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Abstract

Person re-identification (re-id) plays an important role in
video surveillance and forensics applications. In many cases,
person re-id needs to be conducted between image and video
clip, e.g., re-identifying a suspect from large quantities of
pedestrian videos given a single image of him. We call re-
id in this scenario as image to video person re-id (IVPR). In
practice, image and video are usually represented with differ-
ent features, and there usually exist large variations between
frames within each video. These factors make matching be-
tween image and video become a very challenging task. In
this paper, we propose a joint feature projection matrix and
heterogeneous dictionary pair learning (PHDL) approach for
IVPR. Specifically, PHDL jointly learns an intra-video pro-
jection matrix and a pair of heterogeneous image and video
dictionaries. With the learned projection matrix, the influence
of variations within each video to the matching can be re-
duced. With the learned dictionary pair, the heterogeneous
image and video features can be transformed into coding co-
efficients with the same dimension, such that the matching
can be conducted using coding coefficients. Furthermore, to
ensure that the obtained coding coefficients have favorable
discriminability, PHDL designs a point-to-set coefficient dis-
criminant term. Experiments on the public iLIDS-VID and
PRID 2011 datasets demonstrate the effectiveness of the pro-
posed approach.

Introduction

Person re-identification (re-id) (Li et al. 2014; Zheng et
al. 2015c; Li et al. 2015; Tao et al. 2013; Zhang et al.
2015) has been widely studied in computer vision and
pattern recognition communities due to its importance in
many safety-critical applications, such as automated video
surveillance and forensics. Given an image/video of a per-
son captured from one camera, person re-id is the pro-
cess of identifying the person from images/videos taken
from a different camera (Zheng, Gong, and Xiang 2015;
Ma, Yang, and Tao 2014; Zheng et al. 2015b; Su et al. 2015;
Shi, Hospedales, and Xiang 2015). According to the sce-
narios of re-identification, existing person re-id works can
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Figure 1: Problem of image to video person re-id.

be roughly divided into two categories: image-based and
video-based person re-id methods. The former focuses on
the matching between image and image, and most of exist-
ing methods belong to this category (Ma, Yuen, and Li 2013;
Liu et al. 2013; Qiu, Ni, and Chellappa 2014; Ahmed,
Jones, and Marks 2015; Chen et al. 2015; Liu et al. 2014;
Jing et al. 2015; Li, Shao, and Fu 2015; Zheng et al. 2015a;
Karanam, Li, and Radke 2015). Different from image-based
methods, video-based person re-id methods focus on the
matching between video and video (Wang et al. 2014; 2016;
Liu et al. 2015; Zhu et al. 2016; McLaughlin, Martinez del
Rincon, and Miller 2016; You et al. 2016). In both kinds of
methods, the two objects to be matched are homogeneous.

In many practical cases, person re-id needs to be con-
ducted between image and video. One instance is rapid lo-
cating and tracking suspects from masses of city surveil-
lance videos according to an image of the criminal suspect
(e.g., Boston marathon bombings event). Another instance
is that, an old man who suffers from Alzheimer’s disease
lost his way in the city, given an image of the old man, the
re-id system should retrieve the surveillance video clips con-
taining him. We call re-identification under this scenario as
image to video person re-id (IVPR). Figure 1 illustrates the
problem of IVPR.

In IVPR, there exist two aspects of difficulties: (1) Image
and video are usually represented with different features. In
particular, both the visual appearance features and spatial-
temporal features can be extracted from a pedestrian video,
while only visual appearance features can be extracted from
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Figure 2: Image sequences in the iLIDS-VID dataset.

a single image. (2) No matter features are extracted from
each frame or each walking cycle, a video can be regarded as
a set, and therefore IVPR is actually a point-to-set matching
problem. However, there usually exist large variations be-
tween different frames or walking cycles within each video,
which will make the matching between image and video
more tough. Figure 2 shows the intra-video variations.

