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Abstract

Diffusion process has advanced visual retrieval greatly ow-
ing to its capacity in capturing the geometry structure of the
underlying manifold. Recent studies (Donoser and Bischof
2013) have experimentally demonstrated that diffusion pro-
cess on the tensor product graph yields better retrieval per-
formances than that on the original affinity graph. However,
the principle behind this kind of diffusion process remains
unclear, i.e., what kind of manifold structure is captured and
how it is reflected. In this paper, we propose a new variant
of diffusion process, which also operates on a tensor prod-
uct graph. It is defined in three equivalent formulations (reg-
ularization framework, iterative framework and limit frame-
work, respectively). Based on our study, three insightful con-
clusions are drawn which theoretically explain how this kind
of diffusion process can better reveal the intrinsic relation-
ship between objects. Besides, extensive experimental results
on various retrieval tasks testify the validity of the proposed
method.

Introduction

Given a query object, the goal of retrieval task is to find sim-
ilar objects in the database according to pre-defined similar-
ity measures. Conventionally, it is accomplished by comput-
ing pairwise dissimilarity between features in the Euclidean
space. Then, similar objects are expected to be distributed
with larger similarities to the query, thus they can be ranked
in higher positions of the ranking list. However, it has been
demonstrated (Zhou et al. 2004b) that the pairwise formu-
lation is insufficient to reveal the intrinsic relationship be-
tween objects. Instead, similarities can be estimated more
accurately along the geodesic path of the underlying data
manifold, i.e., in the context of other objects.

To capture the local geometry structure of the manifold,
many algorithms have been developed in literature. Those
algorithms share a very diverse nomenclature, including but
not limited to context sensitive similarity (Jegou et al. 2010;
Bai et al. 2010), affinity learning (Wang and Tu 2012; Jiang,
Wang, and Tu 2011; Kontschieder, Donoser, and Bischof
2009), re-ranking (Zhang et al. 2012; Qin et al. 2011;
Shen et al. 2012), ranking list comparison (Pedronette and

∗Corresponding author
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Torres 2013; Chen et al. 2014; Pedronette, Almeida, and
da Silva Torres 2014). Nevertheless, most of them model
the relationships between objects on graph-based mani-
folds, where the vertices in the graph represent objects
and the edge connecting two adjacent vertices is weighted
by their similarity value. Then, similarity values are dif-
fused on the graph in an iterative manner (e.g., random
walk (Page et al. 1999)). This procedure is usually called
diffusion process (Yang, Koknar-Tezel, and Latecki 2009;
Luo et al. 2013) in the retrieval domain.

A recent survey paper (Donoser and Bischof 2013) sum-
marizes most common variants of diffusion process in a uni-
fied framework, and experimentally benchmarks the differ-
ence of these variants in retrieval performances. The experi-
mental results suggest that diffusion process on tensor prod-
uct graph (Yang, Koknar-Tezel, and Latecki 2009), built by
computing the tensor product of the original affinity graph
with itself, exhibits its superiority over other kinds of diffu-
sion process. Tensor product graph naturally takes into ac-
count high order information, which is stated to be helpful
for retrieval on manifold. However, the mechanism behind
this kind of diffusion process still remains unclear. Some
critical questions are: 1) what kind of manifold structure is
captured and how it is reflected; 2) why high order informa-
tion is useful; 3) what is the role of iteration and how many
iterations are needed.

In this paper, we propose a new variant of diffusion pro-
cess. The proposed method has three equivalent formula-
tions as regularization framework, iterative framework and
limit framework, respectively. Based on our study, insight-
ful conclusions are drawn which theoretically explain why
diffusion process on tensor product graph can better reveal
the intrinsic relationship between objects, as:

• In the regularization framework, the proposed method can
be taken as an improved version of manifold ranking with
a relaxed smoothness term. Moreover, it imposes a high-
order (tensor) graph Laplacian to smooth the pairwise re-
lationship between each two nodes in the original graph.

• In the iterative framework, it can be taken as a special
case of label propagation with only one category label.
Then the retrieval task is converted to a classification task
applied to a pair of objects, and the only category label is
called “correct”.
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• In the limit framework, we demonstrate that the proposed
method is essentially a variant of diffusion process oper-
ating on tensor product graph.

