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Abstract

This paper presents an end-to-end trainable fast scene text
detector, named TextBoxes, which detects scene text with
both high accuracy and efficiency in a single network forward
pass, involving no post-process except for a standard non-
maximum suppression. TextBoxes outperforms competing
methods in terms of text localization accuracy and is much
faster, taking only 0.09s per image in a fast implementation.
Furthermore, combined with a text recognizer, TextBoxes
significantly outperforms state-of-the-art approaches on word
spotting and end-to-end text recognition tasks.

Introduction

Scene text is one of the most general visual objects in natu-
ral scenes. It frequently appears on road signs, license plates,
product packages, efc. Reading scene text facilitates a lot of
useful applications, such as image-based geolocation. De-
spite the similarity to traditional OCR, scene text reading is
much more challenging, due to the large variations in both
foreground text and background objects, as well as uncon-
trollable lighting conditions, efc.

Owing to the inevitable challenges and complexities,
traditional text detection methods tend to involve multi-
ple processing steps, e.g. character/word candidate gener-
ation (Neumann and Matas 2012; Jaderberg et al. 2016),
candidate filtering, and grouping. They often end up strug-
gling to get each module working properly, requiring much
effort in tuning parameters and designing heuristic rules,
also slowing down detection speed. Inspired by the re-
cent developments in object detection (Liu et al. 2016;
Ren et al. 2015), we propose to detect texts by directly pre-
dicting word bounding boxes via a single neural network
that is end-to-end trainable.

Our key contribution in this paper is a fast and accu-
rate text detector called TextBoxes, which is based on fully-
convolutional network (LeCun et al. 1998). TextBoxes di-
rectly outputs the coordinates of word bounding boxes at
multiple network layers by jointly predicting text presence
and coordinate offsets to default boxes (Liu et al. 2016).
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The final outputs are the aggregation of all boxes, followed
by a standard non-maximum suppression process. To han-
dle the large variation in aspect ratios of words, we design
several novel, inception-style (Szegedy et al. 2015) output
layers that utilize both irregular convolutional kernels and
default boxes. Our detector delivers both high accuracy and
high efficiency with only a single forward pass on single-
scale inputs, and even higher accuracy with multiple passes
on multi-scale inputs.

Furthermore, we argue that word recognition is helpful to
distinguish texts from backgrounds, especially when words
are confined to a given set, i.e. a lexicon. We adopt a suc-
cessful text recognition algorithm, CRNN (Shi, Bai, and Yao
2015), in conjunction with TextBoxes. The recognizer not
only provides extra recognition outputs, but also regularizes
text detection with its semantic-level awareness, thus fur-
ther boosting the accuracy of word spotting considerably.
The combination of TextBoxes and CRNN yields the state-
of-the-art performance on word spotting and end-to-end text
recognition tasks, which appears to be a simple yet effective
solution to robust text reading in the wild.

To summarize, the contributions of this paper are three-
fold: First, we design an end-to-end trainable neural net-
work model for scene text detection. Second, we propose a
word spotting/end-to-end recognition framework that effec-
tively combines detection and recognition. Third, our model
achieves highly competitive results while keeping its com-
putational efficiency.

Related Works

Intuitively, scene text reading can be further divided into
two sub-tasks: text detection and text recognition. The for-
mer aims to localize text in images, mostly in the form of
word bounding boxes; The latter transcripts cropped word
images into machine-interpretable character sequences. We
cover both tasks in this paper but pay more attention to de-
tection.

Based on a basic detection target, previous methods for
text detection can be roughly categorized into three cate-
gories:

1) Character-based: Individual characters are first detected
and then grouped into words (Neumann and Matas 2012;
Pan, Hou, and Liu 2011; Yao et al. 2012; Huang, Qiao, and
Tang 2014). For example, (Neumann and Matas 2012) lo-
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Figure 1: TextBoxes Architecture. TextBoxes is a 28-layer fully convolutional network. Among them, 13 are inherited from
VGG-16. 9 extra convolutional layers are appended after the VGG-16 layers. Text-box layers are connected to 6 of the con-
volutional layers. On every map location, a text-box layer predicts a 72-d vector, which are the text presence scores (2-d) and
offsets (4-d) for 12 default boxes. A non-maximum suppression is applied to the aggregated outputs of all text-box layers.

cates characters by classifying Extremal Regions. After that,
the detected characters are grouped by an exhaustive search
method;