Motivation

IVPR is an important application in practice, however, it has
not been well studied. Existing person re-id methods require
that two objects to be matched should be represented with
the same kind of feature. Hence, if one tries to apply exist-
ing methods to IVPR, the same features should be extracted
from image and video. From the first difficulty in IVPR, we
can know that only visual appearance features can be ex-
tracted from both image and video, which means that the
spatial-temporal features contained in video cannot be used
by these methods. However, researches in (Wang et al. 2014;
2016; You et al. 2016) have demonstrated the effectiveness
of spatial-temporal feature for person re-id, and have also
indicated that spatial-temporal feature is complementary to
visual appearance features. Therefore, by directly applying
these off-the-shelf person re-id methods to IVPR, the use-
ful information contained in video cannot be fully utilized,
which will limit their performance. In addition, IVPR is ac-
tually a point-to-set matching problem, however, existing
methods are not designed for this, and they don’t consider
the influence of variations within each video to the matching
between image and video, which will further hamper their
performance.

Motivated by the above analysis, we intend to design
an approach, which can make full use of the heteroge-
neous features contained in image and video, and simulta-
neously reduce the influence of intra-video variations to the
re-identification, for IVPR.

Contribution

The major contributions of this paper are summarized as the
following three points:

(1) We are among the first to investigate the problem of
image to video person re-identification (IVPR).

(2) We propose a heterogeneous dictionary pair learning
framework, with which heterogeneous features of image and
video can be transformed into coding coefficients with the
same dimension, such that the matching between image and
video can be implemented with the obtained coefficients. To
ensure that the obtained coefficients own favorable discrim-

inability, we also design a point-to-set coefficient discrimi-
nant term for the framework.

(3) To reduce the influence of intra-video variations to
the matching between image and video, we design a video
congregating term, which increases the compactness of each
video by learning a projection matrix, such that the follow-
ing matching becomes easier.

We name our approach as joint feature projection matrix
and heterogeneous dictionary pair learning (PHDL). A num-
ber of IVPR experiments have been conducted. The experi-
mental results demonstrate the efficacy of our approach.

The Proposed Approach

Problem Formulation

Denote by X = [x1, ..., xi, ..., xn] the feature set of train-
ing images, where xi ∈ R

p is the feature of an image
from the ith person, and n is the number of persons. To
make full use of the information contained in video, we ex-
tract both the visual appearance and spatial-temporal fea-
tures from each walking cycle of the video. Denote by
Y = [Y1, ...,Yi, ...,Yn] the feature set of n pedestrian
videos, where Yi = [yi,1, ..., yi,j , ..., yi,ni

] is the feature set
corresponding to the ith video, ni is the number of walking
cycles in the ith video, and yi,j ∈ R

q is the feature extracted
from the jth walking cycle. Here, p and q are the dimensions
of image and video features, respectively.

Since features of image and video are heterogeneous (dif-
ferent feature types and dimensions), directly matching be-
tween image and video is not an easy task. Dictionary learn-
ing (DL) is an effective feature learning technique (Jiang,
Lin, and Davis 2013; Lu et al. 2014; Gu et al. 2014). By
learning a dictionary, DL methods can represent each sample
with a coding coefficient. Inspired by this, we can learn dif-
ferent dictionaries for image and video, such that heteroge-
neous features of images and videos can be transformed into
coding coefficients with the same dimension. In this way,
we can directly conduct the re-identification with the coef-
ficients of images and videos. To make the obtained coding
coefficients suitable for re-identification, we still need to de-
sign a discriminant term, which can ensure that the distance
between the coefficients of truly matching image and video
should be smaller than that between coefficients of wrong
matching image and video.

In practice, there usually exist large variations between
frames within each video, as well as between different walk-
ing cycles within each video. Figure 2 provides some ex-
ample image sequences that display the intra-video varia-
tions. These variations will lead to the result that the ob-
tained coding coefficients of different walking cycles within
each video still contain large variations, which is not con-
ducive to the following matching. Therefore, we should re-
duce the influence of these variations in the process of dictio-
nary learning. To this end, we can learn a feature projection
matrix (FPM) for the video data, under which samples with
each video cluster together. Figure 3 illustrates the basic idea
of our approach.