Compared with most previous works (Donoser and Bischof
2013) only focusing on iterative model, our key novelty
lies in the regularization framework, which can well reveal
the essence of diffusion process on tensor product graph.
Therefore, we call the proposed method Regularized Diffu-
sion Process (RDP). Moreover, RDP achieves state-of-the-
art performances on various benchmark retrieval tasks, in-
cluding face retrieval, shape retrieval and image retrieval.

Proposed Method

Diffusion processes usually model the data manifold as an
weighted graph G = (X,W ), where the vertices of the
graph denote the data points X = {x1, x2, . . . , xN}. W is
the graph adjacency matrix, with Wij representing the pair-
wise similarity between xi and xj . Our aim is to learn a new
similarity measure A = {Aij}1≤i,j≤N , which varies suffi-
cient smoothly along the graph G.

Regularization Framework

Diffusion process on tensor product graph naturally involves
high-order information, which is helpful to reveal the intrin-
sic similarities between objects as stated in (Donoser and
Bischof 2013). However, its principle remains unclear. This
section, which is the key contribution of this paper, gives this
kind of diffusion process a manifold-based explanation.

We propose to obtain the new similarity measure A as the
closed-form solution of the following optimization problem

min
A

1

2

N∑
i,j,k,l=1

WijWkl(
Aki√
DiiDkk

− Alj√
DjjDll

)2

+ μ

N∑
k,i=1

(Aki − Yki)
2,

(1)

where μ > 0 is a regularization parameter. Y ∈ R
N×N de-

notes the initial affinity values. D is a diagonal matrix with
elements Dii =

∑N
j=1 Wij .

As presented in Eq. (1), the objective function of Regu-
larized Diffusion Process (RDP) consists of two terms. The
first term describes a kind of influence of the input simi-
larity W on the learned similarity A. By analogy to Lo-
cal and Global Consistency (LGC) (Zhou et al. 2004a), we
will call it smoothness term. However, the inherent mean-
ings of the two smoothness terms are quite different. As a
semi-supervised learning algorithm, the smoothness term in
LGC indicates that if xk is similar to xl (large Wkl), their
probabilities of belonging to the same category should have
a small difference. By contrast, the smoothness term of our
method regularizes that if xi is similar to xj (large Wij) and
xk is also similar to xl (large Wkl) in the input similarity
space, then the learned similarities Aki and Alj should be
similar.

Manifold ranking (Zhou et al. 2004b) directly applies
LGC to retrieval task by interpreting the probability of be-
longing to categories as the similarities between objects.

Thus, one can find that the smoothness term in our method
actually imposes a relaxed constraint against that in man-
ifold ranking, i.e., the individual object xi is replaced by
a pair of objects xi and xj with similarity Wij . Conse-
quently, to interrelate four tuples simultaneously, tensor
product graph is a natural choice since each its node con-
tains two points and each its edge records the relationship
between four points.

In this sense, RDP can be expressed as an improved
version of manifold ranking with a relaxed smoothness
term. The second term in Eq. (1) is called fitting term,
which has a similar meaning with that in LGC. It emphasizes
that a good similarity measure should not change too much
from its initial setup. Pervious works (Zhou et al. 2004b;
Yang, Prasad, and Latecki 2013) take Y as identity matrix
I , indicating that only the self-affinity of each node is fas-
tened. In the experiments, we verify that this is not an opti-
mal setup.

As demonstrated in Proposition 1, the objective function
in Eq. (1) is equivalent to

J = vec(A)TLvec(A) + μ‖vec(A)− vec(Y )‖2, (2)

where L = I − S and I is an identity matrix in appropri-
ate size. S ∈ R

N2×N2

is the Kronecker product of S =
D−0.5WD−0.5 with itself, that is S ⊗ S. Operator vec(·)
vectorizes an input matrix by stacking its columns one af-
ter the next. Its inverse operator, called reshape operator, is
denoted as vec(·)−1.

