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Abstract

Because of appearance variations, training samples of the
tracked targets collected by the online tracker are required
for updating the tracking model. However, this often leads to
tracking drift problem because of potentially corrupted sam-
ples: 1) contaminated/outlier samples resulting from large
variations (e.g. occlusion, illumination), and 2) misaligned
samples caused by tracking inaccuracy. Therefore, in order
to reduce the tracking drift while maintaining the adaptability
of a visual tracker, how to alleviate these two issues via an ef-
fective model learning (updating) strategy is a key problem to
be solved. To address these issues, this paper proposes a novel
and optimal model learning (updating) scheme which aims to
simultaneously eliminate the negative effects from these two
issues mentioned above in a unified robust feature template
learning framework. Particularly, the proposed feature tem-
plate learning framework is capable of: 1) adaptively learn-
ing uncontaminated feature templates by separating out con-
taminated samples, and 2) resolving label ambiguities caused
by misaligned samples via a probabilistic multiple instance
learning (MIL) model. Experiments on challenging video se-
quences show that the proposed tracker performs favourably
against several state-of-the-art trackers.

1 Introduction

As an important step in intelligent motion perception, object
tracking has received great research interests with the devel-
opment of numerous tracking algorithms and applications.
Since dramatic appearance changes, caused by illumination,
pose, occlusion, etc, may occur on the tracked target dur-
ing tracking, to adapt the online tracker to such appearance
changes, a key problem is how to develop an adaptive model
learning (updating) strategy.

With limited amount of labeled tracking samples available
in the first frame, additional examples of the tracked targets
which are collected by the tracker itself should be utilized
for model updating (e.g. (Ross et al. 2008), (Mei and Ling
2011), (Babenko, Yang, and Belongie 2011)). While model
adaptivity can be enhanced with more training samples, in-
stability may also be increased when updating is done, lead-
ing to poor tracking performance. The problem of corrupted
samples is usually encountered in tracking, which is mainly
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caused by two scenarios. First, large extrinsic variations
such as occlusion, large illumination change may introduce
outliers into target appearance, which may contaminate the
tracking samples and thereby deteriorate the representation
power of tracking model. Second, slight tracking inaccuracy,
which is often caused by intrinsic variations (e.g. deforma-
tion and in/out of plane rotation), may lead to misaligned
tracking samples, which usually introduces label ambiguity
and ‘confuses’ the tracker itself. Updating with such samples
may contribute to reduced discriminability and drift, gradu-
ally leading to tracking failure. Therefore, while maintain-
ing adaptivity to appearance changes, the model updating
strategy should be able to handle corrupted tracking sam-
ples caused by these two scenarios so as to reduce tracking
drift.

However, most existing tracking algorithms which aim to
reduce tracking drift are not effective in handling either or
both scenarios. One kind of approaches explicitly models
the outliers in the corrupted target’s samples caused by oc-
clusion or noise, such as sparsity-based trackers (Mei and
Ling 2011) (Mei et al. 2013). Although they can detect and
prevent contaminated samples (e.g. occluded samples) from
updating which enhances their robustness to outlier sam-
ples to some extent, most of them do not explicitly han-
dle the misaligned samples. Another kind of approaches
are weakly/semi-supervised learning-based methods, such
as online multiple instance learning (MIL) (Babenko, Yang,
and Belongie 2011) and online semi-supervised boost-
ing (Grabner, Leistner, and Bischof 2008), which aim to re-
solve the label ambiguities caused by misaligned samples
within the framework of weakly/semi-supervised learning.
However, the strength of their learning methods are only
exploited to construct an optimal ensemble of base classi-
fiers, and each base classifier keeps updated every frame,
which is more likely to update with contaminated sam-
ples and thereby deteriorates the discriminability. Although
some heuristic methods such as sample selection or sample
weighting are also developed to handle these two scenarios
without considering different specialties of these two issues,
they may rely heavily on some prior knowledge (e.g. pre-
defined thresholds for corrupted sample decision (Zhong,
Lu, and Yang 2014), pre-defined updating rate of sample
weights (Li et al. 2012)), which may not be practical and
limits the trackers’ flexibility to variations under different
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scenarios.
To overcome the aforementioned problems, this paper

proposes a novel feature template learning model based on
a probabilistic multiple instance learning strategy for effec-
tive online tracking modeling updating. This model inte-
grates the robustness of sparse representation and the flex-
ibility of multiple instance learning into the model updat-
ing process, which enables the tracker to separate out the
corrupted samples and resolving label ambiguity caused
by misaligned samples in an optimal unified feature tem-
plate learning framework. Within this framework, uncon-
taminated feature templates are learned and updated using
bag of instances and contaminated samples can be separated
out via sparsity modeling. Therefore, even with noisy track-
ing samples, the learned feature templates can capture the
intrinsic characteristics and the appearance changes of the
tracked target, which guarantees both the adaptivity and sta-
bility of tracking model updating. Moreover, we develop an
iterative optimization algorithm to obtain the optimal solu-
tion, which guarantees the optimality of model updating.