Denote by W ∈ R
q×q1 the learned FPM for video data,

where q1 is the dimension of projected video features. De-
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Figure 3: Illustration of the proposed PHDL approach.

note by DI ∈ R
p×m and DV ∈ R

q1×m the learned image
and video dictionaries, respectively. Here, m is the number
of atoms in DI and DV . Let A = [a1, ..., ai, ..., an] repre-
sent the coding coefficient matrix of X over DI , where ai
is the coefficient of xi. Let B, Bi, bij be the coding coef-
ficients of Y, Yi, yi,j over DV , respectively. Our objective
function is designed as follows:

min
W,DI ,DV

fI(DI ,X,A)+ fV (W,DV ,Y,B)+

αg(W,Y)+βd(A,B)+λr(W,A,B)

s.t. ‖dI,i‖22 ≤ 1, ‖dV,i‖22 ≤ 1, ∀i,
(1)

where α, β and λ are balancing factors. dI,i (dV,i) denotes
the ith atom of DI (DV ). The constraint is used to restrict
the energy of each atom. Details of each term are as follows.
• fI(DI ,X,A) = ‖X − DIA‖2F is the image reconstruc-

tion fidelity term.
• fV (W,DV ,Y,B) = ‖WTY − DV B‖2F is the video

reconstruction fidelity term.
• g(W,Y) =

∑n
i=1

1
ni

∑ni

j=1 ‖WT (yi,j − mi)‖22 is the
video congregating term, which aims to make each sam-
ple move close to the center of video to which it belongs,
such that the intra-video variation can be reduced. Here,
mi is the mean vector of Yi.

• d(A,B) is the point-to-set coefficient discriminant term
to ensure that the obtained coding coefficients have good
discriminability. Specifically, for each truly matching
image-video pair, it requires that the coding coefficient of
each sample in the video should move close to that of the
image. And for each wrong matching image-video pair,
the term requires that the coding coefficient of each sam-
ple in the video should be far away from that of the image.

d(A,B)=
1

|S|
∑

(i,j)∈S

dis(ai, Bj)−η
1

|Q|
∑

(i,j)∈Q

dis(ai, Bj),

where dis(ai,Bj)=
1
nj

∑nj

k=1‖bjk−ai‖22, η is a balancing
factor, S is the collection of truly matching image-video
pairs, and Q represents the collection of wrong matching
image-video pairs. Here, |·| denotes the size of a collection.

• r(W,A,B)=‖W‖2F+‖A‖2F+‖B‖2F is the regularization
term to regularize FPM and coding coefficients.

The Optimization Algorithm

The objective function in Eq. (1) is not jointly convex to
W,DI ,DV . However, it is convex w.r.t. each of them if oth-
ers are fixed. To tackle the energy-minimization in Eq. (1),

we separate the objective function into three sub-problems,
namely representation coefficient updating, dictionary up-
dating and feature projection matrix updating.

Before solving these three sub-problems, we need to ini-
tialize each variable. Specifically, we firstly initialize W by
solving the problem in Eq. (2), which can be easily solved
by eigen-decomposition. Then DI and DV are initialized as
random matrices with unit Frobenius norm for each column
vector. Finally, we initialize A and B by Eq. (3) and Eq.
(4), respectively. Both (3) and (4) are ridge regression prob-
lems, whose solutions can be analytically derived as A =
(DT

I DI+λI)−1DT
I X and B = (DT

V DV +λI)−1DT
V WTY.

Here I is an identity matrix.

min
W

n∑

i=1

1

ni

ni∑

j=1

‖WT (yi,j −mi)‖22, s.t. WTW = I, (2)

min
A

‖X−DIA‖2F + λ‖A‖2F , (3)

min
B

‖WTY −DV B‖2F + λ‖B‖2F . (4)

(1) Update A and B. When W, DI and DV are fixed,
we update A and B as follows:

min
ai

‖xi−DIai‖22+β(
1

|Sxi |
∑

(i,j)∈Sxi

1

nj

nj∑

k=1

‖bjk−ai‖22

−η
1

|Qxi |
∑

(i,j)∈Qxi

1

nj

nj∑

k=1

‖bjk−ai‖22) + λ‖ai‖22,
(5)

min
Bi

‖WTYi−DV Bi‖2F +β(
1

|SYi |
∑

(j,i)∈SYi

dis(aj , Bi)

−η
1

|QYi |
∑

(j,i)∈QYi

dis(aj , Bi)) + λ‖Bi‖2F ,
(6)

where Sz and Qz represent the collections of truly matching
and wrong matching image-video pairs related to z (xi or
Yi), respectively.

