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Abstract

Attention mechanisms have recently been introduced in deep
learning for various tasks in natural language processing and
computer vision. But despite their popularity, the “correct-
ness” of the implicitly-learned attention maps has only been
assessed qualitatively by visualization of several examples. In
this paper we focus on evaluating and improving the correct-
ness of attention in neural image captioning models. Specif-
ically, we propose a quantitative evaluation metric for the
consistency between the generated attention maps and human
annotations, using recently released datasets with alignment
between regions in images and entities in captions. We then
propose novel models with different levels of explicit super-
vision for learning attention maps during training. The su-
pervision can be strong when alignment between regions and
caption entities are available, or weak when only object seg-
ments and categories are provided. We show on the popular
Flickr30k and COCO datasets that introducing supervision of
attention maps during training solidly improves both atten-
tion correctness and caption quality, showing the promise of
making machine perception more human-like.

Introduction
Recently, attention based deep models have been proved ef-
fective at handling a variety of AI problems such as ma-
chine translation (Bahdanau, Cho, and Bengio 2014), object
detection (Mnih et al. 2014; Ba, Mnih, and Kavukcuoglu
2014), visual question answering (Xu and Saenko 2015;
Chen et al. 2015), and image captioning (Xu et al. 2015). In-
spired by human attention mechanisms, these deep models
learn dynamic weightings of the input vectors, which allow
for more flexibility and expressive power.

In this work we focus on attention models for image
captioning. The state-of-the-art image captioning models
(Kiros, Salakhutdinov, and Zemel 2014; Mao et al. 2015;
Karpathy and Fei-Fei 2015; Donahue et al. 2015; Vinyals
et al. 2015) adopt Convolutional Neural Networks (CNNs)
to extract image features and Recurrent Neural Networks
(RNNs) to decode these features into a sentence description.
Within this encoder-decoder framework (Cho et al. 2014),
the models proposed by (Xu et al. 2015) apply an atten-
tion mechanism, i.e. attending to different areas of the image
when generating words one by one.
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Figure 1: Image captioning models (Xu et al. 2015) can at-
tend to different areas of the image when generating the
words. However, these generated attention maps may not
correspond to the region that the words or phrases describe
in the image (e.g. “shovel”). We evaluate such phenomenon
quantitatively by defining attention correctness, and allevi-
ate this inconsistency by introducing explicit supervision.
In addition, we show positive correlation between attention
correctness and caption quality.

Although impressive visualization results of the attention
maps for image captioning are shown in (Xu et al. 2015), the
authors do not provide quantitative evaluations of the atten-
tion maps generated by their models. Since deep network at-
tention can be viewed as a form of alignment from language
space to image space, we argue that these attention maps in
fact carry important information in understanding (and po-
tentially improving) deep networks. Therefore in this paper,
we study the following two questions:

• How often and to what extent are the attention maps con-
sistent with human perception/annotation?

• Will more human-like attention maps result in better cap-
tioning performance?

Towards these goals, we propose a novel quantitative met-
ric to evaluate the “correctness” of attention maps. We define
“correctness” as the consistency between the attention maps
generated by the model and the corresponding region that
the words/phrases describe in the image. More specifically,
we use the alignment annotations between image regions
and noun phrase caption entities provided in the Flickr30k
Entities dataset (Plummer et al. 2015) as our ground truth
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maps. Using this metric, we show that the attention model
of (Xu et al. 2015) performs better than the uniform atten-
tion baseline, but still has room for improvement in terms of
attention consistency with human annotations.

Based on this observation, we propose a model with ex-
plicit supervision of the attention maps. The model can be
used not only when detailed ground truth attention maps
are given (e.g. the Flickr30k Entities dataset (Plummer et al.
2015)) but also when only the semantic labelings of image
regions (which is a much cheaper type of annotations) are
available (e.g. MS COCO dataset (Lin et al. 2014)). Our ex-
periments show that in both scenarios, our models perform
consistently and significantly better than the implicit atten-
tion counterpart in terms of both attention maps accuracy
and the quality of the final generated captions. To the best
of our knowledge, this is the first work that quantitatively
measures the quality of visual attention in deep models and
shows significant improvement by adding supervision to the
attention module.