In Eq. (2), vec(A) can be deemed as a function, which
gives each node in the tensor product graph (also a pair
of nodes in the original graph) a real value to describe the
pairwise relationship. L is the normalized graph Laplacian
of the tensor product graph. So, the proposed method also
aims at taking graph Laplacian as a smooth operator to pre-
serve the local manifold structure as (Zhou et al. 2004a;
2004b). However, the key insight of our approach is utiliz-
ing high order (tensor) graph Laplacian to smooth the
pairwise relationship in the original graph.

By taking the partial derivative of J with regard to
vec(A), we obtain

∂J

∂vec(A)
= 2(I−S)vec(A)+2μ (vec(A)− vec(Y )) . (3)

By setting Eq. (3) to zero, we have

vec(A) =
μ

μ+ 1
(I − 1

μ+ 1
S)−1vec(Y ). (4)

After applying vec−1 to both sides of Eq. (4) and setting
α = 1

μ+1 , we can obtain the closed-form solution as

A∗ = (1− α)vec−1
(
(I − αS)−1vec(Y )

)
. (5)

Iterative Framework

Most pervious works (Donoser and Bischof 2013) are run in
an iterative manner. In RDP, iteratively similarity propaga-
tion is done as follows:

A(t+1) = αSA(t)ST + (1− α)Y. (6)
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To facilitate the iteration, we need to initialize A(1). Op-
posed to most variants of diffusion process summarized
in (Donoser and Bischof 2013), we do not consider different
types of initialization A(1), since our algorithm is guaran-
teed to converge to the same solution. The only difference
is that the convergence speed is not the same with different
initializations as demonstrated in the experiments.

In each iteration, similarity values are propagated on the
affinity graph through the contextual information around
both query nodes and database nodes, which is involved
by pre-multiplying A(t) by S and post-multiplying A(t)

by ST. The survey paper (Donoser and Bischof 2013) ex-
perimentally proves that this kind of propagating approach
can consistently achieve better retrieval performances than
other kinds, such as propagating affinities only through the
query nodes (e.g., manifold ranking). In summary, our up-
date scheme during each iteration is to propagate similarities
on the affinity graph with probability α ∈ (0, 1) and go back
to the initial affinities Y with probability (1− α).

Now we prove the convergence of the iterative process.
According to Lemma 1, by applying vec(·) to both sides of
A(t+1) = αSA(t)ST + (1− α)Y , we can derive that

vec
(
A(t+1)

)
= αSvec

(
A(t)

)
+ (1− α)vec(Y ). (7)

By running the iteration for t times in Eq. (7), we can easily
induce that

vec
(
A(t+1)

)
= (αS)tvec

(
A(1)

)
+(1−α)

t−1∑
i=0

(αS)ivec(Y ).

(8)
Since the spectral radius of S is no larger than 1, accord-
ing to Lemma 2, the eigenvalues of S are also in [-1,1]. In
addition, 0 < α < 1, then,

lim
t→∞(αS)tvec

(
A(1)

)
= 0,

lim
t→∞

t−1∑
i=0

(αS)ivec(Y ) = (I − αS)−1vec(Y ).
(9)

Hence, Eq. (8) converges to

lim
t→∞ vec

(
A(t+1)

)
= (1− α)(I − αS)−1vec(Y ). (10)

After applying vec−1 to both sides of Eq. (10), we obtain
that the iteration converges to exactly the same solution in
Eq. (5) obtained by the regularization framework of RDP.
This provides a different yet important explantation of dif-
fusion process on tensor product graph which well reveals
its essence, i.e., before convergence, the iterative similar-
ity propagation is always decreasing the objective value of
Eq. (1). Moreover, the generated equilibrium is independent
from the initialization of A(1), which supports our previous
claim that the initial value of A(1) is irrelevant in our algo-
rithm.

