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Abstract

Cosegmentation jointly segments the common objects from
multiple images. In this paper, a novel clustering algo-
rithm, called Saliency-Guided Constrained Clustering ap-
proach with Cosine similarity (SGC3), is proposed for the
image cosegmentation task, where the common foregrounds
are extracted via a one-step clustering process. In our method,
the unsupervised saliency prior is utilized as a partition-level
side information to guide the clustering process. To guarantee
the robustness to noise and outlier in the given prior, the sim-
ilarities of instance-level and partition-level are jointly com-
puted for cosegmentation. Specifically, we employ cosine dis-
tance to calculate the feature similarity between data point
and its cluster centroid, and introduce a cosine utility func-
tion to measure the similarity between clustering result and
the side information. These two parts are both based on the
cosine similarity, which is able to capture the intrinsic struc-
ture of data, especially for the non-spherical cluster structure.
Finally, a K-means-like optimization is designed to solve our
objective function in an efficient way. Experimental results on
two widely-used datasets demonstrate our approach achieves
competitive performance over the state-of-the-art cosegmen-
tation methods.

Introduction

Cosegmentation aims to obtain the similar foreground ob-
jects from multiple images simultaneously (Rother et al.
2006; Joulin, Bach, and Ponce 2010; Rubinstein et al.
2013; Fu et al. 2015a). Existing cosegmentation meth-
ods are divided into two categories: graph-based methods
and clustering-based ones. Graph-based methods generate
a graph model to connect the image elements (e.g., super-
pixels and object proposals), and select the common objects
by optimizing the problem. However, these methods heavily
depend on the graph construction, which are usually sensi-
tive to the edge definition. To alleviate such negative effect,
clustering-based methods try to achieve cosegmentation by
using the clustering manner (Joulin, Bach, and Ponce 2010;
2012; Lee et al. 2015). However, these works may suf-
fer from a high time complexity. For example, Joulin et
al. (Joulin, Bach, and Ponce 2012) partitioned image ele-
ments by combining spectral and discriminative clustering
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over multiple images, while their computing was burdened
by using the expectation-minimization (EM) algorithm to
solve an energy minimization problem. Lee et al. (Lee et
al. 2015) employed the multiple random walker clustering
algorithm to cosegment images, which still costs much on a
two-stage clustering process. Different from these methods,
we solve the cosegmentation task in a highly efficient way,
that is, a one-step clustering framework.

Image clustering is not an easy task, due to the different
illumination, arbitrary poses, various object shapes and clut-
tered backgrounds. Thus, without giving any prior knowl-
edge about foreground objects, the most existing clustering
methods do not perform well for cosegmentation task di-
rectly. Inspired by the constrained clustering (Wagstaff et
al. 2001), we aim to improve clustering based cosegmen-
tation by using prior knowledge. The work in (Liu and Fu
2015) proposed a clustering method by using partition-level
side information. It formulates given labels as a partial par-
tition to facilitate the clustering process. However, the ex-
isting work (Liu and Fu 2015) cannot be applied to image
cosegmentation directly. First, its side information is from
ground-truth or human interaction, which is not suitable for
unsupervised cosegmentation task. Second, it only provides
solution by computing feature similarity with the Euclidean
distance, which does not perform well for the histogram-like
feature descriptors (e.g., bag-of-word) that are widely used
in computer vision community.

To address above problems, we propose a novel Saliency-
Guided Constrained Clustering method with Cosine sim-
ilarity (SGC3) for the image cosegmentation task (see
Fig. 1). Under a partial observation strategy, the unsuper-
vised saliency prior is derived as a partition-level side in-
formation to give the knowledge of foreground and allevi-
ate the misleading from common backgrounds. To guaran-
tee the robustness to noise and outlier in the given prior, we
jointly compute the similarity at both an instance-level and
partition-level. Specifically, we calculate the feature similar-
ity between data point and its cluster centroid by using co-
sine distance; and measure the similarity between clustering
result and the side information with a cosine utility func-
tion (Wu et al. 2015). Moreover, when calculating the fea-
ture similarity, our approach integrates multiple feature de-
scriptors to further improve the clustering performance. Fi-
nally, by introducing a concatenated matrix, these two level
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similarities are both involved in a one-step clustering frame-
work, with a K-means-like optimization being designed to
solve our problem in a linear time complexity. We summa-
rize the contributions of this paper in threefold:

• An efficient cosegmentation method is proposed, which
utilizes unsupervised saliency priors to solve cosegmen-
tation via a one-step clustering framework.