Related Work
Image Captioning Models There has been growing interest
in the field of image captioning, with lots of work demon-
strating impressive results (Kiros, Salakhutdinov, and Zemel
2014; Xu et al. 2015; Mao et al. 2015; Vinyals et al. 2015;
Donahue et al. 2015; Fang et al. 2015; Karpathy and Fei-
Fei 2015; Chen and Zitnick 2014). However, it is uncer-
tain to what extent the captioning models truly understand
and recognize the objects in the image while generating the
captions. (Xu et al. 2015) proposed an attention model and
qualitatively showed that the model can attend to specific
regions of the image by visualizing the attention maps of a
few images. Our work takes a step further by quantitatively
measuring the quality of the attention maps. The role of the
attention maps also relates to referring expressions (Mao et
al. 2016; Hu et al. 2015), where the goal is predicting the
part of the image that is relevant to the expression.
Deep Attention Models In machine translation, (Bahdanau,
Cho, and Bengio 2014) introduced an extra softmax layer
in the RNN/LSTM structure that generates weights of the
individual words of the sentence to be translated. The qual-
ity of the attention/alignment was qualitatively visualized in
(Bahdanau, Cho, and Bengio 2014) and quantitatively eval-
uated in (Luong, Pham, and Manning 2015) using the align-
ment error rate. In image captioning, (Xu et al. 2015) used
convolutional image features with spatial information as in-
put, allowing attention on 2D space. (You et al. 2016) tar-
geted attention on a set of concepts extracted from the im-
age to generate image captions. In visual question answer-
ing, (Chen et al. 2015; Xu and Saenko 2015; Shih, Singh,
and Hoiem 2016; Zhu et al. 2015) proposed several models
which attend to image regions or questions when generating
an answer. But none of these models quantitatively evaluates
the quality of the attention maps or imposes supervision on
the attention. Concurrently, (Das et al. 2016) analyzed the
consistency between human and deep network attention in
visual question answering. Our goal differs in that we are
interested in how attention changes with the progression of
the description.

Image Description Datasets For image captioning,
Flickr8k (Hodosh, Young, and Hockenmaier 2013),
Flickr30k (Young et al. 2014), and MS COCO (Lin et al.
2014) are the most commonly used benchmark datasets.
(Plummer et al. 2015) developed the original caption
annotations in Flickr30k by providing the region to phrase
correspondences. Specifically, annotators were first asked to
identify the noun phrases in the captions, and then mark the
corresponding regions with bounding boxes. In this work
we use this dataset as ground truth to evaluate the quality of
the generated attention maps, as well as to train our strongly
supervised attention model. Our model can also utilize the
instance segmentation annotations in MS COCO to train
our weakly supervised version.

Deep Attention Models for Image Captioning

In this section, we first discuss the attention model that
learns the attention weights implicitly (Xu et al. 2015), and
then introduce our explicit supervised attention model.

Implicit Attention Model

The implicit attention model (Xu et al. 2015) consists of
three parts: the encoder which encodes the visual informa-
tion (i.e. a visual feature extractor), the decoder which de-
codes the information into words, and the attention module
which performs spatial attention.

The visual feature extractor produces L vectors that cor-
respond to different spatial locations of the image: a =
{a1, . . . ,aL}, ai ∈ R

D. Given the visual features, the
goal of the decoder is to generate a caption y of length C:
y = {y1, . . . , yC}. We use yt ∈ R

K to represent the one-hot
encoding of yt, where K is the dictionary size.