2) Word-based: Words are directly hit with the similar
manner of general object detection (Jaderberg et al. 2016;
Zhong et al. 2016; Gomez-Bigorda and Karatzas 2016).
(Jaderberg et al. 2016) proposes an R-CNN-based (Girshick
et al. 2014) framework.First, word candidates are generated
with class-agnostic proposal generators. Then the proposals
are classified by a random forest classifier. Finally, a con-
volutional neural network for bounding box regression was
adopted to refine the bounding boxes. (Gupta, Vedaldi, and
Zisserman 2016) improves over the YOLO network (Red-
mon et al. 2016) while it still adopts the filter and regression
steps for further removing the false positives;

3) Text-line-based: Text lines are detected and then bro-
ken into words. For example, (Zhang et al. 2015) proposes
to detect text lines utilizing their symmetric characteristics.
Furthermore, (Zhang et al. 2016) localizes text lines with
fully convolutional networks (Long, Shelhamer, and Darrell
2015).

TextBoxes is word-based. In contrast to (Jaderberg et al.
2016), which comprises three detection steps and each fur-
ther includes more than one algorithm, TextBoxes enjoys a
much simpler pipeline. We only need to train one network
end-to-end.

TextBoxes is inspired by SSD (Liu et al. 2016), a recent
development in object detection. SSD aims to detect general
objects in images but fails on words that have extreme aspect
ratios. We propose text-box layers in TextBoxes to solve this
problem, which significantly improve the performance.

We adopt a text recognizer called CRNN (Shi, Bai, and
Yao 2015) in conjunction with TextBoxes for word spotting
and end-to-end recognition. CRNN directly outputs char-
acter sequences given input images and is also end-to-end
trainable. Besides, we use the confidence scores of CRNN
to regularize the detection outputs of TextBoxes. Note that
it is also possible to adopt other recognizers, such as (Jader-
berg et al. 2016).
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Detecting text with TextBoxes
Architecture

The architecture of TextBoxes is depicted in Fig. 1. It in-
herits the popular VGG-16 architecture (Simonyan and Zis-
serman 2014), keeping the layers from conv1_1 through
conv4_3. The last two fully-connected layers of VGG-16
are converted into convolutional layers by parameters down-
sampling (Liu et al. 2016). They are followed by a few
extra convolutional and pooling layers, namely convé to
poolll.

Multiple output layers, which we call text-box layers, are
inserted after the last and some intermediate convolutional
layers. Their outputs are aggregated and undergo a non-
maximum suppression (NMS) process. Output layers are
also convolutional. All together, TextBoxes consists of only
convolutional and pooling layers, thus fully-convolutional. It
adapts to arbitrary-size images in both training and testing.

Text-box layers

Text-box layers are the key component of TextBoxes. A text-
box layer simultaneously predicts text presence and bound-
ing boxes, conditioned on its input feature map. At every
map location, it outputs the classification scores and offsets
to its associated default boxes in a convolutional manner.
Suppose that image and feature map sizes are respectively
(Wim, him) and (Wmap, Amap ). On a map location (i, j) which
associates a default box by = (g, yo, wo, ho), the text-box
layer predicts the values of (Ax, Ay, Aw, Ah, c), indicat-
ing that a box b = (z,y,w, h) is detected with confidence
¢, where

T = x9 + woAx,
Y = yo + hoAy,
w = wop exp(Aw),
h = hg exp(Ah).
In the training phase, ground-truth word boxes are
matched to default boxes according to box overlap, follow-

ing the matching scheme in (Liu et al. 2016). Each map lo-
cation is associated with multiple default boxes of different
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sizes. They effectively divide words by their scales and as-
pect ratios, allowing TextBoxes to learn specific regression
and classification weights that handle words of similar size.
Therefore, the design of default boxes is highly task-specific.

Different from general objects, words tend to have large
aspect ratios. Therefore, we include “long” default boxes
that have large aspect ratios. Specifically, we define 6 aspect
ratios for default boxes, including 1,2,3,5,7, and 10. How-
ever, this makes the default boxes dense on the horizontal
direction while sparse vertically, which causes poor match-
ing boxes. To solve this issue, each default box is set with
vertical offsets. The design of the default boxes is illustrated
in Fig. 2.

Figure 2: Illustration of default boxes for a 4*4 grid. For
better visualization, only a column of default boxes whose
aspect ratios 1 and 5 are plotted. The rest of the aspect ratios
are 2,3,7 and 10, which are placed similarly. The black (as-
pect ratio: 5) and blue (ar: 1) default boxes are centered in
their cells. The green (ar: 5) and red (ar: 1) boxes have the
same aspect ratios and a vertical offset(half of the height of
the cell) to the grid center respectively.

