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Abstract

In this paper, we propose a novel coding method named
weighted linear coding (WLC) to learn multi-level (e.g.,
pixel-level, patch-level and image-level) descriptors from raw
pixel data in an unsupervised manner. It guarantees the prop-
erty of saliency with a similarity constraint. The resulting
multi-level descriptors have a good balance between the ro-
bustness and distinctiveness. Based on WLC, all data from
the same region can be jointly encoded. Consequently, when
we extract the holistic image features, it is able to preserve the
spatial consistency. Furthermore, we apply PCA to these fea-
tures and compact person representations are then achieved.
During the stage of matching persons, we exploit the com-
plementary information resided in multi-level descriptors via
a score-level fusion strategy. Experiments on the challeng-
ing person re-identification datasets - VIPeR and CUHK 01,
demonstrate the effectiveness of our method.

1 Introduction

Recent years have seen a major progress in person re-
identification. Its objective is to automatically associate im-
ages of the same person captured by cameras at different
locations and time. This is a particular issue in a network
of cameras collaborating with each other, in which the ap-
pearances of the same person may exhibit drastic variations
in different camera views due to difference in illumination,
view angles and poses.

A popular pipeline in existing person re-identification
methods includes person representation and similarity learn-
ing. In the former, one seeks features of detected human
image that are both robust to intra-personal variations in il-
lumination, view angles and poses and distinctive in inter-
personal description (Yang et al. 2014b; Zhao, Ouyang,
and Wang 2014; Yang et al. 2014a; Liao et al. 2015). In
the latter, one aims to find a proper metric or metrics to
measure the similarity between any two images from dis-
joint cameras (Kostinger et al. 2012; Yang et al. 2016b;
Li et al. 2015). Considering that image representation is ar-
guably the most fundamental task, we focus on how to ex-
tract features which have both intra-personal invariance and
inter-personal discrimination.
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In previous works (Yang et al. 2014b; Zhao, Ouyang,
and Wang 2014; Yang et al. 2014a; Shen et al. 2015;
Kostinger et al. 2012; Farenzena et al. 2010; Kviatkovsky,
Adam, and Rivlin 2013; Zhao, Ouyang, and Wang 2013;
Karanam, Li, and Radke 2015; Li and Wang 2013; Yang, Jin,
and Tao 2012), color and texture are often used to charac-
terize human appearance in person re-identification. Hand-
crafted textural descriptors (e.g., SIFT, LBP) achieve good
performances in image classification (Wang et al. 2010;
Huang et al. 2011) and face recognition (Ahonen, Hadid,
and Pietikdinen 2006). Whereas the performance is pretty
poor when they are directly applied and used alone in person
re-identification (Yang, Jin, and Tao 2012). This is because
person images from cameras are often low in resolution with
many image noises, thereby leading to the difficulty in accu-
rately describing the image textures.

Among the color features, color histograms (e.g., RGB
histogram) are most commonly used. However, it is unsta-
ble when there are large variations in illumination (Yang
et al. 2014a). To improve the robustness of color features,
Yang et.al. (Yang et al. 2014b) propose a novel salient color
name based color descriptor to describe colors. Although it
shows good performance in addressing the issue of person
re-identification, it may not sufficiently distinguish different
persons with similar clothing color. In view of this, a com-
mon strategy is to combine the color features with textural
features to compensate each other (Kostinger et al. 2012;
Farenzena et al. 2010; Karanam, Li, and Radke 2015;
Yang, Jin, and Tao 2012).

In this paper, we propose a coding method to learn de-
scriptors from raw pixel data. This is motivated by (Yang et
al. 2014b), which utilizes a learned 16-dimensional color de-
scriptor to replace raw 3-dimensional pixel. Different with
(Yang et al. 2014b), our method learns three types of de-
scriptors that contains multi-levels: pixel-level, patch-level
and image-level, respectively. Each level has a correspond-
ing relationship with a particular granularity of context.
Specifically, pixel-level represents color information, patch-
level corresponds to textural information or local shape pat-
terns, and image-level provides entity (i.e., tracked person)
information. As such, the integration of features based on
these descriptors can exploit the complementary informa-
tion resided in them, thus leading to more reliable, robust
and distinct features for person re-identification.



