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Abstract

Conventional face hallucination methods rely heavily on ac-
curate alignment of low-resolution (LR) faces before upsam-
pling them. Misalignment often leads to deficient results and
unnatural artifacts for large upscaling factors. However, due
to the diverse range of poses and different facial expres-
sions, aligning an LR input image, in particular when it is
tiny, is severely difficult. To overcome this challenge, here
we present an end-to-end transformative discriminative neu-
ral network (TDN) devised for super-resolving unaligned and
very small face images with an extreme upscaling factor of
8. Our method employs an upsampling network where we
embed spatial transformation layers to allow local receptive
fields to line-up with similar spatial supports. Furthermore,
we incorporate a class-specific loss in our objective through a
successive discriminative network to improve the alignment
and upsampling performance with semantic information. Ex-
tensive experiments on large face datasets show that the pro-
posed method significantly outperforms the state-of-the-art.

Introduction

Face images provide vital information for visual perception
and identity analysis. Nonetheless, when the resolution of
the face image is very small (e.g. in typical surveillance
videos), there is little information that can be inferred from
it. Very low-resolution (LR) face images not only degrade
the performance of the recognition systems but also impede
human interpretation. This challenge motivates the recon-
struction of high-resolution (HR) images from given LR
counterparts, known as face hallucination, and attracts in-
creasing interest in recent years.

Previously proposed face hallucination methods based on
holistic appearance models (Liu, Shum, and Zhang 2001;
Baker and Kanade 2002; Wang and Tang 2005; Liu, Shum,
and Freeman 2007; Hennings-Yeomans, Baker, and Ku-
mar 2008; Ma, Zhang, and Qi 2010; Yang et al. 2010;
Li et al. 2014; Arandjelović 2014; Kolouri and Rohde 2015)
demand LR faces to be precisely aligned beforehand. How-
ever, aligning LR faces to appearance models is not a
straightforward task itself, and more often, it requires expert
feedback when the input image is small. Pose and expres-
sion variations that naturally exist in LR face images hin-
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der the accuracy of automatic alignment techniques, which
usually assume facial landmarks are visible and detectable.
As a result, the performance of face hallucination degrades
severely. Such a broad spectrum of pose and expression
variations also makes learning a comprehensive appearance
model even harder. For instance, Principal Component Anal-
ysis (PCA) based schemes become critically ineffective to
learn a reliable face model while aiming to capture differ-
ent in- and out-plane rotations, scale changes, translational
shifts, and facial expressions. As a result, these methods lead
to unavoidable artifacts when LR faces are misaligned or
depict different poses and facial expressions from the base
appearance model.

Rather than learning holistic appearance models, many
methods upsample facial components by transferring refer-
ences from an HR training dataset and then blending them
into an HR version (Tappen and Liu 2012; Yang, Liu, and
Yang 2013; Zhou and Fan 2015). These methods expect the
resolution of input faces to be sufficient enough for detect-
ing the facial landmarks and parts. When the resolution is
very low, they fail to localize the components accurately,
thus producing non-realistic faces. In other words, the fa-
cial component based methods are unsuitable to upsample
very LR faces.

In this paper, we present a new transformative discrimi-
native neural network (TDN) to overcome the above issues
and achieve super-resolving a tiny (i.e.16×16 pixels) and
unaligned face image by a remarkable upscaling factor 8,
where we reconstruct 64 pixels for each single pixel of the
input LR image.

Our network consists of two components: an upsampling
network that comprises deconvolutional and spatial transfor-
mation network (Jaderberg et al. 2015) layers, and a dis-
criminative network. The upsampling network is designed
to progressively improve the resolution of the latent fea-
ture maps at each deconvolutional layer. We do not assume
the LR face is aligned in advance. Instead, we compen-
sate for any misalignment and changes through the spatial
transformation network layers that are embedded into the
upsampling network. One can use the pixel-wise intensity
similarity between the estimated and the ground-truth HR
face images as the objective function in the training stage.
However, when the upscaling factor becomes larger, em-
ploying only the pixel-wise intensity similarity causes over-
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smoothed outputs. Therefore, we incorporate class similarity
information that is provided by a discriminative network to
enforce the upsampled HR faces to be similar to real face im-
ages. We back-propagate the discriminative errors to the up-
sampling network. Our end-to-end solution allows fusing the
pixel-wise and class-wise information in a manner robust to
spatial transformations and obtaining a super-resolved out-
put with much richer details.