Moreover, in text-box layers we adopt irregular 1*5 con-
volutional filters instead of the standard 3*3 ones. This
inception-style (Szegedy et al. 2015) filters yield rectangu-
lar receptive fields, which better fit words with larger aspect
ratios, also avoiding noisy signals that a square-shaped re-
ceptive field would bring in.

Learning

We adopt the same loss function as (Liu et al. 2016). Let
x be the match indication matrix, ¢ be the confidence, [ be
the predicted location, and g be the ground-truth location.
Specifically, for the i-th default box and the j-th ground
truth, z;; = 1 means matching while z;; = 0 otherwise.
The loss function is defined as:

1

N(Lconf(‘rac) + aLlOC(xvlvg))v (2)
where NV is the number of default boxes that match ground-
truth boxes, and « is set to 1. We adopt the smooth L1
loss (Girshick 2015) for L. and a 2-class softmax loss for
Lconf-

L(z,c,l,g) =
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Multi-scale inputs

Even with the optimizations on default boxes and convolu-
tional filters, it may be still difficult to robustly localize the
words of extreme aspect ratios and sizes. To further boost
detection accuracy, we use multiple rescaled versions of the
input image for TextBoxes. An input image is rescaled into
five scales, including (width*height) 300%300, 700%700,
300*700, 500*700, and 1600*1600. Note that some scales
squeeze image horizontally, so that some “long” words are
shortened. Multi-scale inputs boost detection accuracy while
slightly increasing the computational cost. On ICDAR 2013
, they further improve f-measure of detection by 5 percents.
Detecting all five scales takes 0.73s per image, and 0.24s
if we remove the last 1600*1600 scale. The running time
is measured on a single Titan X GPU. Note that, different
from testing, we only use single-scale input (300¥300) for
training.

Non-maximum suppression

Non-maximum suppression is applied to the aggregated out-
puts of all text-box layers. We adopt an extra non-maximum
suppression for multi-scale inputs on the task of text local-
ization.

Word spotting and end-to-end recognition

Word spotting is to localize specific words that are given in a
lexicon. End-to-end recognition concerns both detection and
recognition. Although both tasks can be achieved by sim-
ply connecting TextBoxes with a text recognizer, we pro-
pose to improve detection with recognition. We argue that a
recognizer can help eliminating false-positive detection re-
sults that are unlikely to be meaningful words, e.g. repetitive
patterns. Particularly, when a lexicon is present, a recognizer
could effectively removes the detected bounding boxes that
do not match any of the given words.

We adopt the CRNN model (Shi, Bai, and Yao 2015) as
our text recognizer. CRNN uses CTC (Graves et al. 2006) as
its output layer, which estimates sequence probability condi-
tioned on input image, i.e. p(w|I), where I is an input image
and w represents a character sequence. We treat the proba-
bility as a matching score, which measures the compatibility
of an image to a particular word. The detection score is then
the maximum score among all words in a given lexicon:

s = max p(w|I) 3)
where W is a given lexicon. If the task specifies no lexicon,
we use a generic lexicon that consists of 90k English words.

We replace the original TextBoxes detection score with
the one in Eq. 3. However, evaluating Eq. 3 on all
boxes would be time-consuming. In practice, we first use
TextBoxes to produce a redundant set of word candidates
by detecting with a lower score threshold and a high NMS
overlap threshold, preserving about 35 bounding boxes per
image with a high recall of 0.93 with multi-scale inputs for
ICDAR 2013 . Then we apply Eq. 3 to all candidates to
re-evaluate their scores, followed by a second score thresh-
olding and a NMS. When dealing with multi-scale inputs,



Table 1: Text localization on ICDAR 2011 and ICDAR 2013. P, R and F refer to precision, recall and F-measure respectively.
FCRNall+filts reported a time consumption of 1.27 seconds excluding its regression step so we assume it takes more than 1.27

seconds.
Datasets ICDAR 2011 ICDAR 2013
Evaluation protocol IC13 Eval DetEval IC13 Eval DetEval Time/s
Methods P R F P R F P R F P R F
Jaderberg (aderberg et al. 2016) - - - - - - - - - - - - 7.3
MSERs-CNN 088 (071078 | - | = | = | = | = | = | | = | - -
(Huang, Qiao, and Tang 2014)
MMser = = = = | = ]oss|o0]077| - | = | = | 075
(Zamberletti, Noce, and Gallo 2014)
TextFlow (Tian et al. 2015) 0.86 | 0.76 | 0.81 - - - 0.85 | 0.76 | 0.80 - - - 14
FCRNall+ilts | =] - o9 o075 08| - | - | - [092]|076 083 | >1.27
(Gupta, Vedaldi, and Zisserman 2016)