• The saliency-guided prior is derived as a partition-level
side information to guide the clustering process. More im-
portantly, by jointly considering the feature and partition
similarity, our clustering algorithm enjoys a high robust-
ness to the outlier and noise in the side information, which
makes it flexible for the unsupervised prior.

• The proposed SGC3 is solved with cosine similarity,
which is more effective to capture non-spherical clus-
ter structure than traditional Euclidean distance. Besides,
nontrivially, we give a new insight to the cosine utility
function, leading to a K-means-like optimization solution.

Related Work

Graph-based cosegmentation generates a graph model to
organize the instances from images, and transfers the coseg-
mentation task into an instance selection problem. It can uti-
lize the corresponding information shared with images ef-
fectively, but the edge of graph is hard to define. Rother
et al. (Rother et al. 2006) first introduced cosegmentation
as to simultaneously extract the common object from an
image pair, and solved it by histogram matching within a
Markov Random Field (MRF) framework. Following that
work, a great deal of methods were proposed to formal-
ize cosegmentation as a MRF energy minimization prob-
lem, such as half-integrality algorithms (Mukherjee, Singh,
and Dyer 2009), max-flow graph cut model (Hochbaum and
Singh 2009), and the scale-invariant model via rank con-
straint (Mukherjee, Singh, and Peng 2011). This kind of
method mainly achieved cosegmentation by forcing the con-
sistency of foreground features between image pair or multi-
ple images, where the key factor is to design an appropriate
appearance model that can separate foreground from back-
ground directly (Vicente, Rother, and Kolmogorov 2011;
Fu et al. 2015b; Zhao and Fu 2015).

Clustering-based cosegmentation treats the cosegmen-
tation task as the traditional clustering problem. It intro-
duces the global constraint to guarantee the correspondences
of the common foregrounds from multiple images. Joulin
et al. (Joulin, Bach, and Ponce 2010) handled the appear-
ance variation among foreground objects by using a dis-
criminative clustering framework, and then extended their
model to handle the multi-class case in (Joulin, Bach, and
Ponce 2012), which combined the spectral and discrimi-
native clustering. However, this work suffered from an ex-
pensive computing cost. In addition, random walk algo-
rithm was also used by some clustering-based cosegmenta-
tion methods. Collins et al. (Collins et al. 2012) enforced the
constraint that the foreground histograms should match each
other in the random walk process to assist cosegmentation.
Recently, Lee et al. (Lee et al. 2015) provided a multiple
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Figure 1: An illustration of our cosegmentation method.

random walker algorithms and designed a restart rule for the
clustering task. They obtained the cosegmentation result via
a two-stage clustering process and multi-pass refinement.

Saliency detection has been widely used for object seg-
mentation (Jia et al. 2015; Achanta et al. 2008; Wang,
Shen, and Porikli 2015); meanwhile, co-saliency (Fu, Cao,
and Tu 2013; Cao et al. 2014; Liu et al. 2014) is highly
related to cosegmentation. Thus, similar to us, previous
works (Chang, Liu, and Lai 2011; Rubinstein et al. 2013;
Fu et al. 2015a) also employed saliency prior to guide coseg-
mentation. A substantial difference between our work and
theirs is that, they both formulated cosegmentation as a
graph-based model and utilized saliency to define the unary
energy; by contrast, our approach cosegments images via a
one-step clustering framework, and takes saliency prior as
a partition-level side information to facilitate the clustering
process, which provides a novel way to use saliency priors.

The Proposed Method

The framework of our SGC3 based cosegmentation method
is shown in Fig. 1. Given a group of input images (a),
we first perform the saliency detection method to obtain
saliency priors (b) for all the images. Then each image is
over-segmented as a set of superpixels (c) by using SLIC
method (Achanta et al. 2012). After that, based on (b) and
(c), we obtain the partition-level side information (d). Our
model extracts several feature descriptors (e.g., SIFT (Liu,
Yuen, and Torralba 2011), Texton (Sivic and Zisserman
2003) and LAB colors (Deselaers and Ferrari 2010)) on the
superpixel level, each of which is represented by a bag-of-
word (BoW). These BoWs are concatenated as the multi-
descriptor features (e). Finally, all the superpixels in (c) are
divided into foreground and background by directly con-
ducting SGC3 algorithm with the “label” information (d)
and multi-descriptor features (e). Finally, we achieve coseg-
mentation results (f) via a one-step clustering process.