Recall that the update scheme of label propagation (Zhou
et al. 2004a) is

F (t+1) = αSF (t) + (1− α)Y. (11)

One can find that Eq. (7) has very close relationship with la-
bel propagation formulated in Eq. (11). The key difference
is that the classification function F in label propagation is
replaced by vec(A) ∈ R

N2×1 in Eq. (7). In this sense, RDP
converts retrieval task to a classification task solved by
label propagation with only one category. The classifica-
tion is applied to a pair of objects (xi, xj), and the only cat-
egory label is called “correct”. If points xi and xj belong to
the same category in the original similarity space, then the
initial label of the pair (xi, xj) corresponding to category
“correct” is 1, otherwise 0. Obviously, the initial label of the
pair (xi, xi) is 1. The classification probability is recorded in
the column vector vec(A), i.e., vec

(
A(t)

)
ij

represents the
probability of (xi, xj) belonging to the category “correct”
at t-iteration. When applying label propagation to retrieval
task (Zhou et al. 2004b; Bai et al. 2010), the assumption is
that each data point in the graph is taken as one individual
category. Obviously, the correlation between data points (or
“category”) is ignored, especially those points which lie in
the same clusters or sub-manifolds. In comparison, such a
correlation is captured in RDP, since it directly focuses on
analyzing the pairwise similarities between objects.

Limit Framework

In this section, we show that the proposed method can
be also understood as diffusion process on tensor product
graph.

As is known, a simple realization of diffusion process
on a graph can be done by computing powers of the adja-
cency matrix of the graph. In this paper, the edge weights at
time t can be obtained from (αS)t. Many previous works
find (Lafon and Lee 2006; Zhang et al. 2012) that it is
crucial to stop the diffusion process at a “right” time t.
However, this is usually problematic especially when no la-
belled data is available. To remedy this, accumulating the
results at different t is suggested (Lafon and Lee 2006;
Bai et al. 2012). When t → ∞, the limit of the accumulation
is

∞∑
i=1

(αS)i = (I − αS)
−1

. (12)

Since the Kronecker product of the adjacency matrix of the
graph with itself is the adjacency matrix of tensor product
graph, diffusion process on tensor product graph can be sim-
ply achieved by replacing S in Eq (12) with S = S⊗S, thus
yielding

S
∗ =

∞∑
i=1

(αS)i = (I − αS)
−1

. (13)

Note that S∗ ∈ R
N2×N2

, and our aim is to learn a new
context-sensitive similarity A∗ ∈ R

N×N . Therefore, we
need to gather a portion of elements in S

∗ to substitute A∗.
In this paper, it can be achieved by

A∗ = vec−1
(
(I − αS)−1vec(Y )

)
, (14)

where Y ∈ R
N×N determines the entry indices of the se-

lected elements in S
∗. Meanwhile, since Y does not need
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to be a binary matrix (i.e., with only 0 or 1), it also speci-
fies a degree, to which extent the elements in S

∗ should be
selected.

By multiplying a constant weight (1−α), Eq. (14) is iden-
tical to Eq. (5), which suggests that the proposed method is
essentially a variant of diffusion process operating on tensor
product graph.

Experiments

In this section, we evaluate the validity of the proposed Reg-
ularized Diffusion Process (RDP) with toy problems and real
retrieval tasks. Directly using the closed-form expression in
Eq. (5) requires O(N4) space complexity and O(N6) time
complexity, which is impractical for large graphs. Through-
out our experiments, the iterative solution is used, requiring
O(N2) space complexity and O(N3) time complexity.

Since the proposed algorithm is guaranteed to converge
into the same solution at different affinity initializations A(1)

after a sufficient number of iterations, we set A(1) randomly
and the iteration number to 100. As suggested by (Yang,
Koknar-Tezel, and Latecki 2009), it is crucial to constrain
diffusion process locally, i.e., only propagating similarities
through neighborhood structures. Therefore, graph sparsifi-
cation is applied by only preserving edges within k nearest
neighbors. Since graph sparsification destroys its symmetry,
we re-symmetrize it via W := W+WT

2 . The regularizer μ in
Eq. (1) is set to 0.18.

Toy Problems

In this section, we present several toy examples to illustrate
that RDP can well capture the geometry of manifold struc-
tures. The original data distribution is a two-spiral pattern
with 200 data points, with each spiral having 100 points and
one query point in cross shape. An ideal retrieval result is
that points in a certain spiral have larger similarities values
with the query points in this spiral than the query in the other
spiral.

In Fig. 1(d) and Fig. 1(h), we present the retrieval results
of manifold ranking (Zhou et al. 2004b) and RDP after con-
vergence (100 iterations). The parameter setup of manifold
ranking is the same as RDP, and Y is set to identity ma-
trix I . We can find that the retrieval performance of RDP is
significantly better than manifold ranking. Manifold ranking
fails to reflect the intrinsic structures of two spirals probably
because the two spirals are very close.