Overall, our main contributions have four aspects:
• We present a novel end-to-end transformative discrimina-

tive network (TDN) to super-resolve very low-resolution
(16×16 pixels) face images with an upscaling factor 8×.

• For tiny input images where landmark based methods in-
herently fail, our method is the first solution to halluci-
nate an unaligned LR face image without requiring pre-
cise alignment in advance, which makes our method prac-
tical.

• Fusion of pixel-wise appearance similarity and class-wise
discriminative information allows the super-resolution
process to take full advantage of class-specific cues for
the alignment and detail enhancement tasks.

• Our method achieves almost 4 dB PSNR improvement
over the state-of-the-art.

Related Work

Face hallucination aims to magnify an LR image to its HR
version, which contains extra high-frequency details. State-
of-the-art face hallucination methods can be grouped into
two categories: appearance based methods and facial com-
ponents based methods.

Appearance based methods employ PCA to build a holis-
tic face model or apply reference HR patches to reconstruct
the HR counterparts of the LR patches. Baker and Kanade
(2002) construct high-frequency details of aligned frontal
face images by searching the best mapping between LR
and HR patches from the training dataset. Wang and Tang
(2005) develop an eigen-tranformation to super-resolve face
images by establishing a linear mapping between LR and
HR face subspaces. Liu, Shum, and Freeman (2007) employ
a PCA based global appearance model to upsample LR faces
and a local non-parametric model to enhance the facial de-
tails. Kolouri and Rohde (2015) explore optimal transport
and subspace learning to morph an HR output. Ma, Zhang,
and Qi (2010) hallucinate an LR face image with position
patches sampled from multiple aligned HR images, while Li
et al. (2014) model the local face patches as a sparse coding
problem. Since appearance based face hallucination meth-
ods require that the LR images are precisely aligned and
have the same pose and expression as the HR references,
these methods are sensitive to the misalignment of LR im-
ages. When misalignment or different poses and expressions
exist, their performance may degrade dramatically.

Facial components based methods super-resolve facial
parts rather than entire faces, and thus they can address vari-
ous poses and expressions. Tappen and Liu (2012) use SIFT
flow (Liu, Yuen, and Torralba 2011) to align LR images, and
then restore the details of LR images by deforming the ref-
erence HR images. Yang, Liu, and Yang (2013) first detect

facial components in the LR images and then transfer the
most similar HR facial components in the dataset to the LR
input. Since the facial components based methods require to
extract facial components from LR inputs, the resolution of
the input LR images cannot be very low. Otherwise, these
methods may fail to localize facial components, thus gener-
ating non-realistic HR results.

Recently, convolutional neural network (CNN) based
methods have been proposed and claimed the state-of-the-
art performance (Dong, Loy, and He 2016; Kim, Lee, and
Lee 2015; Wang et al. 2015; Bruna, Sprechmann, and Le-
Cun 2016). Because these methods are designed to upsam-
ple generic patches and do not fully exploit class-specific
information, they are not suitable to hallucinate tiny faces.
Zhou and Fan (2015) present a bi-channel CNN to halluci-
nate blurry face images. They first use CNN to extract facial
features and then feed the features to fully connected layers
to generate high-frequency facial details. This method is re-
stricted to the input image size as the other facial component
based approaches.

Proposed Method: TDN

Our transformative discriminative neural network achieves
the image alignment and super-resolution simultaneously.
The entire processing pipeline is shown in Fig. 1.

Network Architecture

The transformative discriminative neural network consists
of two parts: an upsampling network that combines spatial
transformation network layers and deconvolutional layers,
and a discriminative network.

Upsampling Network The parameters of our upsampling
network are shown in Fig. 1 (red frame).