In the following, we will first show how to derive the
saliency-guided side information, and then give more details
about our SGC3 clustering algorithm and its solution.

Saliency-Guided Partition-Level Side Information

Generally, there are two main advantages of using saliency
prior for cosegmentation: (1) saliency detection methods
provide an unsupervised and rapid way to detect the fore-
ground regions; (2) only the salient object regions are high-
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lighted, thus it can guide the clustering process to restrain the
misleading from similar backgrounds1. However, the fore-
ground “label” provided by saliency prior is noised and leads
incorrect saliency detection results. Thus, we employ a par-
tial observation strategy to derive the partition-level side in-
formation from saliency prior.

We denote X as a set of superpixels consisting of all the
images. Without loss of generality, for ∀x ∈ X , let M be the
saliency map for the image containing x, and M(x) ∈ [0, 1]
be the saliency prior of x, which is computed by averaging
saliency values of all the pixels within x. Then, the side in-
formation S is defined as:

S(x) =

⎧⎪⎨
⎪⎩
2: foreground, M(x) ≥ Tf

1: background, M(x) ≤ Tb

0: missing, otherwise
, (1)

where Tf is a threshold for foreground and Tb for back-
ground. As suggested by (Jia and Han 2013), we define Tf as
the adaptive threshold as Tf = μ+ δ, where μ and δ denote
the mean and standard deviation of M , respectively. Instead
of assigning background to the remainder directly, Tb = μ
is introduced as another threshold, which assumes that the
superpixels lower than the average saliency value should be-
long to the background. By using Eq. (1), we remain the un-
certainty of saliency prior as missing observations to avoid
incorrectly labeling.

As shown by Fig. 1 (d), only a part of foreground re-
gions are correctly labeled as foreground by using the adap-
tive threshold. Thus, compared with simply regarding the
remainder regions as background, our partial observation
strategy can “save” a great deal of foreground regions into
the missing group. It is worthy to note that, most of these
regions are finally segmented as foreground object by our
clustering method in Fig. 1 (f), which shows our approach
can alleviate the deficiency of saliency prior effectively.

SGC3 Clustering Algorithm

Given a set of superpixels X that consists of multiple im-
ages, we formulate cosegmentation as a clustering problem
that aims to divide all the superpixels in X into K = 2
classes. We denote n as |X |. Let X = [X(1), · · · , X(r)]
be the multi-descriptor feature matrix for X , where r is the
number of feature descriptors and X(i) ∈ R

n×d(i)

repre-
sents n superpixels with the i-th feature descriptor of d(i)
dimensionality, 1 ≤ i ≤ r, and S be the side information.
Then, our objective function is formulated as:

min
π

r∑
i=1

K∑
k=1

∑
x(i)∈Ck

wif(x
(i),m

(i)
k )− λUcos(π ⊗ S, S), (2)

where wi is the weight corresponding to the i-th descriptor,
λ the trade-off parameter, and Ck the superpixel set of the
k-th cluster. We denote x(i) as one row in X(i), and m(i)

k as
the centroid of Ck in X(i). f is defined as the cosine distance
with the following formulation (Wu et al. 2015):

f(a, b) = ||a||(1− 〈a, b〉
||a||||b|| ) = ||a||(1− cos(a, b)), (3)

1It is natural and reasonable to assume that the foreground ob-
ject usually draws more attention in an image.

where a, b are two vectors containing the same number of
elements, || · || is the �2 norm, 〈a, b〉 represents the inner
product and cos(a, b) denotes the cosine similarity.

In Eq. (2), π is the n×1 indicator vector for segmentation
that assigns each superpixel a label in {1, · · · ,K}, π ⊗ S
corresponds to the non-missing prior information in S, and
Ucos is the cosine utility function (Wu et al. 2015), which is
defined as:

Ucos(π
′, S) =

K∑
k=1

pk+||〈p
(S)
k1

pk+
, · · · , p

(S)
kK

pk+
〉||, (4)

where π′ = π ⊗ S, p(S)
kj = n

(S)
kj /nτ and pk+ = nk+/nτ ,

1 ≤ j, k ≤ K, and τ is the proportion of non-missing labels
in S. Here, p(S)

kj and pk+ are defined according to the nor-
malized contingency matrix to measure the co-occurrence
of two discrete variables, where nk+ =