The retrieval results of manifold ranking and RDP at dif-
ferent iterations are also given in Fig. 1. Since kNN graph
is used, there exist points that do not receive any similarity
values at a small amount of iterations, which are marked in
gray color. By comparing Fig. 1(a) with Fig 1(e), Fig. 1(b)
with Fig 1(f), Fig. 1(c) with Fig 1(g) respectively, we can ob-
serve that RDP exhibits a much faster diffusion speed than
manifold ranking due to the usage of high order information.

Face and Shape Retrieval

Following the survey paper (Donoser and Bischof 2013),
we assess the effectiveness of the proposed RDP on ORL

face dataset, YALE face dataset B (Georghiades, Belhumeur,
and Kriegman 2001) and MPEG-7 shape dataset (Latecki,
Lakämper, and Eckhardt 2000).

ORL dataset has 400 face images in total, divided into
40 categories with 10 images per category. As for YALE
face dataset B, the same subset as (Jiang, Wang, and Tu
2011) is used. It contains 15 subjects under 11 different con-
ditions. The same baselines and parameter setup (k = 5)
as (Donoser and Bischof 2013) are used. In more detail,
each image is down-sampled and normalized to 0-mean
and 1-variance. Then, Euclidean distance between the vec-
torized representations is utilized to measure the pairwise
dissimilarity. MPEG-7 dataset consists of 1, 400 silhouette
images divided into 70 categories, where each category
has 20 shapes. We do not use AIR descriptor (Gopalan,
Turaga, and Chellappa 2010), since its performance on
MPEG-7 dataset is already saturated. Instead, we turn to
a more frequently-used shape descriptor, Inner Distance
Shape Context (IDSC) (Ling and Jacobs 2007). k is set to
10.

The retrieval task is defined as follows: each image is used
as query in turn and the rest images serve as the database.
We use retrieval accuracy as the evaluation metric, which
counts the recall within top-K returned results. In (Donoser
and Bischof 2013), K is set to 15 on face datasets. Here we
use three different values of K to get comprehensive com-
parisons with short ranking list (K = 11), medium length
ranking list (K = 15) and long ranking list (K = 20) re-
spectively. On MPEG-7 dataset, K is set to 40 convention-
ally. In the implementation of RDP, Y is set to identity ma-
trix I or the original affinity matrix W .

In Table 1, the comparison with other representative al-
gorithms is given, including Self Diffusion (SD) (Wang
and Tu 2012), Locally Constrained Diffusion Process
(LCDP) (Yang, Koknar-Tezel, and Latecki 2009), Tensor
Product Graph (TPG) diffusion (Yang, Prasad, and Latecki
2013), Manifold Ranking (Zhou et al. 2004b) and Generic
Diffusion Process (GDP) (Donoser and Bischof 2013). One
should first pay attention to the fact that RDP with Y = W
achieves almost 1% percent performance boost compared
with Y = I . The reason behind is that small Euclidean
distances are meaningful in retrieval since they can well
approximate the small geodesic distances along the man-
ifold. After graph sparsification, W actually only records
those small Euclidean distances. Consequently, we can pre-
vent those meaningful relationship from vanishing by setting
Y = W , thus yielding more reliable performances.

Among the compared methods, LCDP, TPG and GDP
can be considered to work on tensor product graph. LCDP
and GDP cannot guarantee the convergence of iteration. Al-
though TPG is guaranteed to converge, it lacks a weight-
ing mechanism to balance the contribution of smoothness
term and fitting term. As can be seen, RDP outperforms
these variants of diffusion process by a large margin. The
performance gain is especially valuable, considering that
GDP enumerates 72 variants of diffusion process (4 differ-
ent affinity initializations, 6 different transition matrices and
3 different update schemes).

Despite those three diffusion processes, the closest work
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Figure 1: The two crosses denote the query points. The retrieval results of manifold ranking are given when iteration number is
5 (a), 10 (b), 20 (c) and 100 (d). The retrieval results of RDP are given when iteration number is 5 (e), 10 (f), 20 (g) and 100
(h). The gray points have zero similarity values with both query points.