Deconvolutional Layers: The deconvolutional layer, also
known back-convolutional layer, can be made of a cascade
of an upsampling layer and a convolutional layer, or a con-
volutional layer with a fractional stride. Therefore, the res-
olution of the output of the deconvolutional layers is larger
than the resolution of its input. We employ the �2 regres-
sion loss, also known as Euclidean distance loss, to constrain
the similarity between the hallucinated HR faces and their
original HR ground-truth versions. We notice that previ-
ous works also employ similar deconvolutional layers to up-
sample natural scenes (Long, Shelhamer, and Darrell 2015;
Fischer et al. 2015). However, they only apply to generic im-
ages without exploiting any class-specific cues. Thus, their
results tend to be smooth. In contrast, we train the network
with face images and let it learn and memorize the facial
parts for hallucination.

Spatial Transformation Layers: The spatial transforma-
tion network (STN) is recently proposed by Jaderberg et al.
(2015). It can estimate the motion parameters of images, and
warp images to the canonical view. In our architecture, the
spatial transformation network layers are represented as the
green boxes in Fig. 1. These layers contain three modules:
a localization module, a grid generator module, and a sam-
pler. The localization module consists of a number of hidden
layers and outputs the transformation parameters of an input
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Figure 1: Our TDN consists of two parts: an upsampling network (in the red frame) and a discriminative network (in the blue
frame).

relative to the canonical view. The grid generator module
creates a sampling grid according to the estimated param-
eters. Finally, the sampler module maps the input onto the
generated grid by bilinear interpolation.

Since we focus on in-plane rotations, translations, and
scale changes without requiring a 3D face model, we employ
the similarity transformation for face alignment. Although
the STN can warp images, it is not straightforward to use
them directly to align very LR face images. There are sev-
eral factors needed to be considered: (i) After the alignment
of LR images, facial patterns are blurred due to the resam-
pling of the aligned faces by bilinear interpolation. (ii) Since
the resolution is very low and a wide range of poses exists,
spatial transformations lead to alignment errors. (iii) Due to
the blur and alignment errors, the upsampling network may
fail to generate realistic HR faces. These factors can be ob-
served in Fig. 2(f), where simply employing an STN to align
an LR image causes artifacts in the upsampled faces due to
interpolation blur and alignment errors.

Instead of using a single STN to align LR face images,
we employ multiple STN layers to line up the feature maps.
Using multiple layers significantly reduces the load on each
spatial transformation network. In addition, resampling fea-
ture maps by multiple STN layers prevents from damaging
or blurring input LR facial patterns. Since STN layers and
the upsampling network are interwoven together (rather than
being two individual networks), the upsampling network can
learn to eliminate the undesired effects of misalignment in
the training stage. As shown in Fig. 2(e), our upsampling
network can reconstruct more high-frequency details than
the CNN based super-resolution method (SRCNN) (Dong,
Loy, and He 2016), even when SRCNN is retrained with face
patches.

Discriminative Network As seen in Fig. 2(e), the halluci-
nated faces are not sharp enough because the common parts
learned by the upsampling network are averaged from sim-

ilar components shared by different individuals. Thus, there
is a quality gap between the real face images and the halluci-
nated faces. To bridge this gap, we inject class information.
We integrate a discriminative network to distinguish whether
the generated image is classified as an upright real face im-
age or not. The parameters of the discriminative network are
shown in the blue frame of Fig. 1. We employ a binary cross-
entropy as the loss function. We backpropagate the discrim-
inative error to revise the coefficients of the upsampling net-
work, which enforces the facial parts learned by the decon-
volutional layers to be as sharp and authentic as the real
ones. A similar idea is employed in the generative adversar-
ial networks (Goodfellow, Pouget-Abadie, and Mirza 2014;
Denton et al. 2015; Radford, Metz, and Chintala 2015),
which are designed to generate a new face. Furthermore, the
use of class information also improves the performance of
the STN layers for face alignment since only upright faces
are classified as valid faces. Therefore, the discriminative
network also determines whether the faces are upright or not.
As shown in Fig. 2(g), with the help of the discriminative
information, the hallucinated face embodies more authentic,
much sharper and better aligned details.

Training Details of TDN

In the training stage of our TDN, we assemble LR and HR
face image pairs {Li, Hi} as our training dataset. Notice
that the LR image Li is not directly downsampled from the
HR image Hi. There are different rotations, translations, and
scale changes applied in the LR images while the training
HR images are kept upright.