∑K
j=1 n

(S)
kj , n(S)

+j =
∑K

k=1 n
(S)
kj , and n(S)

kj denotes the number of data instances

(i.e., superpixels) that are both belonging to the cluster C(S)
j

in S and cluster Ck in π′. It is worth to note that, in Eq. (4),
we use �2 norm to measure the distribution of the projection
S to the k-th cluster in π′, and then linearly combine the
K distribution with the cluster size in π′ as the weights to
obtain Ucos. Ucos is employed to measure the similarity of
two partitions, rather than two instances, and the larger Ucos

indicates more similar partitions.
Taking a close look at Eq. (2), the benefits of the proposed

SGC3 lie in several points. (1) The side information is for-
mulated as the partial partition to guide the clustering pro-
cess. By this means, our model enjoys more consistency of
the labels compared with the traditional pairwise constrained
clustering, and improve the robustness of using unsuper-
vised pre-given knowledge (e.g., saliency priors). (2) Co-
sine similarity is employed for computing feature distance,
which is able to capture the non-spherical cluster and is more
efficient than squared Euclidean distance when dealing with
sparse and high-dimensionality features, such as BoW fea-
tures. (3) A cosine similarity based utility function Ucos is
introduced to measure the similarity between the final par-
tition π and the saliency prior. In such way, we aim to find
the clustering solution which captures the intrinsic structure
from the data itself, and also agrees with the partition-level
side information as much as possible.To sum up, we not only
calculate the feature similarity between instances and their
corresponding centroids at an instance-level, but also mea-
sure the similarity between clustering result and side infor-
mation at a partition-level. By jointly considering with these
two-level similarities, our SGC3 model is robust to the noisy
saliency prior. The last two points are also the major dif-
ferences from (Liu and Fu 2015). We can also verify these
benefits in experimental results in Table 4.

Solution

It is non-trivial to optimize the objective function in Eq. (2).
Unlike the objective function in (Liu and Fu 2015), which
can be organized into the matrix formulation, the objective
function of SGC3 is in an element-wise formulation, which
means we cannot employ augmented Lagrangian method to
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take the derivative of each unknown variables. To handle
this challenge, we pay much efforts on the second term in
Eq. (2) and provide a new insight of the objective function.
A K-means-like optimization is finally designed to solve the
problem in an efficient way.

The utility function measures the similarity at the
partition-level, here we introduce the following lemma to
measure the dissimilarity of two partitions by a distance
function.
Lemma 1. Given two partitions H and S to separate a set
of data instances X into K clusters, we have

K∑
k=1

∑
s∈Ck

f(s,m
(S)
k ) ∝ −Ucos(H,S), (5)

where s represents one row of S, and C1, C2, · · · , CK are K
clusters in H , m(S)

k is the k-th centroid vector of S accord-
ing to Ck in H and f is the cosine distance.

Proof. According to the point-to-centroid distance (Wu et
al. 2012), the cosine distance can be rewritten as:

f(a, b) = φ(a)− φ(b)− (a− b)�∇φ(b), (6)

where a, b are the non-zero vectors containing the same
number of elements and φ(a) = ||a||. Then we have

K∑
k=1

∑
s∈Ck

f(s,m
(S)
k )

=

K∑
k=1

∑
s∈Ck

(φ(s)− φ(m
(S)
k )− (s−m

(S)
k )�∇φ(m

(S)
k ))

=α−
K∑

k=1

|Ck|φ(m(S)
k )− β,

where α ≡ ∑K
k=1

∑
s∈Ck

φ(s) and β ≡ ∑K
k=1

∑
s∈Ck

(s −
m

(S)
k )�∇φ(m(S)

k ). Since S is given in advance, α part is
a constant and β part equals zeros due to the definition of
centroid. Recall the variables in Eq. (4), it is easy to calculate
the centroids as:

m
(S)
k = 〈p

(S)
k1

pk+
,
p
(S)
k2

pk+
, · · · , p

(S)
kK

pk+
〉. (7)

According to the deduction above and Eq. (7), Eq. (5) holds
and we finish the proof.