In (Xu et al. 2015), an LSTM network (Hochreiter and
Schmidhuber 1997) is used as the decoder:

it = σ(WiEyt−1 + Uiht−1 + Zizt + bi) (1)
ft = σ(WfEyt−1 + Ufht−1 + Zfzt + bf ) (2)
ct = ftct−1 + ittanh(WcEyt−1 + Ucht−1 + Zczt + bc)

(3)
ot = σ(WoEyt−1 + Uoht−1 + Zozt + bo) (4)
ht = ottanh(ct) (5)

where it, ft, ct,ot,ht are input gate, forget gate, memory,
output gate, and hidden state of the LSTM respectively.
W,U,Z,b are weight matrices and biases. E ∈ R

m×K is
an embedding matrix, and σ is the sigmoid function. The
context vector zt =

∑L
i=1 αtiai is a dynamic vector that

represents the relevant part of image feature at time step t,
where αti is a scalar weighting of visual vector ai at time
step t, defined as follows:

αti =
exp(eti)∑L

k=1 exp(etk)
eti = fattn(ai,ht−1) (6)

fattn(ai,ht−1) is a function that determines the amount of
attention allocated to image feature ai, conditioned on the
LSTM hidden state ht−1. In (Xu et al. 2015), this function
is implemented as a multilayer perceptron. Note that by con-
struction

∑L
i=1 αti = 1.
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The output word probability is determined by the image
zt, the previous word yt−1, and the hidden state ht:

p(yt|a, yt−1) ∝ exp(Go(Eyt−1 +Ghht +Gzzt)) (7)

where G are learned parameters. The loss function, ignoring
the regularization terms, is the negative log probability of
the ground truth words w = {w1, . . . , wC}:

Lt,cap = − log p(wt|a, yt−1) (8)

Supervised Attention Model

In this work we are interested in the attention map gener-
ated by the model αααt = {αti}i=1,...,L. One limitation of the
model in (Xu et al. 2015) is that even if we have some prior
knowledge about the attention map, it will not be able to take
advantage of this information to learn a better attention func-
tion fattn(ai,ht−1). We tackle this problem by introducing
explicit supervision.

Concretely, we first consider the case when the ground
truth attention map βββt = {βti}i=1,...,L is provided for
the ground truth word wt, with

∑L
i=1 βti = 1. Since∑L

i=1 βti =
∑L

i=1 αti = 1, they can be considered as two
probability distributions of attention and it is natural to use
the cross entropy loss. For the words that do not have an
alignment with an image region (e.g. “a”, “is”), we simply
set Lt,attn to be 0:

Lt,attn =

{
−∑L

i=1 βti logαti if βββt exists for wt

0 otherwise
(9)

The total loss is the weighted sum of the two loss terms:
L =

∑C
t=1 Lt,cap + λ

∑C
t=1 Lt,attn.

We then discuss two ways of constructing the ground truth
attention map βββt, depending on the types of annotations.

Strong Supervision with Alignment Annotation In the
simplest case, we have direct annotation that links the
ground truth word wt to a region Rt (in the form of bounding
boxes or segmentation masks) in the image (e.g. Flickr30k
Entities). We encourage the model to “attend to” Rt by con-
structing β̂̂β̂βt = {β̂t̂i}î=1,..,L̂ where:

β̂t̂i =

{
1 î ∈ Rt

0 otherwise
(10)

Note that the resolution of the region R (e.g. 224×224) and
the attention map ααα,βββ (e.g. 14× 14) may be different, so L̂

could be different from L. Therefore we need to resize β̂̂β̂βt to
the same resolution as αααt and normalize it to get βββt.

Weak Supervision with Semantic Labeling Ground
truth alignment is expensive to collect and annotate. A much
more general and cheaper annotation is to use bounding
boxes or segmentation masks with object class labels (e.g.
MS COCO). In this case, we are provided with a set of
regions Rj in the image with associated object classes cj ,
j = 1, . . . ,M where M is the number of object bound-
ing boxes or segmentation masks in the image. Although
not ideal, these annotations contain important information to

guide the attention of the model. For instance, for the caption
“a boy is playing with a dog”, the model should attend to the
region of a person when generating the word “boy”, and at-
tend to the region of a dog when generating the word “dog”.
This suggests that we can approximate image-to-language
(region → word) consistency by language-to-language (ob-
ject class → word) similarity.