It should be noted that several multiple-instance-learning-
based tracking algorithms have been proposed (e.g.
(Babenko, Yang, and Belongie 2011)). These methods for-
mulate tracking as an online multiple instance boosting
problem and aim to construct an optimal ensemble of base
classifiers. However, their tracking methods update the base
classifiers every frame without considering the potentially
corrupted samples, which may degrade the tracking perfor-
mance. Different from these methods, the proposed method
explicitly considers corrupted samples, and aims to learn
uncontaminated feature templates for appearance modeling.
The proposed method is also different from other dictionary
learning-based trackers (e.g.(Liu et al. 2016)) which may
treat misaligned samples as strongly-labeled ones for model
updating. The proposed method uses bag of samples to learn
and update feature templates within the framework of mul-
tiple instance learning, which is less sensitive to misaligned
samples. Some MIL-based feature learning methods are also
proposed for other pattern classification tasks, e.g. (Shrivas-
tava et al. 2015). However, their methods do not explicitly
model the outliers present in corrupted samples, which may
not be suitable for tracking problem.

The contributions of this paper are as follows:
• A feature template learning model based on multiple in-

stance learning is proposed for updating tracking model.
• An iterative optimization algorithm is derived to build the

learning model.

2 Related Work
This section briefly reviews some recent works on object
tracking based on feature learning and multiple instance
learning.

Feature learning for object tracking Recent online ob-
ject tracking approaches based on feature learning include
dictionary-based methods and neural network-based meth-
ods. Several dictionary-based methods have been developed
to facilitate effective model updating (Liu et al. 2016), en-
hance the discriminability of tracking model (Lan, Zhang,

and Yuen 2016) (Zhang et al. 2016), etc. However, most
of them treat the tracking results in every frame as positive
samples which are directly used for model updating. Once
the tracking result is not precise, updating with such mis-
aligned results may lead to drift problem. Neural network-
based methods such as (Li, Li, and Porikli 2014) update a
pre-trained off-line neural network online using the track-
ing samples to adapt the appearance changes. Such meth-
ods may not be efficient, and may still contribute to the drift
once corrupted samples are used for model updating. Differ-
ent from aforementioned approaches, the proposed method
aims to use weakly-labeled data for feature learning without
off-line large-scale training samples.

Multiple instance learning for object tracking To con-
struct an optimal ensemble of classifiers with potential mis-
aligned tracking samples, (Babenko, Yang, and Belongie
2011) cast object tracking as an online multiple instance
boosting problem in which base classifier are selected for
combination by maximizing the log likelihood of sample
bags. Along this line, more variants have been developed by
incorporating sample importance (Zhang and Song 2013),
introducing unlabeled data (Zeisl et al. 2010), etc. However,
contaminated samples (e.g. occluded samples) may be used
for updating the base model.

3 Proposed Model

This section introduces the proposed robust MIL-based fea-
ture template learning model from two aspects: probabilistic
contaminated feature modeling and resolving label ambigu-
ity within a probabilistic multiple instance learning frame-
work, and then derives the optimization procedure for solv-
ing the feature template learning model.

3.1 Robust MIL-based Feature Template
Learning

Robust feature template learning via probabilistic con-
taminated feature modeling Let Y = [y1, . . . , yn] ∈
R

d×n denote the target samples obtained by shifting the
bounding box by a few pixels in current frame, and n is
the number of target samples in the training set. Since un-
predictable large appearance changes caused by some vari-
ations (e.g. occlusion, illumination, etc) may occur dur-
ing tracking, the obtained tracking samples may be con-
taminated. Inspired by the robustness of sparse representa-
tion (Wright et al. 2010), one objective of the learning model
is to adaptively learn the uncontaminated feature templates
for sparse representation of the tracked object while explic-
itly modeling the contaminated features as discussed below.
Let

Y = DX + E (1)

where D = [D·,1, . . . , D·,p] = [(D1,·)T , . . . , (Dd,·)T ]T ∈
R

d×p are the set of templates, D·,p′ , and Dr′,· denote
the p′-th column and r′-th row of D, respectively, and
X = [X·,1 . . . X·,n] is the sparse coefficient matrix of tar-
get samples Y for linear combination of templates, and
E = [E·,1 . . . E·,n] are the separated contaminated features
for the samples. As mentioned, the appearance variations
(e.g. occlusion, illumination variation) come in uncertainty
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and may introduce some outliers into the target samples. To
explicitly model the uncertainty existing in the outliers for
contaminated samples, we incorporate the probabilistic con-
straint that each element in E is independent and subjected
to a zero-mean Laplace distribution with variance 2/b2, i.e.