Remark 1. In addition to employing utility function to cal-
culate the similarity of two partitions, Lemma 1 gives a way
to calculate the dissimilarity by a distance function. By this
means, we have a new insight of the objective function in
Eq. (2), which can be rewritten as following:

min
π

r∑
i=1

K∑
k=1

∑
x(i)∈Ck

wif(x
(i),m

(i)
k ) + λ

K∑
k=1

∑
x∈Ck∩S

f(s,m
(S)
k ).

(8)

Inspired by (Liu et al. 2015; 2016), we seek for a K-
means-like optimization to solve this problem in Eq. (8). Be-
fore giving the solution, an auxiliary matrix B is introduced.

Here we separate the data in each descriptor X(i) into two
parts X(i)

1 and X
(i)
2 , where the instances in X

(i)
1 have the

corresponding side information in S and those in X
(i)
2 do

not have. Then the auxiliary matrix B can be organized as
follows.

B =

[
X

(1)
1 X

(2)
1 · · · X

(r)
1 S

X
(1)
2 X

(2)
2 · · · X

(r)
2 0

]
.

We can see that B = {b} consists of r + 1 parts by con-
catenating multi-descriptor and side information, i.e. b =
〈b(1), · · · , b(r), b(S)〉; for those instances without side infor-
mation, zeros are used to fill up. Based on the auxiliary ma-
trix B, we have the following theorem to solve Eq. (8) in a
neat mathematical way.
Theorem 1. Given the multi-descriptor data matrix X =
[X(1), · · · , X(r)], the side information S and the auxiliary
matrix B, we have

min
π

r∑
i=1

K∑
k=1

∑
x(i)∈Ck

wif(x
(i),m

(i)
k )− λUcos(π ⊗ S, π)

⇔ min
π

K∑
k=1

∑
b∈Ck

f ′(b,mk),

where b denotes one instance (or row) in B and mk =

〈m(1)
k ,m

(2)
k , · · · ,m(r)

k ,m
(S)
k 〉 can be calculated as:

m
(i)
k =

∑
b∈Ck

b(i)

|Ck| , 1 ≤ i ≤ r, m(S)
k =

∑
b∈Ck∩S b(S)

|Ck ∩ S| , (9)

and the distance function f ′ can be computed by

f ′(b,mk) =

r∑
i=1

wif(b
(i),m

(i)
k ) + λI(b ∈ S)f(b(S),m

(S)
k ),

(10)
where I(b ∈ S) = 1 means that S contains the side infor-
mation for the instance b; and 0 otherwise.

Proof. It is easy to prove that
K∑

k=1

∑
b∈Ck

f ′(b,mk)

=
K∑

k=1

∑
b∈Ck

(

r∑
i=1

wif(b
(i),m

(i)
k ) + λI(b ∈ S)f(b(S),m

(S)
k ))

=

K∑
k=1

∑
b∈Ck

r∑
i=1

wif(b
(i),m

(i)
k ) + λ

K∑
k=1

∑
x∈Ck∩S

f(s,m
(S)
k ).

(11)
According to Lemma 1, Theorem 1 holds and we complete
the proof.

Remark 2. Theorem 1 gives a way to handle the problem
in Eq. (2) via K-means, which has a neat mathematical way
and can be solved with high efficiency. Taking a close look
at the concatenating matrix B, the side information can be
regarded as new features with more weights, which is con-
trolled by λ. For the m

(i)
k , 1 ≤ i ≤ r, the centroids are

the traditional arithmetic mean. Since the missing prior pro-
vides no utility for the clustering, m(S)

k only takes the non-
missing prior into account.
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Algorithm 1 The algorithm of SGC3 for cosegmentation

Input: X = [X(1), · · · , X(r)], data matrix of r descriptors;
K, number of clusters;
S, τ -partition-level side information, τn×K;
λ, trade-off parameter.

Output: optimal π (segmentation result);
1: Build the concatenating matrix B;
2: Randomly select K instances as centroids;
3: repeat
4: Assign each instance to its closest centroid by the dis-

tance function in Eq. (10);
5: Update centroids by Eq. (9);
6: until the objective value in Eq. (2) remains unchanged.

Convergence Analysis

Although Algorithm 1 is not the standard K-means, it has
the convergence guarantee in both theoretical and practical
perspectives. Moreover, it enjoys the almost same time com-
plexity with the standard K-means, O(IKn(

∑r
i=1 d

(i) +
K)), where I is the iteration number, K is the cluster num-
ber, n and d(i) are the instance number and feature number in
X(i), respectively. Usually, we have K 
 n and d(i) 
 n,
so the algorithm is roughly linear to the instance number,
which indicates our proposed SGC3 is suitable for large-
scale datasets.