Following this intuition, we set the likelihood that a word
wt and a region Rj are aligned by the similarity of wt and
cj in the word embedding space:

β̂t̂i =

{
sim(Ẽ(wt), Ẽ(cj)) î ∈ Rj

0 otherwise
(11)

where Ẽ(wt) and Ẽ(cj) denote the embeddings of the word
wt and cj respectively. Ẽ can be the embedding E learned
by the model or any off-the-shelf word embedding (e.g. pre-
trained word2vec). We then resize and normalize β̂̂β̂βt in the
same way as the strong supervision scenario.

Attention Correctness: Evaluation Metric
At each time step in the implicit attention model, the LSTM
not only predicts the next word yt but also generates an
attention map αtαtαt ∈ R

L across all locations. However,
the attention module is merely an intermediate step, while
the error is only backpropagated from the word-likelihood
loss in Equation 8. This opens the question of whether this
implicitly-learned attention module is indeed effective.

Therefore in this section we introduce the concept of at-
tention correctness, an evaluation metric that quantitatively
analyzes the quality of the attention maps generated by the
attention-based model.

Definition

Figure 2: Attention
correctness is the sum
of the weights within
ground truth region (red
bounding box), in this
illustration 0.12 + 0.20
+ 0.10 + 0.12 = 0.54.

For a word yt with generated
attention map αααt, let Rt be
the ground truth attention re-
gion, then we define the word
attention correctness by

AC(yt) =
∑
î∈Rt

α̂t̂i (12)

which is a score between 0
and 1. Intuitively, this value
captures the sum of the at-
tention score that falls within
human annotation (see Fig-
ure 2 for illustration). α̂̂α̂αt =
{α̂t̂i}î=1,...,L̂ is the resized
and normalized αααt in order to ensure size consistency.

In some cases a phrase {yt, . . . , yt+l} refers to the same
entity, therefore the individual words share the same atten-
tion region Rt. We define the phrase attention correctness as
the maximum of the individual scores1.

AC({yt, . . . , yt+l}) = max(AC(yt), . . . , AC(yt+l))
(13)

1In the experiments, we found that changing the definition from
maximum to average does not affect our main conclusion.
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The intuition is that the phrase may contain some less in-
teresting words whose attention map is ambiguous, and the
attention maps of these words can be ignored by the max op-
eration. For example, when evaluating the phrase “a group of
people”, we are more interested in the attention correctness
for “people” rather than “of”.

We discuss next how to find ground truth attention regions
during testing, in order to apply this evaluation metric.

Ground Truth Attention Region During Testing

In order to compute attention correctness, we need the corre-
spondence between regions in the image and phrases in the
caption. However, in the testing stage, the generated caption
is often different from the ground truth captions. This makes
evaluation difficult, because we only have corresponding im-
age regions for the phrases in the ground truth caption, but
not any phrase. To this end, we propose two strategies.
Ground Truth Caption One option is to enforce the model
to output the ground truth sentence by resetting the input to
the ground truth word at each time step. This procedure to
some extent allows us to “decorrelate” the attention module
from the captioning component, and diagnose if the learned
attention module is meaningful. Since the generated caption
exactly matches the ground truth, we compute attention cor-
rectness for all noun phrases in the test set.
Generated Caption Another option is to align the entities
in the generated caption to those in the ground truth cap-
tion. For each image, we first extract the noun phrases of the
generated caption using a POS tagger (e.g. Stanford Parser
(Manning et al. 2014)), and see if there exists a word-by-
word match in the set of noun phrases in the ground truth
captions. For example, if the generated caption is “A dog
jumping over a hurdle” and one of the ground truth captions
is “A cat jumping over a hurdle”, we match the noun phrase
“a hurdle” appearing in both sentences. We then calculate
the attention correctness for the matched phrases only.