P (E|·; b) = (b/2)(nd) exp(−b‖E‖1), (2)

which implies

P (Y |D,C; b) = (b/2)(nd) exp(−b‖Y −DX‖1) (3)

Since Laplace distribution have more heavy tail than some other
distributions, e.g. Gaussian distribution, it is more able to tolerate
the outliers, which facilitates the insensitivity to contaminated sam-
ples. To enhance the representativeness of the learned feature tem-
plates for sparse representation and enable each template to charac-
terize different properties of the tracked target, enforcing sparsity
constraint on the coefficients is essential. As such, the prior distri-
bution for each X·,j is defined as: P (X·,j) ∝ exp(−λφ(X·,j)),
where φ(·) is a sparsity function and λ is a constant. Here we use
�1 penalty as the sparsity function, i.e. φ(X·,j) = ‖X·,j‖1. As-
suming a uniform prior on the each feature template, by taking the
logarithm of the joint distribution with respect to Y , D, and X ,
i.e. P (Y,D,X|·; b) = P (Y |D,X; b)P (D|·; b)P (X|·; b), then the
maximum a posteriori (MAP) estimation of the feature templates
and the sparse coefficients is the solution to the following problem:

min
D,X

b‖Y −DX‖1 + λ‖X‖1 (4)

s.t. ‖D·,j‖2 ≤ c, j = 1, . . . , n

Here we provide a better interpretation of (4). Combined with (1),
(4) can be rewritten as

min
D,C,E

b‖E‖1 + λ‖X‖1 (5)

s.t. ‖D·,j‖2 ≤ c, j = 1, . . . , n

Y = DX + E

From (5), we find that (4) is equivalent to minimizing the sparse
regularization of the corrupted features and the coefficient vectors
respectively. As in robust dictionary learning (Zhao, Wang, and
Cham 2011), the first sparsity regularization aims to model the out-
liers present in corrupted features while the second one aims to en-
able different templates to capture different distinctive properties
of the target for enhanced sparse representation.

Resolving label ambiguity via bag-level-based MAP Al-
though the feature template learning model in (4) aims to learn the
uncontaminated representative feature templates for sparse repre-
sentation of the tracked object, it ignores the fact that misaligned
samples may exist in the tracking samples. Generally, misaligned
samples come from two cases. First, some intrinsic variations such
as deformations, rotation may cause tracking inaccuracy, and im-
precise tracker location leads to misalignment. Second, to obtain
more positive samples in current frame for more effective model
training, most trackers such as (Fan et al. 2014) shift the tracker
location in current frame to capture more samples, which causes
misalignment and thereby leads to label ambiguity.

To deal with these two cases and resolve the label ambiguity, we
extend (4) to a more general framework in which feature templates
are learnt using the collection of weakly-labeled samples based on
a probabilistic multiple instance learning (MIL) strategy. Under the
setting of MIL, only the label information for collection of sam-
ples called bag are available. A bag is positive if at least one of
its samples is positive otherwise the bag is negative. For tracking
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Figure 1: Illustration of sample bags in the 125th frame of
DavidIndoor. The red bounding box denotes the tracker po-
sition, the green bounding boxes are the perturbation of the
tracker position which constitute the positive bag, and the
blue boxes are the negative samples each of which is a neg-
ative bag.

problem, label ambiguity usually occurs among misaligned sam-
ples taken from a small neighborhood around the tracking position,
while there is no ambiguity about negative samples which are far
from the tracking position. As such, in each frame, by randomly
perturbing the tracking position by a few pixels several times, mul-
tiple samples can be obtained which compose the positive bag, and
each negative samples (i.e. background samples) located far from
tracking position can be regarded as a negative bag. Examples of
the positive bag and the negative bags in one frame are illustrated
in Figure 1.

Let yij denote the j-th sample in the i-th sample bag, cij be
the corresponding sparse coefficients. Without loss of general-
ity, we assume i = 1, . . . , N+ is the index of positive bag and
i = N+ + 1, . . . , N is the index of negative bag. Based on (3)
which explicitly models the outliers present in contaminated fea-
tures, the probability of an instance yij belonging to the fore-
ground (target) P ij can de defined as P ij = P (yij |D,xij ; b) =
(b/2)d exp(−b‖yij − Dxij‖1). Then the probability of the i-th
sample bag belonging to the foreground (target) can be defined as
P i = maxj P

ij . Since only the label for the sample bag is avail-
able, inspired by (Shrivastava et al. 2014), the likelihood at bag-
level is derived as follows:

