifiers.

Discriminative Dictionary Learning

We briefly review the most related work in discriminative
dictionary learning due to space limit. Jiang et al. (Jiang,
Lin, and Davis 2011) associate label information with each
basis to enforce discriminability in sparse codes during

sparse dictionary learning. Specifically, data from the same
class are encouraged to have similar sparse codes. This is
successfully applied to the face classification task. Ramirez
et al. (Ramirez, Sprechmann, and Sapiro 2010) jointly learn
a basis dictionary for each class and encourage that the bases
of different classes are as independent as possible. Guo et al.
(Guo, Jiang, and Davis 2012) extend (Jiang, Lin, and Davis
2011) to the case where only pairwise “same” or “differ-
ent” labels are available when learning sparse dictionaries.
Specifically, a penalty term is added to the model where data
having the same label are encouraged to be similar in terms
of sparse codes. Mairal et al. (Mairal et al. 2008) learn a sep-
arate sparse dictionary for each class with the constraint that
it is “good” at reconstructing this class, and at the same time
“bad” for other classes. Our work is most similar to (Jiang,
Lin, and Davis 2011) in the sense that we learn the activated
simplices by encouraging that the poses of the same class
activating similar bases. But it differs from (Jiang, Lin, and
Davis 2011) in two aspects: (i) our learned dictionary has
two parts— the first part contains the class specific bases
and the second part is composed of the shared bases; This
can enhance the model’s discriminative power as well as its
compactness. (ii) We use the label consistent cues in a differ-
ent way from [19] which directly adds a linear classification
error term in the dictionary learning. In contrast, we propose
to use block-diagonal constraints on the basis coefficient ma-
trix, which is more consistent with the inherent generative
nature of the AS representation, so that the pursued bases
better account for the structure of the data distribution.

Activated Simplices

We first briefly summarize the original AS learning method
to lay the background. Let y ∈ R

d denote a data point
and {y(1), y(2), · · · , y(n)} denote the training dataset on
which we aim to learn a dictionary Z to accurately repre-
sent the data. The dictionary Z consists of a set of k bases
Z = {z1, · · · , zk} and represents any data point y by a lin-
ear combination of the bases y =

∑k
i=1 ziαi (or y = Zα in

matrix form). The basis coefficient vector α = (α1, · · · , αk)
is optimized by minimizing the following reconstruction er-
ror: α∗ = argminα ‖y −

∑k
i=1 ziαi‖2. In order to provide

a bounded representation, the authors in (Wang et al. 2016)
also enforce convex constraints on the coefficient vector:
α ≥ 0 and ‖α‖1 = 1. Putting all these together, learning
the basis dictionary Z from the training dataset equals to
solving the following optimization problem:

min
z,a

n∑
μ=1

‖yμ −
k∑
i=1

ziα
μ
i ‖22

s.t.
k∑
i=1

αμi = 1, αμi ≥ 0, for all i and μ

‖zi‖2 ≤ 1, for all i

(1)

The authors theoretically explained that by learning the
bases according to equation (1), they finally obtain a mix-
ture of bounded structures (activated simplices) to represent
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the training dataset. Each simplex is responsible for repre-
senting a subset of the training data and each datum is rep-
resented by the same simplex.

After learning the bases, they extract a mixture of acti-
vated simplices by inspecting the coefficient matrix A of
training data. Intuitively, the algorithm groups the bases of
each class into several clusters with the requirement that the
bases in the same cluster were co-activated by a sufficient
datapoints. This grouping strategy gives a much tighter data
representation by limiting basis co-activations. We refer the
readers to the original paper for more information.

So the final representation for each class is a set of ac-
tivated simplices S = {Δ1, · · · ,Δm}. Each simplex con-
sists of several bases Δi = {zi1, · · · , zimi

} where mi is
the number of bases in this simplex. The model repre-
sents a pose y by its closest simplex Δa(y) : Δa(y) =
argminΔa∈SDist(Δa, y) where Dist(Δa, y) is the rep-
resentation error of using simplex Δa to represent y.
The representation error is computed as Dist(Δa, y) =
mina ‖y −

∑ma

i=1 αiz
a
i ‖ with the non-negative and sum to

one constraints on α.
For the action recognition task, the authors in (Wang et al.