Methods ORL dataset YALE dataset MPEG-7 dataset

K = 11 K = 15 K = 20 K = 11 K = 15 K = 20 K = 40

Baseline 58.38 62.35 65.88 62.53 69.48 75.54 85.40
SD 67.65 71.67 74.90 67.05 71.46 77.08 83.09
LCDP 70.50 74.25 77.38 69.42 75.59 80.44 89.45
TPG 68.92 73.90 77.63 70.74 75.32 78.84 89.06
Manifold Ranking 72.67 77.05 80.10 64.52 70.85 77.08 89.26
Manifold Ranking∗ 73.45 77.58 80.53 71.07 76.91 80.61 92.61
GDP 72.67 77.42 80.58 71.24 77.30 80.83 90.96
RDP (Y=I) 74.17 78.53 81.42 71.24 78.07 81.21 93.77
RDP (Y=W) 75.08 79.27 81.88 71.85 78.24 82.09 93.78

Table 1: The comparison of retrieval accuracy (%) with other representative algorithms on YALE, ORL and MPEG-7 datasets.
The best performances are marked in red and the second best performances are marked in blue.

to ours is manifold ranking. Besides the essential differ-
ence in the update scheme, the standard manifold ranking
has three nuances: 1) it spreads affinities on fully-connected
graph, while kNN graph used by RDP is proven more ro-
bust; 2) it avoids self-reinforcement by setting the diagonal
elements of W to zero, while RDP does not; 3) it initializes
Y = I , while it is demonstrated above that better perfor-
mances can be achieved with Y = W . Hence, we also report
the results of a modified version of manifold ranking using
the three improvements, referred to Manifold Ranking∗ in
Table 1. As the table presents, the modified manifold ranking
achieves much better performances than its standard version.
However, the inferior performances of both two versions of
manifold ranking to RDP justify the conclusion that diffu-
sion on tensor product graph is more robust in retrieval.

In addition, some other re-ranking algorithms also report
the retrieval performances on MPEG-7 dataset using IDSC
as the raw descriptor. Compared with them, the proposed
RDP is better than Contextual Dissimilarity Measure (Jegou
et al. 2010): 88.30, Index-Based Re-Ranking (Pedronette,
Almeida, and da Silva Torres 2014): 91.56, Graph Transduc-
tion (Bai et al. 2010): 91.61, and RL-Sim Re-Ranking (Pe-

dronette and Torres 2013): 92.62.

Natural Image Retrieval

We also evaluate the proposed algorithm on the widely-used
Ukbench dataset. It consists of 2, 550 objects, with each ob-
ject having 4 different view points. All 10, 200 images are
both indexed as queries and database images. The evalua-
tion metric is N-S score, which counts the average recall of
the top-4 ranked images. For each image, we pass it into the
pre-trained AlexNet and extract the activations of the 5-th
convolutional layer and the 7-th fully connected layer. The
two activations are L2 normalized, and Euclidean distance
is used to generate two pairwise dissimilarities. Their base-
line performances are 3.44 and 3.65 respectively. The two
learned similarities of RDP are linearly combined with equal
weights. k is set to 4.

The performance comparison is given in Table 2. Be-
sides diffusion processes (e.g., LCMD (Luo et al. 2013)
and TPG), we also compare other relevant re-ranking algo-
rithms, including kNN Re-ranking (Shen et al. 2012), RNN
Re-ranking (Qin et al. 2011), CDM (Jegou et al. 2010),
Graph Fusion (Zhang et al. 2012), Query-Adaptive Late Fu-
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Figure 2: The objective value (a) and retrieval performance
(b) of RDP as a function of iteration number on YALE
dataset.

Methods N-S score Methods N-S score

kNN Re-
ranking

3.56 TPG 3.61

RNN Re-
ranking

3.67 CDM 3.68

LCMD 3.70 Graph Fusion 3.77
QALF 3.84 SCA 3.86
Fan et al. 3.86 MSCE 3.88
RDP (Y=I) 3.93 RDP (Y=W) 3.94

Table 2: The comparison of N-S score on Ukbench dataset.

sion (QALF) (Zheng et al. 2015), Sparse Contextual Acti-
vation (SCA) (Bai and Bai 2016), Fan et al. (Yang, Matei,
and Davis 2015) and MSCE (Zheng et al. 2016). As Ta-
ble 2 shows, RDP outperforms the previous state-of-the-art
remarkably.