L(Ω) =
N+∏
i=1

(max
j

P ij)
N∏

i=N++1

Si∏
j=1

(1− P ij) (6)

where Ω = {D,xij} is the set of parameters to be estimated,∏Si

j=1(1 − P ij) is the probability for not being the positive bag,
and Si is the number of samples in the i-th bag. Since there is
only one negative sample in the negative bag, Si should be 1 for
i = N+ + 1, . . . , N . We can see that for the likelihood in (6) to
be high, at least one sample in each positive bag should have high
probability to be the target, while all the negative samples in the
negative bag should have low probability. Therefore, unlike the fea-
ture learning model in (4) which requires each sample should have
high probability to be a positive sample, the model in (6) relaxes
the requirement and provide the tracker itself with more flexibil-
ity to find out the ‘true’ positive sample from weakly labeled data.
This alleviates label ambiguity in each positive bag. For tractable
optimization, we follow the standard approach for MIL (Zhang,
Platt, and Viola 2005) and approximate the bag probability using
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the generalized mean

max
j

P i ≈
⎛
⎝ 1

Si

Si∑
j=1

(P ij)α

⎞
⎠

1/α

(7)

As shown in Figure 1, the samples from a small neighborhood
around the tracking position are partially overlapped, and thus they
are spatially correlated. Therefore, such an approximation can uti-
lize probabilistic information of all the correlated samples to model
the bag probability. For computationally efficiency, α is set to be 1
in this paper. That is to say, the average of the instance probability
is used as the approximation in the proposed model. With the same
prior distribution on the feature templates and sparse coefficients
as (4), by taking the logarithm, the bag-level-based MAP estima-
tion of the feature template and sparse coefficients can be obtained
by solving the following problem:

min
Ω

−
N+∑
i=1

log

⎛
⎝ 1

Si

Si∑
j=1

(b/2)d exp(−b‖yij −Dxij‖1)
⎞
⎠ (8)

− β
N∑

i=N++1

log
(
1− (b/2)d exp(−b‖yi1 −Dxi1‖1)

)

+ λ
N∑
i=1

Si∑
j=1

‖xij‖1

s.t. ‖D·,j‖2 ≤ c, j = 1, . . . , n

where β is incorporated to control the effect of negative samples.
As the unified feature learning framework of the proposed model,
problem (8) not only shares the same merit with (4) by impos-
ing the same probabilistic constraint on the contaminated samples,
but also consider the misalignment problem via multiple instance
learning strategy. We can see that the first part of the objective func-
tion (8) is identical to the reconstruction error term in (4) if there
is only one sample in each bag, i.e. Si = 1 for i = 1, . . . , N+.
Therefore, the proposed feature template learning model provides
a more general framework under the setting of multiple instance
learning to handle label ambiguity existing in each sample bag.
Further more, unlike (4) which only considers the reconstruction
ability and aims to learn feature templates for accurate representa-
tion of target samples, minimizing the second term in (8) further
enforces the background samples to be poorly represented by the
learned feature templates, which implicitly strengthens the discrim-
inability of the learning model and enables the tracker to be less
sensitive to the cluttered background. We derive the optimization
algorithm for (8) in the following subsection.

3.2 Optimization

As the �1 penalty function is non-differential, we approximate the
penalty function by a smooth function for tractable optimization.
The �1 penalty function satisfies that

‖yij −Dxij‖1 =

d∑
k=1

|yij
k,· −Dk,·x

ij |, (9)

and thereby minimizing the �1 penalty function is equivalent to
minimizing the absolute loss separatively. Let u = yij

k,· −Dk,·xij .
Based on the property of conjugation, we can derive

|u| = max
s

s · u s.t.− 1 ≤ s ≤ 1, (10)

According to (Nesterov 2005), the smooth version with smooth pa-
rameter θ of |yij

k,·−Dk,·xij |, denoted by gθ(y
ij
k,·, Dk,·, xij), can be

Algorithm 1: Overall Optimization Procedure for (17)

Input: sample bags {[yij ]S
i

j=1|1 ≤ i ≤ N}, total sample bag
number N , positive sample bag number N+, xij,t

Output: {[xij ]S
i

j=1|1 ≤ i ≤ N}, D
Initialization: t ← 1, Dt ← D0, xij ← 0

while stopping conditions are not satisfied do

Update Dt+1 via Algorithm (2)
Update xij,t+1 via Algorithm (3)
t ← t+ 1
Check stopping conditions

end

given by subtracting a prox-function p(s) from the objective func-
tion of (10). Here we choose p(s) = θ

2
s2 and thus the smoothed

function is

gθ(y
ij
k,·, Dk,·, x

ij) = max
s

s · (yij
k,· −Dk,·x

ij)− θ

2
s2 (11)

s.t.− 1 ≤ s ≤ 1

which is a convex problem. By taking the derivative of the objec-
tives function in (11), setting it to be zero and the projection to the
convex set defined by the constraints, we can obtain

s = median

{
yij
k,· −Dk,·xij

θ
,−1, 1

}
(12)