Experiment

In this section, we first give some basic setting in the exper-
iment, then evaluate the proposed algorithm on two bench-
mark datasets, and finally discuss some factors that may ef-
fect our model.

Experimental Setting

Datasets and Criterion. We conduct our experiment on
two benchmark datasets, which are iCoseg dataset2 (Ba-
tra et al. 2011), and Internet dataset3 (Rubinstein et al.
2013), respectively. For quantitative evaluation, we utilize
Precision, denoted as P (i.e., the ratio of correctly labeled
pixels), and Jaccard index, denoted as J (i.e., the inter-
section over union of the result and the ground-truth seg-
mentation), by following (Joulin, Bach, and Ponce 2012;
Rubinstein et al. 2013).

Compared Methods. We compare our method with five
state-of-the-art methods, including Kim11 (Kim et al. 2011),
Jou12 (Joulin, Bach, and Ponce 2012), Rub13 (Rubinstein
et al. 2013), Fu15 (Fu et al. 2015a) and Lee15 (Lee et al.
2015). For the former three, we directly use the results pro-
vided by (Rubinstein et al. 2013). Since (Fu et al. 2015a)
only provides the results on iCoseg, we just compare with
Fu15 on that dataset. For Lee15, we run the author’s code
with the recommended parameter setting.

Implementation Details. In this paper, we utilized three
saliency detection methods (Yang et al. 2013; Yan et al.

2http://chenlab.ece.cornell.edu/projects/touch-coseg/
3http://people.csail.mit.edu/mrub/ObjectDiscovery/

Table 1: Comparison results of segmentation performance
between SGC3 and other methods on the iCoseg dataset

Kim11 Jou12 Rub13 Fu15 Lee15 SGC3

P 70.2 70.4 89.8 88.1 90.6 90.8

J 42.6 39.7 68.4 60.2 70.0 70.4

Le
e
et
al
.

O
ur
s

O
ur
s

Le
e
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.

Figure 2: Visual comparison results between SGC3 and (Lee
et al. 2015) on iCoseg. Best viewed in color.

2013; Qin et al. 2015) and averaged their results as the
saliency prior. We used three BoW histograms as multi-
descriptor features, which are computed by SIFT (Liu, Yuen,
and Torralba 2011), Texton (Sivic and Zisserman 2003)
and LAB colors (Deselaers and Ferrari 2010), respectively.
In details, for each individual descriptor, we obtained 300
words by perform K-means clustering on each image group
with the superpixel-level feature. The weights of these three
descriptors are set to be 0.6, 0.2 and 0.2, respectively. More-
over, we set the λ in Eq. (2) as 1e3 as the default setting.

All the experiments were conducted by MATLAB on a
64-bit Windows platform with two Intel Core i7 3.4GHz
CPUs and 32GB RAM.

iCoseg Dataset

The iCoseg dataset is a widely-used benchmark for image
cosegmentation, which consists of 38 image groups with 643
images in total. In the experiment, we test our approach by
following the same setting in (Rubinstein et al. 2013), which
selects 31 image groups with 530 images. Table 1 shows
the cosegmentation performance of the proposed SGC3 and
compared methods in terms of P and J , respectively. As
can be seen, we achieve the best performance over both
the graph-based (Kim11, Rub13, and Fu15) and clustering-
based (Jou12 and Lee15) cosegmentation methods. It is
worthy to note that, our approach outperforms the RGB-D
cosegmentation method Fu15 (Fu et al. 2015a), which actu-
ally utilizes an additional depth cue, with an improvement of
round 10% by J . This indicates that our model is even more
effective than the real multi-modality one. Though the pro-
posed SGC3 is slightly higher than Lee15, it is an appealing
tool for cosegmentation by taking the time efficiency into
account (See Table 3).
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Table 2: Comparison results of segmentation performance
between SGC3 and other methods on the Internet dataset

Internet Airplane Car Horse
P J P J P J

Kim11 80.2 7.9 68.9 0.04 75.1 6.4
Jou12 47.5 11.7 59.2 35.2 64.2 29.5
Rub13 88.0 55.8 85.4 64.4 82.8 51.7
Lee15 52.8 36.3 64.7 42.3 70.1 39.0
SGC3 79.8 42.8 84.8 66.4 85.7 55.3