The solution of (5) can be easily obtained by setting the
derivative with respect to ai to zero.
ai=(DT

I DI + (β − βη + λ)I)−1(DT
I xi+

β(
1

|Sxi |
∑

(i,j)∈Sxi

1

nj

nj∑

k=1

bjk− η
1

|Qxi |
∑

(i,j)∈Qxi

1

nj

nj∑

k=1

bjk)) .

The solution of (6) can be obtained similarly.

Bi=(DT
V DV + (

β

ni
(1− η) + λ)I)−1(DT

V WTYi+

β(
1

|SYi |
∑

(j,i)∈SYi

1

ni
Cj,i− η

1

|QYi |
∑

(j,i)∈QYi

1

ni
Cj,i)),
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where Cj,i ∈ R
m∗ni is a matrix with each column vector

being aj .
(2) Update DI and DV . By fixing A, B and W, we can

write the objective functions regarding DI or DV as follows:

min
DI

‖X−DIA‖2F , s.t. ‖dI,i‖22 ≤ 1, ∀i, (7)

min
DV

‖WTY−DV B‖2F , s.t. ‖dV,i‖22 ≤ 1, ∀i, (8)

The optimal solutions of DI and DV can be obtained by us-
ing the ADMM algorithm as introduced in (Gu et al. 2014).
Specifically, by separately introducing a variable S, (7) and
(8) can be rewritten as:

min
DI ,S

‖X−DIA‖2F , s.t. DI = S, ‖si‖22 ≤ 1, ∀i, (9)

min
DV ,S

‖WTY−DV B‖2F , s.t. DV = S, ‖si‖22 ≤ 1, ∀i, (10)

where si represents the ith atom in S.
The optimal solution of (9) can be obtained by updating

the following three equations iteratively:⎧⎨
⎩
DI = minDI

‖X−DIA‖2F + ρ‖DI − S+T‖2F
S = minS ρ‖DI − S+T‖2F , s.t. ‖si‖22 ≤ 1
T = T+DI − S, update ρ if appropriate

,

where the initial values of S and T are DI and zero matrix,
respectively. Problem (10) can be solved in a similar way.

(3) Update W. When DI , DV , A and B are fixed, the
objective function related to W can be written as follows:

min
W

‖WTY−DV B‖2F + λ‖W‖2F+

α

n∑

i=1

1

ni

ni∑

j=1

‖WT (yi,j−mi)‖22.
(11)

By setting the derivative with respect to W to zero, the so-
lution of Eq. (11) can be derived as:

W = (YYT + αP+ λI)−1YBTDT
V , (12)

where P =
∑n

i=1

∑ni

j=1(yi,j−mi)(yi,j−mi)
T . Algorithm

1 summarizes the optimization process of our approach.

Computational Complexity

In the designed optimization algorithm, A, B, DI , DV and
W are updated alternatively. In each iteration, the time com-
plexity of updating A is O(m2p+m3+mpp+n(m2+mp));
updating B takes O(m2q1 +m3 +mqq1 +N(m2 +mq)),
where N is the total number of samples in Y; updating
DI takes Ok(p2n + pnm + m2n + m3 + pm2), where
k is the iteration number in the ADMM algorithm, and it
is usually smaller than 10; similarly, updating DV costs
Ok(q1qN + q1Nm+m2N +m3 + q1m

2); the time com-
plexity of updating W is O(q2N + q3 + Nmq + qq1m).
The dictionary size m is usually much smaller than the sam-
ple dimensions p and q, and N may be also large if each
video contains a number of walking cycles. Therefore, the
major computational burden in the training phase of PHDL
is on updating W. Fortunately, the operation that costs
O(q2N + q3) in Eq. (12), i.e., (YYT +αP+λI)−1Y, will
not change in the iteration, and thus can be pre-computed.
This greatly accelerates the training process.