Specifically, we address the problem of person re-
identification based on the following model: 1) learning
multi-level descriptors from raw pixel data, 2) extracting
holistic image features and 3) fusing in the score-level.
Among them, the speed and effectiveness of the first step
largely determine the performances of our method. There-
fore, our main contribution is to provide an efficient and
effective solution to it. Motivated by the success of coding
methods — locality-constrained linear coding (LLC) (Wang
et al. 2010) and salient coding (SC) (Huang et al. 2011) for
bag of visual words models in object recognition and scene
classification tasks, we present a simple and effective coding
approach that we refer to as weighted linear coding (WLC)
to learn descriptors from unlabeled raw pixel data. WLC is a
reconstruction based coding method that finds coefficients to
minimize the coding error. In WLC, we use a similarity con-
straint to weigh the importance of each coding coefficient
by means of lowering the corresponding coding value on the
bases (obtained by k-means) which is dissimilar with the in-
put data. It guarantees the property of saliency. WLC also
includes an F-norm regularization to the coefficient matrix
to avoid coding coefficient becoming unbounded or overfit
to the training data. Compared to LLC and SC, WLC does
not require the process of finding local bases and can encode
all input data simultaneously. Hence, based on WLC, multi-
level descriptors can be learned quickly and efficiently. With
the learned descriptors from raw pixel data, we can extract
different holistic image features under a horizontal stripes
partition (Yang et al. 2014b). Finally, a score-level fusion is
utilized to compute the similarity between any two images
based on these different holistic image features. Though
it is simple, our model obtains good performance on both
the VIPeR (Gray, Brennan, and Tao 2007) and the CUHK
01 (Li, Zhao, and Wang 2012) benchmarks. We have re-
leased the MATLAB code ' for future research on person
re-identification.

2 Related Work

In this section, we simply review several existing person rep-
resentation methods for person re-identification.

Color and hand-crafted feature. Recent works (Faren-
zena et al. 2010; Kviatkovsky, Adam, and Rivlin 2013;
Zhao, Ouyang, and Wang 2013; Yang et al. 2014b; Zhao,
Ouyang, and Wang 2014; Yang et al. 2014a; Liao et al. 2015;
Yang, Jin, and Tao 2012; Li et al. 2012) have shown the
importance of features in person re-identification. Reliable
features should come from all cues that can provide identi-
fication of individual tracked humans, which include color,
shape and context. In (Farenzena et al. 2010), an approach
named Symmetry-Driven Accumulation of Local Features
is proposed, which extracts features modeling three com-
plementary aspects of human appearance: HSV histogram,
Maximally Stable Color Regions and the Recurrent Highly
Structured Patches. The extracted features are weighted ac-
cording to the distance from the vertical axis, thus minimiz-
ing the effects of pose variations. Although color distribu-
tion changes under different imaging condition, the intradis-

"http://www.cbst.ia.ac.cn/users/yyang/main.htm.
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tribution structure is invariant while being discriminative
(Kviatkovsky, Adam, and Rivlin 2013). With color infor-
mation being the only cue, good recognition performances
are achieved. In (Yang et al. 2014a), the illumination invari-
ance and distinctiveness of different color models are eval-
uated for person re-identification. Then, features in differ-
ent color models are fused and good results are obtained.
To increase the robustness of colors, salient color names
based color description (SCNCD) is proposed in (Yang et al.
2014b), which also shows complementary information with
traditional color histograms. In (Liao et al. 2015), an effec-
tive feature representation named local maximal occurrence
(LOMO) is presented, which maximizes the horizontal oc-
currence of local features to make a stable representation
against viewpoint changes. Matsukawa et.al. (Matsukawa et
al. 2016) further present a novel region descriptor based on
hierarchical Gaussian distribution of pixel features, which
represents the region as a set of multiple Gaussian distribu-
tions.

Attribute feature. Attribute features are also introduced for
solving person re-identification task in (Layne, Hospedales,
and Gong 2012). The extracted attribute features are often
more powerful than original features and can be interpreted
by humans. Due to the difficulty of obtaining sufficient
domain-specific annotations, Shi et.al. (Shi, Hospedales, and
Xiang 2015) put forward a new method of transferring
a learned semantic attribute model from existing fashion
datasets to person re-identification dataset.