FCN (Zhang et al. 2016) - - - - - - 0.88 0.78 0.83 — — — 2.1
SSD (Liu et al. 2016) - - - - - - 0.80 | 0.60 | 0.68 | 0.80 | 0.60 | 0.69 0.1
Fast TextBoxes 0.86 | 0.74 | 0.80 | 0.88 | 0.74 | 0.80 | 0.86 | 0.74 | 0.80 | 0.88 | 0.74 | 0.81 0.09

TextBoxes 0.88 | 0.82 | 0.85 | 0.89 | 0.82 | 0.86 | 0.88 | 0.83 | 0.85 | 0.89 | 0.83 | 0.86 0.73

we generate candidates separately on each scale and per-
form the above steps on candidates of all the scales. Here we
also adopt a slightly different NMS scheme. A lower over-
lap threshold is employed for boxes that are recognized as
the same word, so that stronger suppression is imposed on
boxes of the same word.

Experiments

We verify the effectiveness of TextBoxes on three different
tasks, including text detection, word-spotting, and end-to-
end recognition.

Datasets

SynthText (Gupta, Vedaldi, and Zisserman 2016) contains
800k synthesized text images, created via blending rendered
words with natural images. The synthesized images look re-
alistic, as the location and transform of text are carefully
chosen with a learning algorithm. This dataset is used for
pre-training our model.

ICDAR 2011 (IC11) (Shahab, Shafait, and Dengel 2011)
There are real-world images with high resolution in the IC-
DAR 2011 dataset. The test set of the ICDAR 2011 dataset
is used to evaluate our model.

ICDAR 2013 (IC13) (Karatzas et al. 2013) The ICDAR
2013 dataset is similar to the ICDAR 2011 dataset. We use
the training set of the ICDAR 2013 for training when we
do experiments on the ICDAR 2011 dataset and the ICDAR
2013 dataset. The ICDAR 2013 dataset gives 3 lexicons of
different sizes for the task of word spotting and end-to-end
recognition. For each test image, it gives 100 words as a lex-
icon, which is called a strong lexicon. For the whole test
set, it gives a lexicon containing hundreds of words, which
is called a weakly lexicon. It also gives a generic lexicon
which contains 90k words.

Street View Text (SVT) (Wang and Belongie 2010) The
SVT dataset is more challenging than the ICDAR datasets
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due to the lower resolution of the images. There exist some
unlabeled texts in the images. Thus, we only use this dataset
for word spotting, in which a lexicon containing 50 words is
provided for each image.

Implementation details

TextBoxes is trained with 300*300 images using stochas-
tic gradient descent (SGD). Momentum and weight decay
are set to 0.9 and 5 x 10™* respectively. Learning rate is
initially set to 1073, and decayed to 10~* after 40k train-
ing iterations. On all the datasets except SVT, we first train
TextBoxes on SynthText for 50k iterations, then finetune it
on ICDAR 2013 training dataset for 2k iterations. On SVT,
the finetuning is performed on the SVT training dataset. All
training images are augmented online with random crop and
flip, following the scheme in (Liu et al. 2016). All the ex-
periments are carried out on a PC with one Titan X GPU.
The whole training time is about 25 hours. Text recognition
is performed with a pre-trained CRNN (Shi, Bai, and Yao
2015) model!, which is implemented and released by the
authors.

Text localization

TextBoxes is tested on ICDAR 2011 and ICDAR 2013 for
evaluating its text localization performance. The results are
summarized and compared with other methods in Table. 1.
Results are evaluated under two different evaluation proto-
cols, the DetEval (Wolf and Jolion 2006) and the ICDAR
2013 evaluation (Karatzas et al. 2013).

Since there is a trade-off between precision and recall
rate, f-measure is the most accurate measurement of detec-
tion performance. TextBoxes consistently outperforms com-
peting methods in terms of f-measure. On ICDAR 2011,
TextBoxes outperforms the second best methods (Gupta,
Vedaldi, and Zisserman 2016), by 4 percents. On ICDAR

"https://github.com/bgshih/crnn



Figure 3: Examples of text localization results. The green bounding boxes are correct detections; Red boxes are false positives;

Red dashed boxes are false negatives.