Experiments

Implementation Details

Implicit/Supervised Attention Models All implementation
details strictly follow (Xu et al. 2015). We resize the image
such that the shorter side has 256 pixels, and then center crop
the 224×224 image, before extracting the conv5 4 feature of
the 19 layer version of VGG net (Simonyan and Zisserman
2014) pretrained on ImageNet (Deng et al. 2009). The model
is trained using stochastic gradient descent with the Adam
algorithm (Kingma and Ba 2014). Dropout (Srivastava et al.
2014) is used as regularization. We use the hyperparameters
provided in the publicly available code2. We set the number
of LSTM units to 1300 for Flickr30k and 1800 for COCO.
Ground Truth Attention for Strong Supervision Model
We experiment with our strong supervision model on the
Flickr30k dataset (Young et al. 2014). The Flickr30k Enti-
ties dataset (Plummer et al. 2015) is used for generating the
ground truth attention maps. For each entity (noun phrase) in

2https://github.com/kelvinxu/arctic-captions

The huge clock on the wall is
near a wooden table.

A man is on his laptop while
people looking on.

A young girl and a woman
preparing food in a kitchen.

A bicycle parked in a kitchen
by the stove.

Figure 3: Ground truth attention maps generated for COCO.
The first two examples show successful cases. The third ex-
ample is a failed case where the proposed method aligns
both “girl” and “woman” to the “person” category. The
fourth example shows the necessity of using the scene cate-
gory list. If we do not distinguish between object and scene
(middle), the algorithm proposes to align the word “kitchen”
with objects like “spoon” and “oven”. We propose to use
uniform attention (right) in these cases.

the caption, the Flickr30k Entities dataset provides the cor-
responding bounding box of the entity in the image. There-
fore ideally, the model should “attend to” the marked region
when predicting the associated words. We evaluate on noun
phrases only, because for other types of words (e.g. deter-
miner, preposition) the attention might be ambiguous and
meaningless.
Ground Truth Attention for Weak Supervision Model
The MS COCO dataset (Lin et al. 2014) contains instance
segmentation masks of 80 classes in addition to the captions,
which makes it suitable for our model with weak supervi-
sion. We only construct βββt for the nouns in the captions,
which are extracted using the Stanford Parser (Manning et
al. 2014). The similarity function in Equation 11 is chosen
to be the cosine distance between word vectors (Mikolov et
al. 2013) pretrained on GoogleNews3, and we set an empiri-
cal threshold of 1/3 (i.e. only keep those with cosine distance
greater than the threshold).

The βββt generated in this way still contains obvious er-
rors, primarily because word2vec cannot distinguish well
between objects and scenes. For example, the similarity be-
tween the word “kitchen” and the object class “spoon” is
above threshold. But when generating a scene word like
“kitchen”, the model should be attending to the whole im-
age instead of focusing on a small object like “spoon”.

To address this problem, we refer to the supplement of
(Lin et al. 2014), which provides a scene category list
containing key words of scenes used when collecting the
dataset. Whenever some word in this scene category list ap-
pears in the caption, we set βββt to be uniform, i.e. equal at-
tention across image. This greatly improves the quality ofβββt

in some cases (see illustration in Figure 3).
Comparison of Metric Designs To show the legitimacy of
our attention correctness metric, we compute the spearsman

3https://code.google.com/archive/p/word2vec/
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Table 1: Attention correctness and baseline on Flickr30k test
set. Both the implicit and the (strongly) supervised mod-
els outperform the baseline. The supervised model performs
better than the implicit model in both settings.

Caption Model Baseline Correctness

Ground Truth Implicit 0.3214 0.3836
Supervised 0.3214 0.4329

Generated Implicit 0.3995 0.5202
Supervised 0.3968 0.5787

Table 2: Attention correctness and baseline on the Flickr30k
test set (generated caption, same matches for implicit and
supervised) with respect to bounding box size. The improve-
ment is greatest for small objects.