Internet Dataset

The Internet dataset is a challenging one for cosegmenta-
tion, which collects thousands of images from the Internet
through three categories of Airplane, Car and Horse. By
following (Rubinstein et al. 2013; Chen, Shrivastava, and
Gupta 2014), we use a subset of the Internet dataset as 100
images per class. Table 2 summarizes the segmentation per-
formance of our approach and the compared methods. Over-
all, SGC3 outperforms others on two classes (i.e., Car and
Horse), which shows we have a very competitive perfor-
mance to the state-of-the-art. Note that, we perform much
better than Lee15 on this dataset, implying our SGC3 is more
robust to different scenarios than (Lee et al. 2015). One may
concern that, our method has a relatively lower performance
on the Airplane. Actually, this is mainly because the fea-
tures we used has a extremely poor clustering performance
on Airplane. The J score obtained by conducting K-means
with cosine distance is under 25.0% for each individual fea-
ture descriptor. However, in general, our approach can utilize
the feature similarity to recover the missing observations in
the saliency prior, which has been demonstrated on the In-
ternet dataset.

Discussion

We discuss the time efficiency and different components of
SGC3 on the iCoseg dataset as the following.

Time Efficiency. As shown in Table 3, we compare our
method with two clustering-based cosegmentation methods
in terms of the total execution time by running their code.
Our approach is over 4 times faster than Jou12 and 3 times
faster than Lee15. Moreover, we show the time cost of dif-
ferent steps in our SGC3 framework. As can be seen, our
clustering process costs little time. Actually, extracting fea-
tures is the most time-consuming part in our model. Overall,
the proposed SGC3 is a highly efficient clustering algorithm.

Component Analysis. Table 4 summarizes the perfor-
mance of different components in our model. In details, we
first run our method without using saliency prior (i.e., λ = 0)
on each single-view feature, respectively. Then, we test the
saliency prior by thresholding it as binary segmentation with
the adaptive threshold in (Jia and Han 2013). Moreover, to
explore the superiority of cosine similarity to the Euclidean
distance, we implement Liu15 (Liu and Fu 2015) with the
same saliency prior to our model. Since Liu15 cannot in-
tegrate multiple features, we run it with different descrip-
tor, and report the best. We also perform our SGC3 model

Table 3: Comparison of computational time between SGC3

and other clustering-based methods on iCoseg dataset

#Image Jou12 Lee15 SGC3

Prior Clustering Total
643 8.25h 5.83h 0.23h 52.57s 1.96h

Table 4: Comparison of multiple descriptors, saliency prior,
Euclidean distance (Liu and Fu 2015) and different weight
setting on the iCoseg dataset

SIFT Text. LAB Prior Liu15 SGC3
w1 SGC3

w2

P 66.7 64.9 60.5 87.7 75.8 90.3 90.8
J 38.7 36.4 38.9 61.3 53.4 70.0 70.4

with two different weights, where SGC3
w1 represents equal

weights and SGC3
w2

denotes the default ones.
Several important observation could be summarized in

Table 4. (1) Without the guidance of saliency prior, it cannot
achieve a satisfactory segmentation performance by clus-
tering with single descriptor. (2) Our SGC3 effectively im-
proves the segmentation performance over the saliency prior
(3% by P and 9% by J), whilst Liu15 degrades the prior
significantly, which fully demonstrates the benefit of using
cosine similarity to the Euclidean distance. (3) Our model
is insensitive to the weights of different feature descriptors,
as the performance of SGC3

w1 and SGC3
w2 are almost same.

To sum up, saliency prior is significant to guide the cluster-
ing process for cosegmentation, and our model boosts the
performance of the given prior effectively.

Conclusion

A novel Saliency-Guided Constrained Clustering method
with Cosine similarity (SGC3) was presented for cosegmen-
tation in this paper. Multi-descriptors were integrated for
a robust performance, and the side information provided
by unsupervised saliency priors was employed to guide the
clustering process with a cosine similarity based utility func-
tion. By simultaneously considering with the feature simi-
larity and partition similarity, our method could handle the
outlier and noise in saliency priors, and recovered the miss-
ing observations effectively. A K-means-like solution was
provided to solve SGC3 in a highly efficient way. Exten-
sive experiments on two widely used benchmark datasets
demonstrated the competitive performance of our approach
compared with the state-of-the-art.
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