Therefore, the smoothed function is derived as gθ(yij
k,·, Dk,·, xij)

=

{ |yij
k,· −Dk,·xij | − θ

2
, |yij

k,· −Dk,·xij | > θ
(y

ij
k,·−Dk,·xij)2

2θ
, else

(13)

Accordingly, the partial derivatives of gθ(yij
k,·, Dk,·, xij) with re-

spect to Dk,· and xij are derived as follows: ∂gθ(·,·,·)
∂DT

k,·
=

{
Dk,·xij−y

ij
k,·

θ
xij |yij

k,· −Dk,·xij | ≤ θ

sign(Dk,·xij − yij
k,·)x

ij else
(14)

and ∂gθ(·,·,·)
∂xij =

{
Dk,·xij−y

ij
k,·

θ
DT

k,· |yij
k,· −Dk,·xij | ≤ θ

sign(Dk,·xij − yij
k,·)D

T
k,· else

(15)

Based on (13), the �1 penalty function in (15) can be approximated
by Gθ(y

ij , D, xij) where

Gθ(y
ij , D, xij) =

d∑
k=1

gθ(y
ij
k,·, Dk,·, x

ij). (16)
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Algorithm 2: Procedure for Updating Feature Tem-
plates D in (17)

Input: sample bags {[yij ]S
i

j=1|1 ≤ i ≤ N}, total sample bag
number N , positive sample bag number N+,
{Dt, xij,t} in the t−th iteration of Algorithm 1

Output: Dt+1

Initialization: l ← 1, Dl ← Dt, xij ← xij,t, L ←
0.2, α0 ← 1, α1 ← 1, Q ← Dt

while stopping conditions are not satisfied do

r ← 1

Dl+1
k,· ← Qk,· − 1

L

(
∇DT

k,·
J1(Qk,·)

)T

for all k

if Dl+1
·,m > c for some m then

Dl+1
·,m ← Dl+1

·,m
‖Dl+1

·,m‖2
end

while J1(D
l+1) >

J1(Q) +∇T
DJ1(Q)(Dl+1 −Q) + L

2
‖Dl+1 −Q‖2F do

L ← 2r · L
Dl+1

k,· ← Qk,· − 1
L

(
∇DT

k,·
J1(Qk,·)

)T

for all k

if Dl+1
·,m > c for some m then

Dl+1
·,m ← Dl+1

·,m
‖Dl+1

·,m‖2
end
r ← r + 1

end

αl+1 ←
(
1 +

√
4(αl)2 + 1

)
/2

Q ← Dl+1 + αl−1
αl+1 (D

l+1 −Dl)

l ← l + 1

Check stopping conditions: ‖Dl−Dl−1‖F
‖Dl−1‖F < ε

end

Dt+1 ← Dl

The objective function in (8) can be approximated by

min
Ω

J1(Ω) + J2(Ω) (17)

s.t. ‖D·,j‖2 ≤ c, j = 1, . . . , n,

J1(Ω) =

−
N+∑
i=1

log

⎛
⎝ 1

Si

Si∑
j=1

(b/2)d exp(−bGθ(y
ij , D, xij))

⎞
⎠

−β
N∑

i=N++1

log
(
1− (b/2)d exp(−bGθ(y

ij , D, xij))
)
,

J2(Ω) = λ
N∑
i=1

Si∑
j=1

‖xij‖1,

where J1(Ω) is differential while J2(Ω) is non-smooth. Problem
(17) is not jointly convex with D and {cij}, but it is convex with
respect to each of them when the other is fixed. It is difficult to
derive the analytical solution to (17). Therefore, we derive an iter-
ative optimization algorithm to solve this problem. We employ fast
proximal gradient method with line search (Nesterov 2013) to up-
date the optimal variables iteratively. Therefore, we first derive the

Algorithm 3: Procedure for Updating Sparse Coeffi-
cients xij in (17)

Input: sample bags {[yij ]S
i

j=1|1 ≤ i ≤ N}, total sample bag
number N , positive sample bag number N+,
{Dt+1, xij,t} in the (t+ 1)−th and t−th iteration of
Algorithm 1

Output: {[xij,t+1]S
i

j=1|1 ≤ i ≤ N}
Initialization: l ← 1, D ← Dt+1, xij,l ← xij,t, α0 ←
1, α1 ← 1, uij ← xij,l, L ← 0.2

while stopping conditions are not satisfied do

r ← 1

xij,l+1 ← proxλ‖·‖1
(
uij − 1

L
∇xijJ1(u

ij)
)

for all i, j
while J1(X

l+1) >
J1(U) +∇T

XJ1(U)(Xl+1 − U) + L
2
‖Xl+1 − U‖2F do

L ← 2r · L
xij,l+1 ← proxλ‖·‖1

(
uij − 1

L
∇xijJ1(u

ij)
)

for all
i, j
r ← r + 1

end

αl+1 ←
(
1 +

√
4(αl)2 + 1

)
/2

U ← Xl+1 + αl−1
αl+1 (X

l+1 −Xl)

l ← l + 1

Check stopping conditions: ‖Xl−Xl−1‖F
‖Xl−1‖F < ε

end

xij,t+1 ← xij,l for all i,j

gradient of J1(Ω) with respect to DT
k,· and xij based on (14) and

(15) as follows:

∇DT
k,·

J1(Ω) =

N+∑
i=1

b∇DT
k,·

gθ(y
ij
k,·, Dk,·, x

ij)+ (18)

N∑
i=N++1

F (yij , D, xij)b∇DT
k,·

gθ(y
ij
k,·, Dk,·, xij)

F (yij , D, xij)− 1
,

For 1 ≤ i ≤ N+, ∇xijJ1(Ω) =

N+∑
i=1

b

r∑
k=1

∇xijgθ(y
ij
k,·, Dk,·, x

ij),

For N+ + 1 ≤ i ≤ N, ∇xijJ1(Ω) =

N∑
i=N++1

F (yij , D, xij)b
∑r

k=1 ∇xijgθ(y
ij
k,·, Dk,·, xij)

F (yij , D, xij)− 1

where F (yij , D, xij) = (b/2)d exp(−bGθ(y
ij , D, xij)). The

gradient information in (18) is employed to update the optimal vari-
ables iteratively until the relative changes of the objective function
value in the adjacent iterations are less than a threshold or the max-
imum iteration number is reached. The optimization procedures for
solving (17) are summarized in Algorithms 1, 2 and 3.

4 Implementation Details

4.1 Target Representation and Decision

Given that sparsity constraints on coefficient vectors are incorpo-
rated into the feature template learning model in (8), which en-

4122



Table 1: Video-by-Video Success Rate. The best three results are shown in red, blue and green.
Sequence Struck MIL VTD IVT SCM L1T CXT SemiT ASLA MTT Proposed Method

Woman 0.93 0.19 0.18 0.19 0.87 0.2 0.21 0.14 0.19 0.2 0.54

Bolt 0.02 0.01 0.24 0.01 0.01 0.01 0.02 0.07 0.01 0.01 0.98

Faceocc2 1 0.94 0.99 0.92 0.88 0.81 0.95 0.56 0.82 0.9 0.9
Faceocc1 1 0.77 0.93 0.98 1 1 0.78 0.71 0.31 1 1

DavidOutdoor 0.34 0.69 0.49 0.64 0.48 0.46 0.14 0.18 0.51 0.1 0.98

Crossing 0.96 0.99 0.42 0.24 1 0.25 0.34 0.88 1 0.23 0.98
Mountain-Bike 0.86 0.58 1 0.99 0.96 0.93 0.28 0.29 0.9 0.97 0.99

Shaking 0.17 0.23 0.94 0.01 0.9 0.04 0.12 0.01 0.39 0.01 0.5

Trellis 0.78 0.24 0.5 0.32 0.85 0.16 0.82 0.2 0.86 0.2 0.96

Car4 0.41 0.28 0.35 1 0.97 0.3 0.3 0.25 1 0.32 1

Sylvester 0.93 0.55 0.81 0.68 0.89 0.43 0.76 0.43 0.75 0.83 0.98

Lemming 0.65 0.81 0.5 0.17 0.17 0.17 0.61 0.15 0.17 0.37 0.38
Dudek 0.98 0.86 1 0.97 0.98 0.8 0.92 0.46 0.9 0.93 0.96
Car11 1 0.18 0.68 0.7 1 1 0.69 0.93 1 1 0.88

Subway 0.94 0.81 0.22 0.21 1 0.23 0.23 0.38 0.22 0.08 0.88

Soccer 0.16 0.16 0.23 0.17 0.24 0.2 0.13 0.07 0.13 0.18 0.17
Football 0.67 0.74 0.78 0.72 0.6 0.69 0.66 0.18 0.65 0.78 0.78

DavidIndoor 0.24 0.25 0.7 0.8 0.92 0.7 0.87 0.21 0.96 0.29 0.97

Couple 0.55 0.67 0.08 0.09 0.11 0.6 0.57 0.41 0.09 0.61 0.53
Doll 0.65 0.45 0.81 0.44 0.99 0.34 0.98 0.15 0.92 0.52 0.92

Average 0.66 0.52 0.59 0.51 0.74 0.47 0.52 0.33 0.59 0.48 0.81

Table 2: Video-by-Video Average Overlapping Rate. The best three results are shown in red, blue and green.
Sequence Struck MIL VTD IVT SCM L1T CXT SemiT ASLA MTT Proposed Method