Learning based feature. To make the features discrimina-
tive, a novel method named metric embedded discrimina-
tive vocabulary learning is proposed in (Yang et al. 2016a).
The obtained image-level features of the same persons are
closer while different ones farther in the metric space. Addi-
tionally, dictionary learning methods are also used in person
re-identification. In (Liu et al. 2014), two coupled dictionar-
ies, which relate to different cameras, are learned to make
the extracted features robustness with different views. Dif-
ferent with (Liu et al. 2014), only one dictionary is discrim-
inatively trained that is viewpoint invariant in (Karanam, Li,
and Radke 2015).

In addition, convolutional neural network (CNN) has also
been adopted in person re-identification (GuangrunWang et
al. 2016; Zhu et al. 2014; Ahmed, Jones, and Marks 2015).
It explores the hierarchical structure and extract discrimina-
tive features based on training samples. However, due to the
lack of sufficient labeled training samples, the performance
of CNN based methods is not superior to traditional ones on
small datasets, e.g., VIPeR.

3 Method

In this section, we describe our method in detail. We first
introduce our coding method, WLC, to learn multi-level
(pixel-level, patch-level and image-level) descriptors from
raw pixel data in Sec. 3.1. Then, three types of holistic image
features are extracted under the horizontal stripes partition
(Sec. 3.2). The last step is to combine the extracted features
by fusing their individual similarity scores in matching two
images for person re-identification (Sec. 3.3).



3.1 Weighted Linear Coding

To learn multi-level descriptors, we propose a simple yet ef-
ficient coding method. It aims to decompose the input data
over a basis (or base) set while satisfying certain require-
ments (e.g., “saliency-aware”). Unlike traditional hand-
crafted descriptors, our descriptors are learned respective to
specifical training samples in an unsupervised manner and
thus contain some kind of statistical property in the dataset.
Previous work (Coates and Ng 2011) has shown that for
the recognition task, the basis set design is less critical than
coding. Therefore, we focus our efforts on how to design
the coding scheme while the basis set (or a codebook) is
generated by k-means. Let X = [7}, T2, ..., T,] € RY*" be
n d-dimensional input data (raw pixel data) from the same
region (e.g., in the same stripe). Given a set of k basis vectors
B = [b1,bs,....by] € R¥™*, we introduce the following
coding scheme to learn multi-level descriptors:
: 2 T g2 2
min [ X — BS||7 + M |[W5S[E + AllS)lE, (D
where A\; and )\, are positive constants. || S||p = /tr(STS)
is the Frobenius norm of matrix S. S € RF*™ is the matrix

containing all the coding coefficients. W;; of W € RFxm is
defined as

1% —bll3
Z 55 Y I — b3

with Z is a normalization factor (chosen so that the sum
of j-th column of W equals to 1), ¢ = 1,...,k and j
1,...,n. As (1) shows, WLC is a reconstruction based cod-
ing method. For each input data, its corresponding coding
coefficient is used as the learned descriptors.

The first term of (1) is the reconstruction error. It chooses
all basis vectors to reconstruct the input. The second term
of (1) is a similarity constraint which corresponds to the re-
quirement of the coding coefficient to be consistent with the
similarity criterion, i.e., the coefficients over bases, which
are different from the input data, should be small. As such,
it can be regarded as a saliency-aware term (Huang et al.
2011), which is a relaxation of the locality constraint used
in LLC (Wang et al. 2010). The third term is an F-norm reg-
ularization which penalizes large coefficients, and serves as
a regularizer to the optimization problem.

With the bases fixed, the objective function of (1) is a con-
vex quadratic function of S. Then, we can solve it by taking
the derivative of (1) with regards to S to zero:

Wij=

@

%9(5) =2(-B"X + B"BS+ \WW'S5+X,5) =0,

3
where G(S) = | X — BS||% + M [WTS|IF + AoIS|%

S =(B'B+\MWWT + xI)"Y(BTX),

where I € RF¥*F.