For the upsampling network, we use a pixel-wise �2 re-
gression loss. Our intuition here is that the hallucinated HR
face image Ĥi should be similar to its corresponding refer-
ence HR image Hi. Since the STN layers are embedded in
the upsampling network, the objective function V (u, t) of
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(a) (b) (c) (d) (e) (f) (g)

Figure 2: Illustration of TDN with different configurations. (a) Unaligned 16×16 LR image. (b) Original 128×128 HR image.
(c) Bicubic interpolation. (d) Result of SRCNN (Dong, Loy, and He 2016) retrained with face patches. (e) Result of TDN
without the discriminator network. (f) Result of TDN where an STN applied on the LR image directly. (g) Our full TDN.

the upsampling network is modeled as

min
u,t

V (u, t) = Ep(Li,Hi)‖Ĥi −Hi‖2F , (1)

where u and t represent the parameters of the upsampling
network and the STN layers that are updated jointly. The
STN layers align the feature maps while the upsampling net-
work super-resolves the LR images with the deconvolutional
layers. Above, p(Li, Hi) represents the joint probability dis-
tribution of the LR and HR faces in the training dataset.

As we mentioned, we exploit the discriminative informa-
tion to achieve high-quality super-resolution of face images.
To this end, we employ a set of convolutional layers in our
discriminative network. These layers assess whether the hal-
lucinated face is real and upright, or not. If the upsampling
network can hallucinate an HR face that can convince the
discriminative network that it is an authentic face, our super-
resolved face will be very similar to real face images. In
other words, the discriminative network cannot differentiate
upsampled faces from real faces. This objective is achieved
by maximizing the cross entropy. Therefore, we optimize the
loss function of the discriminative network D as follows:

max
d

D(d) = E

[
logD(Hi) + log(1−D(Ĥi))

]

= Ep(Hi)[logD(Hi)] + Ep(Ĥi)
[log(1−D(Ĥi))],

(2)

where d indicates the parameters of the discriminative net-
work, and p(Hi) and p(Ĥi) represent the distributions of
real faces and the hallucinated faces from LR faces in the
dataset. The above objective reaches the maximum when the
network cannot distinguish Hi and Ĥi. The loss D is back-
propagated to the upsampling network to update the param-
eters u and t. By tuning u and t, the upsampling network
not only can super-resolve the LR face images with appear-
ance similarity, but also makes the hallucinated faces contain
more class-specific details.

We use RMSprop (Hinton ) to update the parameters u, t
and d. In order to maximize D, the parameters d are updated
by the stochastic gradient ascent,

Δj+1 = αΔj + (1− α)(
∂D

∂d
)2,

dj+1 = dj + γ
∂D

∂d

1√
Δj+1 + ε

,
(3)

where γ and α are the learning rate and the decay rate, j
represents the iteration index, Δ is an auxiliary variable, and
ε is set to 10−8 to avoid division by zero. The parameters
u and t are not only updated by the loss V but also D. For
simplicity, let T = (u, t), and the parameters are updated by
the stochastic gradient descent,

Δj+1 = αΔj + (1− α)(
∂V

∂T
+ λ

∂D

∂T
)2,

T j+1 = T j − γ(
∂V

∂T
+ λ

∂D

∂T
)

1√
Δj+1 + ε

,
(4)

where λ is used to trade off the appearance similarity con-
straint and the class-specific discriminative constraint. Since
we aim to super-resolve an LR image, we put more con-
straint on appearance similarity. In our experiments, we set
λ to 0.01. As the iterations progress, the upsampled faces
become more similar to real faces, and thus we reduce the
impact of the discriminative network gradually,

λi = max{λ · 0.99i, λ/2}, (5)

where i indicates the index of the epochs. Eqn. 5 guaran-
tees that the influence of the discriminative information is
preserved in the upsampling network. In our algorithm, the
learning rate γ is set to 0.001 and multiplied by 0.99 after
each epoch, and the decay rate is set to 0.01.