Woman 0.73 0.16 0.15 0.15 0.67 0.16 0.2 0.11 0.15 0.17 0.5

Bolt 0.01 0.01 0.37 0.01 0.02 0.01 0.02 0.06 0.01 0.01 0.79

Faceocc2 0.79 0.68 0.74 0.73 0.73 0.69 0.75 0.48 0.65 0.75 0.71
Faceocc1 0.73 0.6 0.69 0.73 0.8 0.75 0.64 0.57 0.32 0.7 0.77

DavidOutdoor 0.29 0.54 0.41 0.48 0.4 0.38 0.12 0.15 0.44 0.1 0.69

Crossing 0.69 0.74 0.32 0.31 0.79 0.21 0.37 0.69 0.79 0.2 0.71
Mountain-bike 0.71 0.46 0.7 0.73 0.68 0.74 0.23 0.23 0.73 0.75 0.68

Shaking 0.35 0.43 0.71 0.03 0.69 0.08 0.12 0.01 0.47 0.04 0.57

Trellis 0.62 0.25 0.46 0.26 0.68 0.2 0.66 0.2 0.8 0.22 0.69

Car4 0.5 0.26 0.36 0.88 0.76 0.25 0.31 0.23 0.76 0.45 0.87

Sylvester 0.73 0.53 0.62 0.52 0.69 0.41 0.6 0.34 0.6 0.65 0.74

Lemming 0.48 0.65 0.44 0.14 0.14 0.14 0.46 0.12 0.15 0.29 0.35
Dudek 0.73 0.71 0.8 0.75 0.77 0.69 0.73 0.38 0.74 0.76 0.77

Car11 0.9 0.2 0.55 0.67 0.85 0.89 0.57 0.84 0.85 0.83 0.65
Subway 0.66 0.66 0.16 0.17 0.73 0.16 0.18 0.29 0.19 0.07 0.63
Soccer 0.19 0.17 0.33 0.16 0.24 0.17 0.13 0.07 0.11 0.18 0.3

Football 0.55 0.59 0.57 0.56 0.49 0.56 0.55 0.15 0.54 0.58 0.59

DavidIndoor 0.24 0.43 0.56 0.65 0.73 0.54 0.65 0.25 0.75 0.3 0.69

Couple 0.54 0.5 0.07 0.07 0.1 0.47 0.49 0.35 0.08 0.49 0.46
Doll 0.53 0.47 0.65 0.44 0.83 0.45 0.75 0.12 0.83 0.39 0.7

Average 0.55 0.45 0.48 0.42 0.59 0.4 0.43 0.28 0.5 0.4 0.64

Table 3: Video-Set-Based Comparison in Terms of Success Rate and Precision.
Struck MIL VTD IVT SCM L1T CXT SemiT ASLA MTT Proposed Method

Success Rate 0.541 0.445 0.475 0.414 0.577 0.392 0.419 0.354 0.488 0.390 0.636

Precision 0.720 0.554 0.614 0.576 0.751 0.496 0.565 0.431 0.591 0.457 0.862

ables each template to capture different distinctive properties of
the target, to better utilize the representation power of the learned
feature templates, we adopt the sparse representation scheme for
target representation for the sake of its robustness and effective-
ness (Zhang et al. 2013a) (Lan, Ma, and Yuen 2014) (Lan et al.
2015). To further enhance the adaptivity, the learned feature tem-
plates are augmented with recently obtained important samples,
which are denoted by D′ and updated by the same scheme in (Mei
and Ling 2011). Given the learned feature templates D′ and M tar-
get candidates {xi}Mi=1 with their states {si}Mi=1 sampled by parti-
cle filtering, the sparse representations of the target candidates can
be obtained via solving the following problem:

wi = argmin
w

‖xi −D′w‖22 + λ1‖w‖1 (19)

where λ1 is the tradeoff between the reconstruction error and the
sparseness. After the sparse coefficients of each target candidate
with respect to the feature template are obtained, the target state at
frame t, denoted as St can be decided as follows:

St = sk (20)

s.t. k = argmin
i

‖xi −Dwi‖22

5 Experiments
The section describes the experimental setting, and reports the
quantitative and qualitative experimental results, respectively.

5.1 Experimental Setting

Twenty publicly available image sequences, which cover vari-
ous kinds of challenging scenarios, e.g. occlusion, abrupt illumi-
nation changes, large pose variations, etc., are used for evalua-
tion. The proposed tracker is compared with ten state-of-the-art
trackers, i.e. semi-supervised learning-based tracker: SemiB (Grab-
ner, Leistner, and Bischof 2008), multiple instance learning-based
tracker: MIL (Babenko, Yang, and Belongie 2011), sparsity-based
trackers which explicitly models the noise/outliers: L1T (Mei and
Ling 2011), MTT (Zhang et al. 2013b), SCM (Zhong, Lu, and
Yang 2014), ASLA (Jia, Lu, and Yang 2012), feature learning-
based method: IVT (Ross et al. 2008), and other state-of-the-arts:
VTD (Kwon and Lee 2010), CXT (Dinh, Vo, and Medioni 2011),
STRUCK (Hare, Saffari, and Torr 2011). The source codes pro-
vided by the authors are used, and they are set with the same ini-
tialization parameters for fair comparison.