In comparison with closely related methods — LLC and
SC, WLC has better running efficiency. This is due to two
factors: (1) Both LLC and SC require the assignment of

“
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| [ b | B | b | b [ b5 |
LLC 0 0 | 0291 | 0334 | 0375
sC 0 0 | -0.698 | 0.874 | -0.858
WLC || -0.070 | -0.280 | 0.402 | 0.955 | 0.042

Table 1: A comparison of the response codes based on LLC,
SC and WLC.

the input data to several local bases. This procedure will in-
crease their computation complexity and lead to longer run-
ning time. By contrast, there is no need to select bases for
each data point and running time can be saved on that step.
(2) Because different bases may be selected for different in-
put data, both LLC and SC can only encode one input data
(e.g., Z1) at a time. However, our WLC is able to encode all
the input data simultaneously.

Table 1 gives an example of responses in LLC, SC and
WLC. Assume that there are 5 bases and both LLC and SC
use 3 nearest bases to encode the input. From Table 1, we
can find that both LLC and SC have high responses over b3,
b4 and b5, which are 3 closest bases to the input. Addition-
ally, the response codes are determined by reconstruction er-
ror and salient degree for LLC and SC, respectively. Unlike
them, WLC has high responses over b, b3 and by while low
responses over others. This phenomenon reflects that under
our definition of similarity constraint in (1), b; and b5 are
different from the input and thus the corresponding coding
coefficient are small. The response codes in WLC are deter-
mined by the reconstruction error, the similarity constraint
and the F-norm regularization.

We should also note that in (4), when we use WLC to en-
code the input data X, all of Z;, 7 = 1, 2, ..., n share the same
WWT. That is to say, all elements in X will be transformed
using the same matrix (BB + M\WW7T + X\, 1)1 BT.
This is useful in the feature extraction stage because we
can jointly encode all data from one stripe, and their rela-
tionships (similarity) with the bases are shared. Therefore,
WLC can preserve spatial consistency, i.e., data from the
same spatial locations (in the same stripe) are considered
simultaneously while those from different spatial locations
will be processed independently.

With (4), we can obtain multi-level descriptors from raw
pixel data. An example is shown in Fig. 1. For patch-level
and image-level, we simply vectorize the corresponding ma-
trix as the input data. For example, the dimensions of raw
pixel data (a vector) from a ux v image are 3x 1, 7x7x3 (for
a7x7 patch, see Sec. 4.2) and u X vx3 in pixel-level, patch-
level and image-level, respectively. After WLC, multi-level
descriptors are obtained. The dimensions of these descrip-
tors depend on the number of bases in the codebook B.

From the (3), we know that the computation complexity
of WLC is O(k%d+2k3+ kdn+k?n). Since the dimensions
of the input data are 3, 147 and 60 for pixel-level, patch-level
and image-level (see Sec. 4.2), respectively, its speed mainly
depends on the value of k£ and n.
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Figure 1: An example of multi-level descriptors learning
based on WLC.

[ Method || pixel (s) [ patch (s) | image (10~ °s) |

LLC 0.51 0.43 6.8
sC 0.12 0.10 2.06
[WLC [ 003 [ 007 | 126 |

Table 2: Computing time based on WLC, SC and LLC for
extracting features of an image (128 x48). This is evaluated
on a PC with the 3.40 GHz Core I7 CPU with 8 cores.

3.2 Extraction of Holistic Image Features

Due to camera-view changes or different poses, there exist
many uncontrolled spatial misalignment problems for per-
son re-identification. To overcome this problem, we adopt
the horizontal stripes partition which divides an image into
several horizontal stripes of equal size. Corresponding hor-
izontal stripes have similar statistical information albeit be-
ing misaligned spatially. Furthermore, to reduce the effects
of misalignment, we pool together the codes (pixel-level or
patch-level descriptors) in each stripe by average pooling
and then create a normalized histogram. Finally, the holistic
image feature based on the pixel-level (or patch-level) de-
scriptors is extracted by concatenating the histograms of all
stripes while the image-level descriptor is directly used as
the final holistic image feature.

Because of the running efficiency of WLC, we can extract
different level features very fast. Table 2 shows the com-
puting time for extracting multi-level features of an image
(128x48).