Algorithm 1 Joint feature projection matrix and heteroge-
neous dictionary pair learning (PHDL)

Require: Training image and video sets X and Y
Ensure: DI , DV and W

1: Initialize DI , DV , W, A, B, α, β, λ, and η
2: while not converge do
3: Fix W, DI and DV , update A and B according to (5)

and (6), respectively;
4: Fix W, A and B, update DI and DV according to (7)

and (8), respectively;
5: Fix DI , DV , A and B, update W according to (11);
6: end while
7: return DI , DV and W;

Re-identification

Let x be the feature of a probe image, and Z =
[Z1, ...,Zi, ...,Zl] be feature set of l gallery videos, where
Zi = [zi,1, ..., zi,j , ...zi,ni

] denotes the feature set of the
ith gallery video. Here, zi,j is the jth sample in Zi, ni is
the sample number of Zi. With the learned dictionary pair
and feature projection matrix (DI , DV and W), we can re-
identify x in Z as follows.

(1) Compute the representation coefficient of the probe
image x over image dictionary DI by solving (3). Denote by
a the coefficient of x.

(2) Compute the representation coefficients of gallery
videos by solving (4). Denote by G, Gi, gij the represen-
tation coefficients of Z, Zi and zi,j over DV , respectively.

(3) Re-identify x in Z with the obtained coefficients.
Firstly, we compute the distance between a and Gi by
di =

∑ni

j=1 ‖a − gij‖22. Then we can obtain the matching
result by sorting the obtained distances in ascending order.

Comparison with Existing Dictionary Learning
Methods

Dictionary learning (DL) is an effective feature learning
technique. Recently, some DL based person re-id methods
have been presented, which bridge two different camera
views by learning a pair of dictionaries (Liu et al. 2014;
Jing et al. 2015; Li, Shao, and Fu 2015). The major dif-
ferences between PHDL and these methods are three-fold:
(1) These methods are designed for matching between im-
ages, while PHDL is designed for matching between image
and video. (2) They cannot deal with the intra-video varia-
tions, while PHDL reduces the influence of intra-video vari-
ation by learning a feature projection matrix for video data.
(3)They focus on the one-to-one relationship between im-
ages from two camera views, while PHDL aims to deal with
the one-to-many correspondence between image and video.

Experimental Results

Datasets

The iLIDS-VID person sequence dataset (Wang et al. 2014)
consists of 600 image sequences (i.e., video clips) for 300
persons, with each person having one pair of image se-
quences from two camera views. The length of each image
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sequence changes from 22 to 192 frames, with an average
of 71. The PRID 2011 person sequence dataset (Hirzer et
al. 2011) consists of image sequences recorded from two
disjoint cameras (camera-A and camera-B). Camera-A and
camera-B contain 385 and 749 person sequences, respec-
tively. Among them, the first 200 persons appear in both
views. Each image sequence has variable length consisting
of 5 to 675 image frames, with an average number of 84.

Experimental Settings

Baselines. To evaluate the efficacy of our PHDL approach,
we compare PHDL with several state-of-the-art person re-id
methods and general point to set based matching methods.
The person re-id methods include KISSME (Kostinger et al.
2012), RDC (Zheng, Gong, and Xiang 2013), ISR (Lisanti
et al. 2015), and XQDA (Liao et al. 2015). The point to
set based methods include PSDML (Zhu et al. 2013), and
LERM (Huang et al. 2014). For all compared methods, we
perform experiments with the source codes provided by the
original authors.

Feature Representation. In experiments, we employ the
WHOSE feature, which is a kind of hybrid visual appear-
ance descriptor proposed in (Lisanti et al. 2015), to represent
each pedestrian image. For the video, we extract WHOSE
feature and STFV3D (Liu et al. 2015), which is a spatial-
temporal feature descriptor, from each walking cycle.

Evaluation Setting. For evaluation, we randomly sample
one image from each sequence of the first camera to form
the image set, and use the image sequences from the other
camera as the video set. Here, the corresponding image and
video having the same identity form an image-video pair.
Then, all image-video pairs are randomly split into two sets
of equal size, with one for training and the other for test-
ing. For the PRID 2011 dataset, the sequence pairs with less
than 20 frames are ignored due to the requirement on the se-
quence length for extracting walking cycles (Liu et al. 2015).