Hallucinating a Very LR Face Image

The discriminative network is only used for training of the
upsampling network. In the testing stage (super-resolving a
given test image), we feed the LR image into the upsam-
pling network to obtain its upright super-resolved HR ver-
sion. Because the ground-truth HR face images are upright
in the training stage of the entire network, the output of the
upsampling network will be an upright face image. As a re-
sult, our method does not require alignment of the very low-
resolution images in advance. Our network provides an end-
to-end mapping from an unaligned LR face image to an up-
right HR version, which mitigates potential artifacts caused
by misalignment.

Implementation Details

In Fig. 1, the STN layers are constructed by convolutional
and ReLU layers (Conv+ReLU), max-pooling layers with a
stride 2 (MP2) and fully connected layers (FC). In partic-
ular, STN1 layer is cascaded by: MP2, Conv+ReLU (with
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Table 1: Quantitative evaluation on the entire test dataset.
Methods Bicubic Yang (2010) Dong (2016) Liu (2007) Yang (2013) Ma (2010) Ours

PSNR 18.41 18.21 18.28 18.00 18.40 18.34 22.66
SSIM 0.54 0.52 0.54 0.48 0.53 0.52 0.66

the filter size: 512×20×5×5), MP2, Conv+ReLU (with
the filter size: 20×20×5×5), FC+ReLU (from 400 to 20
dimensions) and FC (from 20 to 4 dimensions). STN2

is cascaded by: MP2, Conv+ReLU (with the filter size:
256×128×5×5), MP2, Conv+ReLU (with the filter size:
128×20×5×5), MP2, Conv+ReLU (with the filter size:
20×20×3×3), FC+ReLU (from 180 to 20 dimensions) and
FC (from 20 to 4 dimensions). In the convolution operations,
we do not use padding.

In the following experimental part, some algorithms re-
quire the alignments of LR inputs (Liu, Shum, and Freeman
2007; Ma, Zhang, and Qi 2010). Thus, we use STN0 to align
the LR inputs images for those methods. The only difference
between STN0 and STN1 is that the first MP2 step in STN1

is removed in STN0.

Experiments

In this section, we compare our method with the state-of-the-
art methods qualitatively and quantitatively. (More experi-
mental results are given in the supplementary material.)

Dataset

Our network is trained on the Celebrity Face Attributes
(CelebA) dataset (Liu et al. 2015). There are more than
200K face images in this dataset, and the images cover dif-
ferent pose variations and facial expressions. In training our
network, we disregard these variations without grouping the
face images into different pose and facial expression subcat-
egories.

When generating the LR and HR face pairs, we randomly
select 30K cropped face images from the CelebA dataset,
and then resize them to 128×128 pixels as HR images. We
manually transform the HR images while constraining the
faces in the image region, and then downsample the HR im-
ages to generate their corresponding LR images. Note that,
we do not explicitly change the scale of faces because in
the CelebA the face sizes are different. (All protocol details,
data, and code for this paper will be released.)

Comparison with the State-of-the-Art

Since we super-resolve an image with a substantial upscal-
ing factor of 8×, for the methods that do not provide 8×,
we apply the maximum upscaling factors recommended by
the original papers multiple times (e.g., twice 4× upscal-
ing). For the face hallucination methods that assume very
low-resolution faces are aligned beforehand, we use STN0

to align LR faces. For fair comparisons and better illustra-
tion, we transform all the LR input images to the upright
view as the inputs of the other methods.

In Tab. 1, we report the quantitative comparison results
using the average PSNR and structural similarity scores
(SSIM) on the entire test dataset. As indicated in Tab. 1, our
TDN attains the best PSNR and SSIM results. We found that
if we only use the upsampling network to super-resolve LR
faces, we can gain an extra 0.18 dB improvement but pro-
duces over-smoothed results. Therefore, there is a trade-off
between the upsampling and discriminative networks. Since
we aim to hallucinate high-resolution realistic facial details,
we incorporate our discriminative network, and our TDN
achieves an impressive 4.25 dB PSNR improvement over the
state-of-the-art.