3.3 Score-level Fusion

With different holistic image features of all levels, we com-
bine their effects in person re-identification at the step of
computing similarity scores. The similarity between two im-
ages is computed as an unweighted® sum of the similarity
scores of their corresponding features.

Specifically, we first use a similarity learning method
(see Sec. 4.2) to compute the similarity score SS(i),i =
1,2, ..., m of the i-th holistic image feature for a given pair.
If we use the mask, m is 16 (three levels in four color spaces

A weighted one may improve the final results (Schapire and
Singer 1999). We do not test it in this paper.
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(b)

Figure 2: Some examples from (a) VIPeR and (b) CUHK 01.
Each column is an image pair from one person.

without using mask and one level in four color spaces us-
ing mask). Then, the final similarity score F'S is calculated
based on:

FS =Y 85(i). ©)
i=1

Finally, we can easily obtain the matching results based on

their ranking and promising results are achieved.

4 Experiments

In this section, we evaluate our model on two publicly avail-
able datasets (VIPeR dataset and CUHK 01 dataset).

4.1 Datasets

VIPeR Dataset. The viewpoint invariant pedestrian recog-
nition (VIPeR) dataset contains 632 image pairs, corre-
sponding to 632 pedestrians. It was captured by two cam-
eras in outdoor academic environments. This dataset is the
most widely used in person re-identification. There are ar-
bitrary viewpoints, pose changes and illumination variations
between two disjoint camera views. Images from Camera A
are mostly captured from O degree to 90 degree while those
from Camera B mostly from 90 degree to 180 degree. All
images are normalized to 128x48 pixels. In Fig. 2(a), we
show some examples from VIPeR dataset.

CUHK 01 Dataset. CUHK 01 dataset has 971 persons and
each person has two images in each of two camera views.
It was collected in a campus environment. Camera A cap-
tures the frontal view or back view of pedestrians, while the
side views are captured in Camera B. Compared with the
VIPeR dataset, images in CUHK 01 dataset are of higher
resolution and contains more persons and images. Fig. 2(b)
shows some examples from CUHK 01 dataset. Because of
significant viewpoints changes, it is also a challenging per-
son re-identification dataset. Images are resized to 160x60
pixels for evaluation.

4.2 Evaluation Details

Training/testing samples. In our experiments, the final av-
erage results are reported in form of Cumulated Matching
Characteristic (CMC) curve (Wang et al. 2007). The training
set is formed from 50% of randomly chosen image pairs and
the remaining 50% image pairs are used for testing. In test-
ing, images from one camera are treated as probe and those



from the other camera as gallery. Then, we switch the probe
and gallery. The average result of all probe-gallery combi-
nations is regarded as one trial to form the CMC curve.

To compare the state-of-the art results, we report the re-
sults on VIPeR and CUHK 01 datasets based on the same
10 trials of training / testing samples. Note that for CUHK
01 dataset (485 persons for training while the remaining 486
persons for testing), there are two images for each camera
view. During both training and testing, we randomly select
an image and extract its corresponding feature.

Mask. In experiments, when we need to separate the fore-
ground from the background, we use the masks on VIPeR
dataset provided by (Yang et al. 2014b). On CUHK 01
dataset, we use the method in (Luo, Wang, and Tang 2013)
to automatically generate the masks.

Color space. As suggested in (Yang et al. 2014b), we also
employ 4 color spaces including RGB, rgb, [1l2l3 and HSV
to make our features robustness to illumination.

Similarity learning. We utilize a fast yet effective metric
learning method - KISSME (Kostinger et al. 2012) to com-
pute the similarity score of (5). It is defined in (6):

d (Z,7) = (F — §)" M(Z — §). (©6)

where Z and g are features of a pair of images and M is
computed by (7).

M =x3t -5t (7)

where X5 and Xp are the covariance matrices (see (Yang et
al. 2014b) for details) of similar pairs and dissimilar pairs,
respectively.

Parameter settings. Unless otherwise specified, we empir-
ically set the parameters in our model as follows: 1) In (1),
A1 = 0.001d? and A5 = 0.001d? with d is the dimension of
raw pixel data. 2) The numbers of bases are 350, 70, 60 for
learning pixel-level, patch-level and image-level descriptors,
respectively. 3) In the patch-level, we adopt 7 x 7 with a
stride of 1. 4) When holistic image features are extracted,
we use 10 horizontal stripes for images. 5) For all datasets,
the dimension of each holistic image feature is reduced to 60
by PCA. Note that the influence of the PCA dimensionality
(60-100) is not too critical.