2016) first learn independent dictionary for each of theC ac-
tion classes. Then they project a testing pose sequence onto
each basis dictionary (simplex dictionary more precisely; we
will come to this later) respectively and obtain the class with
the smallest reconstruction error.

Discriminative Dictionary Learning
The above model (Wang et al. 2016) achieves promising re-
sults on three popular datasets. However, we argue (and val-
idate by experiments) that this independent learning strategy
weakens the model’s discriminative power especially for ac-
tions having similar poses. We solve the problem by propos-
ing a discriminative dictionary strategy.

We denote Y = {y(1), y(2), · · · , y(n)} as the training data
and Z(i) the dictionary of class i. Suppose Z(i) has ki bases:
Z(i) = {z(i)1 , · · · , z(i)(ki)

}. The dictionary of all classes forms
the whole dictionary set Z = [Z(1), · · · , Z(C)]. Instead of
learning the dictionary of each class individually, we learn
the dictionary for all the classes jointly. In order to attain a
discriminative dictionary, we encourage each pose to be rep-
resented by the bases of its own class and discourage it from
activating bases of other classes. We achieve it by adding a
structured penalty term Q. The cost function is:

min
Z,A

‖Y − ZA‖2F + ‖Q ◦A‖2F
s.t. ‖ai‖1 = 1, ai � 0, ∀i

‖zi‖2 ≤ 1, ∀i,
(2)

where zi is the i-th column vector of Z , which represents
a base vector, and ai is the i-th column vector of A , which
correspond to the coefficient to represent a certain data in
the training set. A is denoted as

A =

⎡
⎢⎣

A1,1 · · · A1,C

...
...

...
AC,1 · · · AC,C .

⎤
⎥⎦

C is the number of class and Ai,j is coefficient matrix of
bases from class iwhen projecting data from class j onto the
whole dictionary. “◦” is the Hadamard (elementwise) prod-
uct and ‖ · ‖F is the Frobenius norm of the matrix.

Q is a structured penalty matrix

Q =

⎡
⎢⎣

Q1,1 · · · Q1,C

...
...

...
QC,1 · · · QC,C .

⎤
⎥⎦

where Qi,j is the structured penalty term for Ai,j . Specifi-
cally, Qi,j is a zeros matrix when i equals j. Otherwise, it is
a matrix with all its elements equal to λ1. Intuitively, a data
point can activate the bases with the same class label without
any penalty. But it needs to pay a constant penalty λ1 if it ac-
tivates bases from other classes. This regularization explic-
itly enforced the coefficient matrix A to be block-diagonal
and implicitly enforced the bases of different classes to be
independent and far apart.

The Common Dictionary: Shared Bases

Considering that different classes may share some common
patterns, for example, actions of drawing tick and draw-
ing circle are almost the same except the motion of hand.
It would be impossible to prevent such a pose from ac-
tivating bases from other classes. So it is reasonable to
add a common dictionary part whose bases are shared by
all classes. Ideally, it will only represent the commonal-
ity between different classes which is useless for telling
the poses apart. Introducing the common dictionary set can
enhance the discriminability of each class-specific dictio-
nary and make the representation more compact. The new
cost function differs only slightly from Eq(2). Specifically,
Z = [Z(0),Z(1), · · · ,Z(C)], where Z(0) denotes the com-
mon dictionary. A and Q can be updated accordingly.

Noting that the common dictionary should not dominate
the whole dictionary, which means we do not want data to be
represented mainly by the common bases (in extreme cases,
all data points only activate the shared dictionary). So the
penalty coefficients of the shared dictionary (Q0,j) are set to
be λ2, which should be less than λ1. In practice,λ1 is set to
be around 0.1, and λ2 is set to be around 0.01 .