Discussion

In Fig. 2, the influence of iteration number on the objective
value defined in Eq. (1) and retrieval performance (K = 15)
with YALE dataset are given. Here we set Y = I . We
use five types of initialization A(1), among which the first
4 types are used in generic diffusion process (Donoser and
Bischof 2013) and the last one is random values (default set-
ting in our method). A first glance at Fig. 2(a) shows that
when propagating affinities on the graph iteratively, RDP
tries to minimize the objective function in Eq. (1) until con-
vergence. It reveals the essential behavior of diffusion pro-
cess on tensor product graph at each iteration. Second, it is
observed that different initializations of A(1) will reach the

same equilibrium with different convergence speed. Gener-
ally, starting from kNN transition matrix leads to the fastest
convergence speed while random initializations is the slow-
est one. Third, the retrieval performances are exactly the
same at equilibrium as presented in Fig. 2(b). It demon-
strates the robustness of RDP as opposed to the variants
summarized in (Donoser and Bischof 2013) that require a
careful initialization of A(1).

Conclusions

In this paper, we concern on a family of algorithms called
diffusion process. Recent studies have demonstrated that dif-
fusion process on tensor product graph is more capable of re-
trieval task, but lack theoretical explanations on its essence.
By proposing a new variant called Regularized Diffusion
Process (RDP), we provide three insightful conclusions to
expose the principle of this kind of diffusion process. With
the given regularization framework, one can clearly observe
that RDP is minimizing a kind of relationships among four
tuples at each iteration, so that high order information pro-
vided by tensor product graph is necessary.

Recall that RDP converts retrieval task to classification
task solved by label propagation with only “correct” cate-
gory label. Thus, one can easily extend it by adding another
category labelled with “incorrect” to push these unmatched
object pairs far away during iteration. It can be expected that
the retrieval performances will be improved further by com-
bining the two kinds of similarity propagation. Moreover,
we will also study how to apply RDP to other related topics,
such as point matching (Ma et al. 2014). Those can be very
promising directions that can be investigated in the future.
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Appendix

Lemma 1. Assume that A, B and C are three matrices in
appropriate sizes, then vec(ABCT) = (C ⊗A)vec(B).

Lemma 2. Assume that A and B are two square matrices
of size N . Let λi

A (1 ≤ i ≤ N) be the eigenvalues of A
and λj

B (1 ≤ j ≤ N) be those of B, then the eigenvalues of
A⊗B are λi

Aλ
j
B (1 ≤ i, j ≤ N).

Proposition 1. The objective function in Eq. (1) is equiva-
lent to Eq. (2).

Proof. The equivalence between the right term of Eq. (1)
and Eq. (2) is obvious. Hence, we only focus on the left term
below.

Define α ≡ N(i − 1) + k and β ≡ N(j − 1) + l. Then
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the left term of Eq. (1) can be transformed into

1

2

N2∑
α,β=1

Wαβ

(
vec(A)α√

Dαα
− vec(A)β√

Dββ

)2

=

N2∑
α,β=1

Wαβ
vec(A)α

2

Dαα
−

N2∑
α,β=1

vec(A)α
Wαβ√
DααDββ

vec(A)β

=

N2∑
α=1

vec(A)α
2 − vec(A)TD−0.5

WD
−0.5vec(A)

=vec(A)T
(
I − D

−0.5
WD

−0.5
)
vec(A),

(15)
where W = W ⊗ W ∈ R

N2×N2

and D = D ⊗ D ∈
R

N2×N2

. Note that the symmetry property of W is used in
Eq. (15). Compared with Eq. (2), we need to present S =
D

−0.5
WD

−0.5 now. It holds, since

Sαβ = SijSkl = D−0.5
ii WijD

−0.5
jj D−0.5

kk WklD
−0.5
ll

= D
−0.5
αα WαβD

−0.5
ββ .

(16)

The proof is complete.
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