4.3 Performance Analysis

In this subsection, we choose the most widely used VIPeR
dataset to evaluate our proposed coding method. We extract
the features in RGB color space without using mask.

A1 and )\ in (1). To simplify the meta-parameters in WLC,
we set A\; = Ay (=)g) in (1), which suggests that the con-
tributions between the second and third terms are identical.
Additionally, to avoid tuning A\ for different dimensions of
raw pixel data, we set Ay = Ad? (d denotes the dimension
of raw pixel data). As such, the constraints have stronger ef-
fects for higher dimensional data.

In Fig. 3(a), we show the matching rates of WLC with
different values of \. It shows that 1) when X is set to 0.001,
WLC achieves the best result across all levels; 2) pixel-level
descriptor performs better than others and 3) the image-level
descriptor using the whole image without partitioning into
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Figure 3: Parameter analysis (on VIPeR dataset): (a) effect
of X\ and (b) effect of similarity constraint when ), is set to
0.001d2.

horizontal stripes consistently, showing the importance of
partitioning.

We also show the effect of the similarity constraint (con-

trolled by Ap) in Fig. 3(b). To analyze its performance effi-
ciently, we fix the parameter A, unchanged (set to 0.001d?).
We can find that when )\; is increased from O to 0.001d2,
the performances of WLC are continually increasing for all
levels. This phenomenon demonstrates the effectiveness of
the similarity constraint.
Comparison with LLC and SC under different number
of bases. In this subsection, we compare the performance
of WLC with that of LLC and SC in learning multi-level
descriptors. For a fair comparison, we use the same input
features and bases for all three methods. Different numbers
of bases are also evaluated. Specifically, in the pixel-level,
we choose 300, 350, 400, 450 and 500. In the patch-level, we
use 60, 70, 80, 90 and 100. In the image-level, we employ
60, 80, 100, 150 and 200. As is suggested in (Wang et al.
2010) and (Huang et al. 2011), for both LLC and SC, we set
the number of nearest neighbors to 5.

In Tables 3, 4 and 5, we show the performance compar-
isons of different coding methods in the pixel-level, patch-
level and image-level, respectively. As these results show,
WLC performs better than both LLC and SC in extracting all
level descriptors. During learning the pixel-level and patch-
level descriptors, LLC outperforms SC while both LLC and
SC fail when learning the image-level descriptors. We know
that in SC, the coding coefficient is only based on the rela-



[Method || 300 | 350 | 400 | 450 | 500 |
LLC (%) | 124 | 125 | 126 | 124 | 11.6
SC (%) 56 | 57|59 |57 56

[WLC (%) || 22.1 | 229 | 22.8 | 22.1 | 22.2 |

Table 3: Comparison with SC and LLC (at Rank 1, on VIPeR
dataset) in learning the pixel-level descriptors based on dif-
ferent numbers of bases.

[Method || 60 | 70 | 80 | 90 | 100 |
LLC(%) | 174 | 188 | 19.0 ] 19.1 ] 19.2
SC(%) 146 | 166 | 164 | 16.4 | 16,5

[WLC(%) || 21.6 | 22.3 | 21.7 | 20.7 | 190 |

Table 4: Comparison with SC and LLC (at Rank 1, on VIPeR
dataset) in learning the patch-level descriptors based on dif-
ferent numbers of bases.

[Method [ 60 | 80 [ 100 | 150 | 200 |
LLC(%) | 03] 03| 04 | 04 ] 03
SC(%) [ 04]02]04|03]02

[WLC(%) | 66 | 65 ] 6.6 | 6.4 | 66 |

Table 5: Comparison with SC and LL.C (at Rank 1, on VIPeR
dataset) in learning the image-level descriptors based on dif-
ferent numbers of bases.

tionships between the input and several nearest bases while
in LLC, the code is computed by minimizing the reconstruc-
tion error on several nearest bases. Therefore, these observa-
tions reflect that in learning the descriptors, minimizing the
reconstruction error is still important.