We empirically set β in (8) to be 0.01, λ in (8) to be 0.01, λ1

in (19) to be 0.01, b in (8) to be 1, c in (8) to be 1, the number of
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Figure 2: Qualitative results on some typical frames of several videos with some challenging factors. (a) Occlusion (DavidOut-
door, Faceocc, Woman). (b) illumination (Trellis, DavidIndoor, Car4). (c) pose and cluttered background (Mountain-bike, Bolt,
Sylvester).
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Figure 3: Video-set-based comparison of the 11 trackers on
the whole video set in terms of precision (left) and success
rate (right)

the learned feature templates to be 20. In every frame, 8 potentially
positive samples and 50 samples in the first frame compose the
positive bag for training, which means N+ in (8) is set to 1 , while
10 samples are used to construct 10 negative bags. To obtain the
features of each sample for model learning, we use the grey scale
feature of 8-by-8 down-sampled image patch, extract HOG fea-
tures, and then concatenate them into a single feature vector. The
feature templates are initialized using K-SVD algorithm (Aharon,
Elad, and Bruckstein 2006).

5.2 Experimental Results

We quantitatively evaluate the proposed tracker from two aspects:
video-by-video comparison and video set-based comparison. For
video-by-video quantitative comparison, two widely accepted met-
rics: success rate and average overlapping rate are adopted. The
overlapping rate is defined as area(BT

⋂
BG)

area(BT
⋃

BG)
where BG and BT

are the bounding boxes of the ground-truth and the tracker. A suc-
cess of a tracking result means the overlapping rate is larger than
0.5. Table 2 and Table 1 record the overlapping rate and success rate
respectively. The quantitative results show that the proposed tracker
outperforms most of other trackers on most videos in terms of aver-
age overlapping rate and success rate. The average overlapping rate
ranks in top three on 13 videos while the success rate ranks in top

three on 12 videos. Since the proposed tracker runs stably on these
videos, it achieves the best average performance in terms of aver-
age overlapping rate and success rate. In particular, superior perfor-
mances are achieved by the proposed tracker on some videos which
cover pose variation (e.g. Sylvester, DavidIndoor, Bolt), large illu-
mination variations(e.g. Trellis, Car4), cluttered background (e.g.
Shaking, Football), occlusion (e.g. Faceocc1, DavidOutDoor). etc..
This is because the feature template learning model, which explic-
itly models the contaminated features, make it more effective to
deal with corrupted samples caused by large illumination varia-
tions, occlusion, etc.. In addition, by learning the tracking model
using weakly-labeled samples organized in the form of sample
bags, the proposed tracker is less sensitive to misaligned samples
which is usually caused by some pose variations, rotation, etc..

To reduce the risk that performance evaluation is trapped by
the peculiarity of single video, video-set based evaluation is per-
formed under two evaluation methods: precision plot and success
rate. The precision plot is defined based on center location error
(CLE) which measures the Euclidean distance between the centers
of ground-truth and bounding box. The precision plot shows the
percentage of frames where the CLE is within a given threshold
which changes from 0 to 50. The success rate plot shows percent-
age of success frames whose overlapping rate is larger than a given
threshold changing from 0 to 1. The performance scores for pre-
cision plot and success rate plot is defined as the precision with
threshold 20 and the average success rate, respectively. Figure 3 il-
lustrates the precision plot and success rate plot for the evaluation
video set. We can see that the proposed tracker maintain a higher
precision and success rate than those of all other trackers in most
cases. Table 3 records the overall performance scores, demonstrat-
ing that the proposed tracker outperforms other trackers.

Figure 2 demonstrates some qualitative results on some typi-
cal frames which covers occlusion, clutter background, variations
in illumination and pose. We see that the proposed tracker runs
stably without drifting in most cases, e.g. large illumination vari-
ations (e.g. Car4#220, Trellis#246), occlusion (e.g. David#238,
woman#212), pose variations (e.g. Bolt#18), which shows the ef-
fectiveness of the proposed feature template learning model in ap-
pearance modeling.
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6 Conclusion

This paper proposes a novel MIL-based feature template learning
for object tracking. By explicitly modeling the contaminated sam-
ples and resolving the label ambiguity within a probabilistic mul-
tiple instance learning framework, the proposed model is able to
effectively perform model updating with corrupted samples and
alleviate the tracking drift problem. Comparison experiment with
other ten state-of-the-art trackers show its effectiveness.
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