Parameter Setting. There are four parameters in our
model, including α, β, λ, and η. In experiments, we set them
by using the 5-fold cross validation technique with train-
ing data. In particular, they are set as α = 10, β = 0.8,
λ = 0.012 and η = 0.12 for the iLIDS-VID dataset, α = 12,
β = 0.7, λ = 0.01 and η = 0.14 for the PRID 2011 dataset.
In addition, the size of image and video dictionaries is set
as 120 for iLIDS-VID, and 180 for PRID 2011. The number
of columns in W is set as 460 and 380 for iLIDS-VID and
PRID 2011, respectively.

We employ the standard cumulated matching character-
istics (CMC) curve as our evaluation metric, and report the
rank-k matching rates. We repeat each experiment 10 times
and report the average results of all methods.

Results and Analysis

In experiments, WHOSE descriptor is employed for compet-
ing methods as the representation of image and video. Fig-
ure 4 (a) shows the CMC curves of the compared methods.
We can observe that our approach achieves higher match-
ing rates in each rank. Table 1 shows the detailed rank 1-50
matching rates of all the compared methods. “+WHOSE”
(“+STFV3D”, “+Both”) means that PHDL employs the
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Figure 4: CMC curves of average matching rates on the (a)
iLIDS-VID and (b) PRID 2011 datasets. Rank-1 matching
rate is marked before the name of each method.

Table 1: Top r ranked matching rates (%) on iLIDS-VID.

Method r=1 r=5 r=10 r=20 r=50
RDC 12.91 29.02 39.55 51.94 74.40

KISSME 17.56 41.73 55.28 68.74 86.36
ISR 10.15 25.86 35.39 47.24 71.05

XQDA 16.77 38.58 52.31 63.55 84.30
PSDML 13.49 33.75 45.56 56.33 80.46
LERM 15.26 37.12 49.68 61.95 90.92

PHDL+WHOSE 22.32 46.75 61.29 73.65 93.37
PHDL+STFV3D 24.83 46.31 60.06 73.13 93.29

PHDL+Both 28.15 50.37 65.88 80.35 95.42

Table 2: Top r ranked matching rates (%) on PRID 2011.

Method r=1 r=5 r=10 r=15 r=20
RDC 15.47 38.75 53.82 62.65 69.02

KISSME 23.08 51.22 66.15 73.91 79.81
ISR 15.69 37.37 51.53 60.47 67.95

XQDA 24.65 49.29 62.83 70.64 76.28
PSDML 19.54 47.81 60.42 67.65 74.83
LERM 22.31 50.66 63.95 71.09 78.47

PHDL+WHOSE 38.30 64.12 77.26 85.73 90.18
PHDL+STFV3D 33.58 64.04 84.27 88.76 91.01

PHDL+Both 41.92 67.25 85.47 90.04 92.44

WHOSE (STFV3D, both the WHOSE and STFV3D) feature
to represent the video. It can be seen that: (i) PHDL achieves
the best matching results; (ii) when both the WHOSE and
STFV3D features are used for matching, the performance
of PHDL is significantly improved, which further illustrates
the effectiveness of PHDL for IVPR. The main reasons
why our approach can achieve better results are three-
fold: (1) By learning a heterogeneous dictionary pair, PHDL
can make full use of the information contained in video. (2)
We designed a point-to-set coefficient discriminant term for
PHDL, such that the learned dictionary pair has favorable
discriminability. (3) PHDL reduces the intra-video varia-
tions by learning a feature projection matrix.

Table 2 and Figure 4 (b) report the top ranked match-
ing rates on the PRID 2011 dataset. It is observed that our
PHDL approach obtains much higher matching rates than
other methods. In particular, take the rank-1 matching rate
as an example, PHDL improves the average matching rate at
least by 12.2% (=36.8%-24.6%).
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Figure 5: Rank-10 results of PHDL versus different (a) dictionary sizes, (b) FPM sizes, (c) α, (d) β, η (e) λ on iLIDS-VID,
where WHOSE feature is employed as the representation of each waling cycle in the video.