As shown in Fig. 3(c), traditional upsampling meth-
ods, i.e., bicubic interpolation, cannot hallucinate authentic
facial details. Since the resolution of inputs is very small,
little information is contained in the input images. Simply
interpolating input LR images cannot recover extra high-
frequency details. As seen in Fig. 3(c), the upsampled im-
ages by bicubic interpolation still have some skew effects
rather than laying in the upright view. This implies that sim-
ply using STN0 to align input images still suffers from mis-
alignment. Since we apply multiple STNs on the feature
maps, which improves the alignment of the LR inputs, our
method outputs well-aligned faces. As shown in the last row
of Fig. 3, STN0 uses bilinear interpolation to resample im-
ages, which changes the intensities of the LR input and in-
troduces extra blurriness as well. In contrast, with the help
of the discriminator network, our method can achieve much
sharper results.

As shown in Fig. 3(d), the sparse coding based super-
resolution (SCSR) method (Yang et al. 2010) cannot recon-
struct high-frequency details either when the scaling factor
is very large (e.g.8×), because the SCSR method cannot find
a consistent correspondence between LR and HR patches as
the upscaling factor becomes larger.

Dong, Loy, and He (2016) propose a patch based convolu-
tional network to super-resolve generic images, also known
as SRCNN. This method is trained on generic patches and
the maximum upscaling factor is 4. SRCNN, as a patch
based method, cannot capture the whole face structure.
However, training SRCNN with the whole face will intro-
duce more ambiguity between LR and HR patches because
the training patch size (i.e.128×128) is too large to learn
a valid non-linear mapping. Hence, we retrain their model
with face patches and an upscaling factor 8. As seen in
Fig. 2(e), SRCNN cannot produce authentic high-frequency
facial details. This also implies that our upsampling network
is more suitable for the face hallucination task.

The face hallucination method based on appearance
model (Liu, Shum, and Freeman 2007) can super-resolve
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Figure 3: Comparison with the state-of-the-arts methods. (a) LR inputs. (b) Original HR images. (c) Bicubic interpolation. (d)
Yang et al.’s method (2010). (e) Dong, Loy, and He’s method (2016) (SRCNN). (f) Liu, Shum, and Freeman’s method (2007).
(g) Yang, Liu, and Yang’s method (2013). (h) Ma, Zhang, and Qi’s method (2010). (i) Our method.

very LR face images when the faces are precisely aligned
(i.e., face positions and head poses). Because the alignment
errors of LR faces by STN0 exist, the aligned LR faces have
shifts with the appearance model. Besides, we use all the
faces in the training dataset to train an appearance model,
and there are different facial expressions and poses in the
training dataset, which make the appearance model noisy.
Hence, as shown in Fig. 3(f), their results suffer severe arti-
facts without hallucinating authentic facial details.

The structured face hallucination method (Yang, Liu, and
Yang 2013) looks for the most similar facial components
in the dataset and then transfer those HR components to
the LR input ones. However, when the resolution of the
input images is very small, localizing facial landmarks in
LR inputs is difficult. Thus their method cannot accurately
find the most similar facial components in the dataset and
fails to output HR transferred components, as illustrated in
Fig. 3(g). Therefore, this method is unsuitable to hallucinate
very LR face images.

Ma, Zhang, and Qi’s method (2010) exploits position
patches to hallucinate HR faces. Thus this method requires

the LR inputs to be precisely aligned with the reference
images in the training dataset. As seen in Fig. 3(h), when
there are obvious alignment errors in the aligned LR faces,
their method will output mixed faces in their results. Fur-
thermore, as the upscaling factor increases, the correspon-
dences between LR and HR patches become more inconsis-
tent. Hence, this method suffers from obvious block artifacts
around the boundaries of different patches.

As shown in Fig. 3(i), our method reconstructs authentic
facial details. Note that, the reconstructed faces have differ-
ent poses and facial expressions. Since our method applies
multiple STNs on feature maps to align face images, we can
achieve better alignment results without damaging input LR
images. Furthermore, our method does not need to warp in-
put images directly, so there are no blank regions in our re-
sults. It implies that our method can exploit information bet-
ter than the other methods.

Conclusions

We presented a transformative discriminative network to
super-resolve unaligned very low-resolution face images in
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an end-to-end manner. Our network learns how to align faces
and how to upsample them by making use of the class-
specific information. It attains a significant upsampling fac-
tor of 8× while hallucinating rich and authentic facial de-
tails. Since our method does not require any feedback of face
poses and facial expressions, it is very practical.
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