BBox Size Model Baseline Correctness

Small Implicit 0.1196 0.2484
Supervised 0.1196 0.3682

Medium Implicit 0.3731 0.5371
Supervised 0.3731 0.6117

Large Implicit 0.7358 0.8117
Supervised 0.7358 0.8255

correlation of our design and three other metrics: negative
L1 distance, negative L2 distance, and KL divergence be-
tween β̂̂β̂βt and α̂̂α̂αt. On the Flickr30k test set with implicit at-
tention and ground truth caption, the spearsman correlations
between any two are all above 0.96 (see supplementary ma-
terial), suggesting that all these measurements are similar.
Therefore our metric statistically correlates well with other
metrics, while being the most intuitive.

Evaluation of Attention Correctness

In this subsection, we quantitatively evaluate the attention
correctness of both the implicit and the supervised atten-
tion model. All experiments are conducted on the 1000 test
images of Flickr30k. We compare the result with a uni-
form baseline, which attends equally across the whole im-
age. Therefore the baseline score is simply the size of the
bounding box over the size of the whole image. The results
are summarized in Table 1.
Ground Truth Caption Result In this setting, both the im-
plicit and supervised models are forced to produce exactly
the same captions, resulting in 14566 noun phrase matches.
We discard those with no attention region or full image at-
tention (as the match score will be 1 regardless of the at-
tention map). For each of the remaining matches, we resize
the original attention map from 14 × 14 to 224 × 224 and
perform normalization before we compute the attention cor-
rectness for this noun phrase.

Both models are evaluated in Figure 4a. The horizontal
axis is the improvement over baseline, therefore a better at-
tention module should result in a distribution further to the
right. On average, both models perform better than the base-
line. Specifically, the average gain over uniform attention
baseline is 6.22% for the implicit attention model (Xu et al.

(a) Ground truth caption result (b) Generated caption result

Figure 4: Histograms of attention correctness for the implicit
model and the supervised model on the Flickr30k test set.
The more to the right the better.

2015), and 11.14% for the supervised version. Visually, the
distribution of the supervised model is further to the right.
This indicates that although the implicit model has captured
some aspects of attention, the model learned with strong su-
pervision has a better attention module.

In Figure 5 we show some examples where the supervised
model correctly recovers the spatial location of the under-
lined entity, while the implicit model attends to the wrong
region.
Generated Caption Result In this experiment, word-by-
word match is able to align 909 noun phrases for the implicit
model and 901 for the supervised version. Since this strat-
egy is rather conservative, these alignments are correct and
reliable, as verified by a manual check. Similarly, we dis-
card those with no attention region or full image attention,
and perform resize and normalization before we compute the
correctness score.

The results are shown in Figure 4b. In general the conclu-
sion is the same: the supervised attention model produces
attention maps that are more consistent with human judg-
ment. The average improvement over the uniform baseline
is 12.07% for the implicit model and 18.19% for the super-
vised model, which is a 50% relative gain.

In order to diagnose the relationship between object size
and attention correctness, we further split the test set equally
with small, medium, and large ground truth bounding box,
and report the baseline and attention correctness individ-
ually. We can see from Table 2 that the improvement of
our supervised model over the implicit model is greatest for
small objects, and pinpointing small objects is stronger evi-
dence of image understanding than large objects.

In Figure 6 we provide some qualitative results. These ex-
amples show that for the same entity, the supervised model
produces more human-like attention than the implicit model.
More visualization are in the supplementary material.

Evaluation of Captioning Performance

We have shown that supervised attention models achieve
higher attention correctness than implicit attention models.
Although this is meaningful in tasks such as region ground-
ing, in many tasks attention only serves as an intermediate
step. We may be more interested in whether supervised at-
tention model also has better captioning performance, which
is the end goal. The intuition is that a meaningful dynamic
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Girl rock climbing on the rock
wall.