Discussion

Effect of Feature Projection Matrix. In PHDL, the feature
projection matrix (FPM) W is used to reduce the intra-video
variation, such that the following matching becomes easier.
To evaluate the effect of W, we generate a modified version
of PHDL by removing W, which is called PHDL-W, and ob-
serve its performance. Table 3 reports the top ranked results
of PHDL and PHDL-W on the iLIDS-VID dataset. Here,
WHOSE feature is employed as the representation of video.
We can see that without using W, the performance of PHDL
declines, which means that learning FPM is beneficial to im-
proving the discriminability of the coding coefficients. More
specifically, without using W, the rank-1 matching rate of
PHDL is decreased by 2.24% (22.32%-20.08%) on iLIDS-
VID. Similar results can be obtained on PRID 2011.

Effect of Dictionary Size and FPM Size. The size of im-
age and video dictionaries, i.e., the number of atoms in DI

and DV , is another important factor in PHDL. To observe the
effect of dictionary size, we conduct experiments by setting
different values to it. Figure 5 (a) plots the rank-10 matching
rates of PHDL versus different dictionary sizes on iLIDS-
VID. We can see that PHDL obtains a relatively good result
when dictionary size is set as 120, which means that PHDL
is able to compute a pair of compact dictionaries.

We also evaluate the effect of FPM size (i.e., the column
size of W) to the performance of our PHDL approach. Fig-
ure 5 (b) plots the rank-10 matching rates of PHDL versus
different column sizes of W on the iLIDS-VID dataset. We
can see that, PHDL can achieve stable performance when
the column size of W is in the range of [400 600]. Similar
effects can be observed on the PRID 2011 dataset.

Parameter Analysis. In this experiment, we investigate
the effect of parameters of our approach, including α, β, λ
and η. α balances the effect of the video congregating term.
Parameter β controls the effect of point-to-set coefficient
discriminant term. Parameter λ controls the effect of regu-
larization term. Parameter η balances the effects of positive
and negative image-video pairs. When some of the parame-
ters are evaluated, the others are fixed as the values given in
the section of experimental settings.

We take the experiment on the iLIDS-VID dataset as an
example. Figure 5 (c)-(e) shows the rank-10 matching rates
of our approach versus different values of α, β, η, and λ
on the iLIDS-VID dataset. We can observe that:(1) PHDL is
not sensitive to the choice of α in the range of [6, 16]; (2)

Table 3: Top r ranked matching rates (%) of PHDL and
PHDL-W on the iLIDS-VID dataset.

Method r=1 r=5 r=10 r=20 r=50
PHDL-W 20.08 44.37 58.94 71.46 92.53
PHDL 22.32 46.75 61.29 73.65 93.37
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Figure 6: Convergence curve of PHDL on iLIDS-VID.

PHDL achieves the best performance when β and η are set
as 0.8 and 0.12, respectively. (3) PHDL can obtain relatively
good performance when λ is in the range of [0.006, 0.016].
Similar effects can be observed on the PRID 2011 dataset.

Convergence Analysis. The proposed optimization algo-
rithm for PHDL is an alternate iterative optimization algo-
rithm. In each iteration, {A, B}, {DI , DV } and W are up-
dated alternatively, and each sub-problem is convex. In this
experiment, we evaluate the performance of PHDL with dif-
ferent numbers of iterations. Figure 6 shows the convergence
curves of our algorithm on the iLIDS-VID dataset. One can
see that the energy drops quickly and begins to stabilize af-
ter 15 iterations. In most of our experiments, our algorithm
will converge in less than 20 iterations.

Conclusion

In this paper, we investigate the problem of image to video
person re-identification (IVPR) for the first time, and pro-
pose a novel approach named PHDL. PHDL can learn a pair
of heterogeneous dictionaries as well as a feature projection
matrix (FPM) from the training image-video pairs. With the
FPM, the variation within video can be reduced. With the
dictionary pair, PHDL can realize the matching between het-
erogeneous image and video features by using their coding
coefficients over corresponding dictionaries. Experimental
results on two widely used person sequence datasets, i.e.,
iLIDS-VID and PRID 2011 datasets, demonstrate that our
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PHDL can achieve better results than several state-of-the-art
methods in the IVPR task.
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