Optimization

Although the above optimization problem (2) is non-convex,
it is convex with respect to each of the variables (Z and A)
when the other one is fixed. In this paper, we alternatively
optimize for the two variables in an online way. Specifically,
we first fix the dictionary Z and update the coefficient matrix
A. The optimization can be reformulated as

min
A

∥∥∥∥
[

Y
0

]
−
[

ZA
Q ◦A

]∥∥∥∥
2

F

s.t.‖ai‖1 = 1, ai � 0, ∀i
‖zi‖2 ≤ 1, ∀i.

(3)

Thus we can use the active-set based algorithm proposed in
(Chen, Mairal, and Harchaoui 2014) to solve for the coeffi-
cient matrix A.
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Then fixing the coefficient matrix A, we obtain the fol-
lowing problem:

min
Z

‖Y − ZA‖2F
‖zi‖2 ≤ 1, ∀i,

(4)

which turns out to be the classical dictionary learning prob-
lem and can be solved efficiently using online dictionary
learning algorithm(Mairal et al. 2009).

Extracting Discriminative Activated Simplices

As in (Wang et al. 2016), after learning the dictionary for
all the classes, we first represent each datum using the dic-
tionary of its class as well as the common dictionary. They
we group the coefficient vectors of each class into sev-
eral clusters and obtain discriminative activated simplices
using the same way as (Wang et al. 2016). So our final
representation for each class is a set of discriminative ac-
tivated simplice S = {Δ1, · · · ,Δm}. The model repre-
sents each pose y by its closest simplex Δa(y): Δa(y) =
argminΔa∈S∂

Dist(Δa, y).

Action Recognition Experiments

In this section, we evaluate the action recognition perfor-
mance on three popular benchmark datasets (Li, Zhang, and
Liu 2010) (Seidenari et al. 2013) (Xia, Chen, and Aggarwal
2012) and a self-composed large dataset.

Since the DAS are purposely (discriminatively) learned
to be far apart from those of other classes, we take advan-
tage of this property and propose a simple nearest-neighbor
based action classifier. Specifically, we first learn a mixture
of DAS for each action class by the proposed method. Then
given a pose sequence, we compute the distance between its
poses and the DAS of each class, the class that achieves the
smallest distance is the predicted class.

Data Preprocessing

An action instance is a 3D pose sequence (y1, · · · , yN )
where a pose yμ ∈ R

3k is a high dimensional vector of the
3D coordinates of k body joints. The number of joints is
about 15 although it may slightly vary for different datasets.
Considering that some actions, e.g., standing up and sitting
down, are difficult to separate by only static poses (Wang,
Wang, and Yuille 2013), following (Wang et al. 2016), we
adopt the action-snippet representation which encodes the
temporal order of poses by combining ten consecutive poses
together as an element: yμ = [yμ · · · yμ+9] where yj is a 3D
pose at time j. The neighboring action-snippets overlap so
the first snippet starts at pose one, the second at pose two,
and so on. Then we represent an action by a set of action-
snippets: A = {y1, · · · ,yN−9}.

We learn DAS models for action-snippets rather than
static poses. Similarly when classifying a sequence we
project its action-snippets onto the DAS of each action class
and output the class with smallest projection error.

Table 1: Average action recognition accuracy of all 252 5-5
splits on MSR-Action3D.

Methods Accuracy (%) Year
(Oreifej and Liu 2013) 82.15 2013
(Rahmani et al. 2014) 82.70 2014
(Tran and Ly 2013) 84.54 2013

(Du, Wang, and Wang 2015) 89.00 2015
(Wang et al. 2016) 91.40 2016

Our method 95.62

Results on The MSR-Action3D Dataset

The MSR-Action3D dataset (Li, Zhang, and Liu 2010) pro-
vides 557 3D human pose sequences of ten subjects per-
forming 20 actions. Each sequence has about 50 frames.
This is a challenging dataset first because some actions in the
dataset are similar (e.g. the drawing tick and drawing circle
actions) which makes them difficult to distinguish. Second,
the estimated 3D poses are sometimes inaccurate especially
when occlusion happens which increases the intra-class vari-
ations.