4.4 Comparison with the State-of-the-art
Methods on VIPeR Dataset

In this subsection, we compare our method with the state-of-
the-art approaches on VIPeR dataset, including GOG (Mat-
sukawa et al. 2016), LSSL (Yang et al. 2016b), MED_VL
(Yang et al. 2016a), CSL (Shen et al. 2015), MetricEn
(Paisitkriangkrai, Shen, and van den Hengel 2015), LOMO
(Liao et al. 2015) and SCNCD (Yang et al. 2014b). Results
on Ranks 1, 5 and 10 are shown in Table 6.

SCNCD represents a person based on 16 color names
while based on SCNCD, MED_VL learns higher features for
each person. Both of them employ KISSME as the similar-
ity measure method, which is the same as our method. From
Table 6, we can find that our method (denoted by *Ours’)
performs significantly better than them. This phenomenon
demonstrates the superiority of our multi-level person repre-
sentation method over theirs.

In addition, GOG learns a novel hierarchical Gaussian
descriptors to represent persons. When it is combined with
XQDA (Liao et al. 2015), GOG achieves 49.7% at Rank 1.
Our method performs better than GOG (1.7% higher) and
obtains a new state-of-the-art result 51.4% at Rank 1 (com-
bined with KISSME).
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| Rank [ 1 [ 5 | 10 [ Reference |
GOG 49.7% | 79.7% | 88.7% | CVPRI16
LSSL 478% | 77.9% | 87.6% AAAIL6
MED_VL || 41.1% | 71.7% | 83.2% AAAIL6
CSL 34.8% | 68.7% | 82.3% ICCV15
MetricEn 459% | 77.5% | 88.9% | CVPRI15
LOMO 40.0% N/A 80.5% | CVPRI15
SCNCD 37.8% | 68.5% | 81.2% | ECCV14

| Ours [ 51.4% | 76.4% | 84.8% | Proposed |

Table 6: Comparison with the state-of-the-art methods on
VIPeR dataset.
| Rank I 1 [ 5 [ 10 [ Reference |
GOG 578% | 79.1% | 88.7% | CVPRI16
MetricEn || 53.4% | 76.4% | 84.4% | CVPRI1S5
LOMO 492% | 75.7% | 84.2% | CVPRI15
Mid-level || 34.3% | 55.1% | 65.0% | CVPRI14
| Ours | 658% | 81.1% [ 85.9% | Proposed |
Table 7: Comparison with the state-of-the-art methods on

CUHK 01 dataset.

In the experiments, we simply use KISSME as the base-
line for a similarity measure. GOG adopt XQDA as the base-
line while LSSL is used in (Yang et al. 2016b). Since both
LSSL and XQDA show better performances than KISSME
(Yang et al. 2016b; Liao et al. 2015), we can achieve better
results by employing them to compute the similarity score
(we do not test it in this paper).

4.5 Comparison with the State-of-the-art
Methods on CUHK 01 Dataset.

In this subsection, we compare our method with the state-
of-the-art approaches on CUHK 01 dataset, including GOG
(Matsukawa et al. 2016), MetricEn (Paisitkriangkrai, Shen,
and van den Hengel 2015), LOMO (Liao et al. 2015) and
Mid-level (Zheng et al. 2015). Results on Ranks 1, 5 and 10
are shown in Table 7. Among the previous approaches, GOG
achieves the best results at Rank 1. The Rank-1 identification
of our method (combined with KISSME) is 65.8% (8.0%
higher than GOG).

5 Conclusion

In this paper, we propose a new model to address person
re-identification task. The main contribution is a simple and
effective coding method (WLC) that we use to construct de-
scriptors from raw pixel data at the pixel, patch and image
levels. With these learned descriptors, it is easy to extract
different holistic image features. During the stage of match-
ing persons, we fuse these holistic image features at the sim-
ilarity score level. The experimental results on the publicly
available datasets - VIPeR and CUHK 01, demonstrate the
effectiveness of our model. In the future work, how to com-
bine the similarity score, instead of an unweighted sum strat-
egy in (5), is still worth studying.
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