A young smiling child hold his
toy alligator up to the camera.

Two male friends in swimming
trunks jump on the beach while
people in the background lay
in the sand.

A black dog swims in wa-
ter with a colorful ball in his
mouth.

Figure 5: Attention correctness using ground truth captions.
From left to right: original image, implicit attention, super-
vised attention. The red box marks correct attention region
(from Flickr30k Entities). In general the attention maps gen-
erated by our supervised model have higher quality.

Table 3: Comparison of image captioning performance. *
indicates our implementation. Caption quality consistently
increases with supervision, whether it is strong or weak.

Dataset Model BLEU-3 BLEU-4 METEOR

Flickr30k
Implicit 28.8 19.1 18.49

Implicit* 29.2 20.1 19.10
Strong Sup 30.2 21.0 19.21

COCO
Implicit 34.4 24.3 23.90

Implicit* 36.4 26.9 24.46
Weak Sup 37.2 27.6 24.78

weighting of the input vectors will allow later components to
decode information more easily. In this subsection we give
experimental support.

We report BLEU (Papineni et al. 2002) and METEOR
(Banerjee and Lavie 2005) scores to allow comparison with
(Xu et al. 2015). In Table 3 we show both the scores reported
in (Xu et al. 2015) and our implementation. Note that our
implementation of (Xu et al. 2015) gives slightly improved
result over what they reported. We observe that BLEU and
METEOR scores consistently increase after we introduce
supervised attention for both Flickr30k and COCO. Specifi-
cally in terms of BLEU-4, we observe a significant increase
of 0.9 and 0.7 percent respectively.

To show the positive correlation between attention cor-
rectness and caption quality, we further split the Flickr30k
test set (excluding those with zero alignment) equally into
three sets with high, middle, and low attention correctness.
The BLEU-4 scores are 28.1, 26.1, 25.4, and METEOR are
23.01, 21.94, 21.14 respectively (see Table 4). This indi-
cates that higher attention correctness means better caption-
ing performance.

Discussion

In this work we make a first attempt to give a quantitative
answer to the question: to what extent are attention maps

Image Implicit Attention

A man in a red jacket
and blue pants is snow-
boarding.

Supervised Attention

A man in a red jumpsuit
and a black hat is snow-
boarding.

A man in a blue shirt and
blue pants is sitting on a
wall.

A man in a blue shirt and
blue pants is skateboard-
ing on a ramp.

A man and a woman are
walking down the street.

A man and a woman are
walking down the street.

Figure 6: Attention correctness using generated captions.
The red box marks correct attention region (from Flickr30k
Entities). We show two attention maps for the two words in
a phrase. In general the attention maps generated by our su-
pervised model have higher quality.

Table 4: Captioning scores on the Flickr30k test set for dif-
ferent attention correctness levels in the generated caption,
implicit attention experiment. Higher attention correctness
results in better captioning performance.

Correctness BLEU-3 BLEU-4 METEOR

High 38.0 28.1 23.01
Middle 36.5 26.1 21.94

Low 35.8 25.4 21.14

consistent with human perceptions? We first define attention
correctness in terms of consistency with human annotation
at both the word level and phrase level. In the context of
image captioning, we evaluated the state-of-the-art models
with implicitly trained attention modules. The quantitative
results suggest that although the implicit models outperform
the uniform attention baseline, they still have room for im-
provement.

We then show that by introducing supervision of atten-
tion map, we can improve both the image captioning per-
formance and attention map quality. In fact, we observe a
positive correlation between attention correctness and cap-
tioning quality. Even when the ground truth attention is un-
available, we are still able to utilize the segmentation masks
with object category as a weak supervision to the attention
maps, and significantly boost captioning performance.

We believe closing the gap between machine attention and
human perception is necessary, and expect to see similar ef-
forts in related fields.
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