Following (Wang et al. 2016), we choose the cross-subject
evaluation criterion. Most existing works choose five sub-
jects for training and the remaining five subjects for testing,
e.g. in (Li, Zhang, and Liu 2010), and report the result based
on a single split. However, it is shown in (Padilla-López,
Chaaraoui, and Flórez-Revuelta 2014) that choosing which
five subjects for training has large influence on the results.
To make the results more comparable, in this work, we ex-
periment with all 252 possible subject splits and report the
average accuracy.

Table 1 compares our method with the state-of-the-art
methods using the protocol of “average over all splits”. We
learned 20 bases for each class and 5 shared bases.Our
method outperforms all of the four state-of-the-art methods
(Oreifej and Liu 2013; Rahmani et al. 2014; Tran and Ly
2013; Wang et al. 2016) under the same protocol. In partic-
ular, it outperforms (Wang et al. 2016) by about 4.3% which
shows the enhanced discriminative power gained by joint
learning. It is worth noting that our method and (Wang et
al. 2016) are the simplest in terms of both features and clas-
sifiers which makes them less prone to over-fitting and more
extendable to address other related tasks.

Diagnostic Analysis To understand the reasons behind the
recognition performance, we propose to inspect the models
from various aspects. Both the AS and DAS models learn
an individual basis dictionary for each class. In the current
nearest neighborhood classification framework, misclassify-
ing a pose sequence means that using the bases from other
classes gives a smaller reconstruction error. To put it in an-
other way, if we combine the dictionaries of all classes to-
gether, then the optimal set of activated bases will include
those from other classes. In this case, the coefficient matrix
maynotbeblock-diagonal.So we plot the coefficient matrices
obtained by the AS model and our DAS model respectively.
Figure 1 shows the results. We can see from the left penal
that for the AS model,data from a certain class tend to ac-
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Figure 1: This figure shows the coefficient matrix when encoding the first 9 classes of poses by the dictionaries of (Wang et al.
2016) (left) and our method (right), respectively. We do not enforce the penalty term after learning the dictionary. We can see
that the coefficient matrix of our method is more block-diagonal which shows that the poses from a particular class will activate
bases learned for that class. In other words, the bases of other classes are less likely to be activated. Best see by zooming in.

tivate bases from other classes. On the contrary, our DAS
model activates only bases from the same class. This shows
that the bases learned by DAS are far away from data of
other classes. Hence the DAS model is more discriminative.

We also explore the model in terms of projection errors di-
rectly. When the pose sequences of classes A and B are simi-
lar (e.g., having similar poses), then it is highly probable that
the AS models of A and B will obtain very similar projection
errors on the pose sequences of the two classes. The problem
makes classification trivial and vulnerable to noisy or inac-
curate poses. This is shown in the top sub-figures in Figure
2. We can see that, for some classes, the reconstruction error
difference between the “correct” model and other models is
small. That is the situation where the nearest neighbor based
classifier fails. However, using our discriminatively learned
activated simplices can increase that difference and thus im-
prove the final classification accuracy. Please compare the
top and the bottom panels in Figure 2 to tell the difference.

We now evaluate the influence of the shared bases. In par-
ticular, we report the results for the common basis dictionary
size of 0, 5, 10, 15 and 20, respectively. See Figure 3. We can
see that the method without the shared dictionary (size=0)
achieves the lowest accuracy of 95.00%. In contrast, using
shared bases can improve the performance by about 1%. Be-
sides, the performance reaches maximum when the shared
dictionary size is 10 and begins to decrease when the dic-
tionary size continues to grow. This is reasonable because
increasing shared dictionary size reduces the model com-
plexity, hence may decrease overfitting. But when the num-
ber of shared bases keeps enlarging, it can hurt the model’s
discriminative power.

Results on The Florence Dataset

The Florence dataset (Seidenari et al. 2013) was captured us-
ing a Kinect camera at the University of Florence. It includes
nine activities: wave, drink from a bottle, answer phone,
clap, tight lace, sit down, stand up, read watch, and bow.
Ten subjects perform the each of the nine actions for two
or three times. In total, there are 215 activity samples. Fol-
lowing the data suggestion, we adopt a leave-one-actor-out

Table 2: Action recognition accuracy on the Florence dataset
using leave-one-actor-out setting.

Methods Accuracy (%)
(Seidenari et al. 2013) 82.15

(Vemulapalli, Arrate, and Chellappa 2014) 90.88
(Devanne et al. 2014) 87.04

(Wang et al. 2016) 94.25
Our method 95.30

Table 3: Action recognition accuracy using leave-one-
sequence-out setting on the UTKinect dataset.

Methods Accuracy (%) Year
(Devanne et al. 2014) 91.50 2014

(Xia, Chen, and Aggarwal 2012) 90.92 2014
(Wang et al. 2016) 96.48 2016

Our method 97.99

protocol: we train the classifier using all the sequences from
nine out of ten actors and test on the remaining one. We re-
peat this procedure for all actors and compute the average
classification accuracy values of the ten actors.

We set the number of bases for each class to be 30 and
the number of common bases to be 5(275 in total) by cross-
validation. Table 2 compares our method with the state-of-
art methods on this dataset. Our approach achieves the high-
est recognition accuracy, outperforms (Devanne et al. 2014)
(Xia, Chen, and Aggarwal 2012) by about 6% and (Wang et
al. 2016) by about 1%. The results justify the usefulness of
the discriminative learning.

Results on The UTKinect Dataset

The UTKinect dataset (Xia, Chen, and Aggarwal 2012) pro-
vides 3D human pose sequences obtained from Kinect. The
dataset contains ten daily activities including walk, sit down,
stand up, pick up, carry, throw, push, pull, wave hands and
clap hands. Ten subjects are instructed to repeat each action
two times. So the total number of pose sequences is 200.

We use the common “leave-one-sequence-out” evaluation
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Figure 2: Each figure in the top row shows the reconstruction error when projecting poses of a particular class (e.g. 1,2,9 and
11) to the activated simplices (Wang et al. 2016) of the 20 classes on the MSR-Action3D dataset. The figures in the bottom
row show the results of our model. The error is the minimum if the sequences are reconstructed by the DAS model of the right
class. More importantly, we can see that the error difference among all classes is increased by using discriminative activated
simplices than (Wang et al. 2016) (top figures).
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Figure 3: Action recognition accuracy on the MSR-
Action3D dataset when the number of shared bases varies.

criterion to report the performance. More specifically, one
sequence is used for testing and the rest of the sequences are
used for training. We repeat the process for all sequences and
report the average accuracy. We learn 20 bases for each class
and 5 bases for the common part, which ends up with about
15 discriminative activated simplices for each action class.
The dimension of the simplices is five on average. Table 3
shows the results. We can see that our method outperforms
all the state-of-the-arts.

Results on a Composed Dataset

We compose a larger dataset to validate the scalability of the
proposed method by combining the above three datasets to-
gether. We obtain about one thousand pose sequences (about
40K poses) with 39 action classes. We split the dataset into
two halves for training and testing respectively, mainly by
subjects to help prevent from over-fitting.

We compare out model with the AS model,using the code
provided by (Wang et al. 2016). We set the number of the
common dictionary to be 5. We keep the number of bases in
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Figure 4: The figure shows the action recognition accuracy
of the two methods (i.e. the AS, DAS) as the number of the
bases vary on the complied dataset.

our method and (Wang et al. 2016) the same for fair com-
parison. Figure 4 shows the recognition accuracy. We can
see that our method consistently outperforms (Wang et al.
2016) when the number of bases varies. Besides, our DAS
model can achieve the quite similar recognition accuracy
with much less bases needed. This shows the compactness
of the DAS model. In addition, the results also show that
increasing the size of dataset (both the number of classes
and the number of pose sequences) will not harm the perfor-
mance much, this demonstrate the scalability of our model.

Conclusion

In this paper, we propose a discriminative structure learning
method which enhances discriminative capacity. We apply
it to the action recognition task, the simple nearest neigh-
bor based classifier outperforms all of the state-of-the-arts
on 3 popular datasets. Besides, classifying a typical pose se-
quence is fast with a careful implementation. It is also worth
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noting that this is a general discriminative learning method
and can be used for other data/tasks as well.
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