Table 2: Word spotting and end-to-end results. The values in the table are F-measure. For ICDAR 2013, strong, weak and
generic mean a small lexicon containing 100 words for each image, a lexicon containing all words in the whole test set and
a large lexicon respectively. We use a lexicon containing 90k words as our generic lexicon. The methods marked by “*” are
published on the ICDAR 2015 Robust Reading Competition website: http://rrc.cvc.uab.es

IC11 SVT SVT-50 i 1.3 1c13
Methods spotting | spotting | spotting spotting end-to-end
strong | weak | generic | strong | weak | generic

Alsharif (Alsharif and Pineau 2013) — — 0.48 — — — — — —

Jaderberg (aderberg et al. 2016) 0.76 0.56 0.68 - - 0.76 - - -

FCRNall+filts 084 | 053 | 076 | - ~ | oss | - | - -

(Gupta, Vedaldi, and Zisserman 2016)

Deep2Text IT+* - - - 0.85 0.83 0.80 0.82 0.79 0.77
SRC-B-TextProcessingLab* - - - 0.90 0.88 0.81 0.87 0.85 0.80
Adelaide_ConvLSTMs* - - - 0.91 0.90 0.83 0.87 0.86 0.80
TextBoxes 0.87 0.64 0.84 0.94 0.92 0.87 0.91 0.89 0.84

2013, TextBoxes also outperforms competing methods by at
least 2 percents. TextBoxes ranks the first in term of test-
ing speed, even with the multi-scale version, which takes
only 0.73s per image. Meanwhile, a fast implementation of
TextBoxes takes merely 0.09s per image, without much loss
in accuracy.

In order to further verify the effectiveness of TextBoxes,
we also report the results of SSD (Liu et al. 2016) for the
comparison in Table. 1, which is the most relevant and
the state-of-the-art detector for general objects. Here, SSD
is trained using the same procedures as TextBoxes. SSD
achieves competitive performance, but still falls short of
other state-of-the-art methods. In particular, we observe that
SSD cannot achieve good results when detecting words with
large aspect ratios while TextBoxes performs much better,
benefiting from the proposed text-box layers which are de-
signed in order to overcome the length variation of words.
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Word spotting and end-to-end recognition

The performance of word spotting is evaluated by detec-
tion results that are refined by recognition, while the eval-
uation of end-to-end performance concerns both detection
and recognition results. We test TextBoxes on ICDAR 2011,
SVT, and ICDAR 2013.

As shown in Table. 2, our method outperforms all the ex-
isting methods, including the most recent competition re-
sults published on the website. On ICDAR 2011 and IC-
DAR 2013, our method outperforms the second best method
at least 2 percents with all the evaluation protocol listed
in Table. 2. The performance gap on SVT is even larger.
TextBoxes outperforms the leading method (Gupta, Vedaldi,
and Zisserman 2016), by over 8 percents on both SVT and
SVT-50. The reason is likely to be that TextBoxes is more
robust to the low resolution images in SVT, since TextBoxes
is trained on relatively low resolution images.

Coupled with a recognition model, TextBoxes achieves
the state-of-the-art performance on end-to-end recogni-
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Figure 4: Examples of word spotting results. Yellow words are recognition results. Words less than 3 letters are ignored,
following the evaluation protocol. The box colors have the same meaning as Fig. 3.

tion benchmarks. On ICDAR 2013, TextBoxes breaks the
records recently made by Adelaide_ConvLSTMs* on all
the lexicon settings. More specifically, TextBoxes generates
about 35 proposals per image when using multi-scale in-
puts on ICDAR 2013, with a recall of 0.93. With a strong
lexicon for the recognition model, 3.8 bounding boxes per
image are reserved, achieving a recall of 0.91 and a pre-
cision of 0.97. We employ a 90k-lexicon for SVT and IC-
DAR 2011, and a 50-word lexicon per image on SVT-50.
Note that even though Jaderberg (Jaderberg et al. 2016) and
FCRNall+filts (Gupta, Vedaldi, and Zisserman 2016) adopt
a much smaller lexicon(50k words), their results are still in-
ferior to our method.

Running speed

Most existing methods detect texts in a multi-step manner,
making them hard to run efficiently. Most of the compu-
tation of TextBoxes is spent on the convolutional forward
passes, which are very fast when running on GPU devices.
TextBoxes takes only 0.09s per image with 700 % 700 single-
scale images, resulting in an f-measure of 0.80 on ICDAR
2013, which is still very competitive. When running on 5
input scales, TextBoxes achieves 0.85 f-measure on ICDAR
2013, taking 0.73 second per image with the batch size set-
ting to 1. We remove the 1600 * 1600 scale when testing
on SVT, since the SVT image resolutions are relatively low.
Testing on the the remaining scales takes merely 0.24 second
per image.

The speed comparisons are listed in Table. 1. (Jaderberg
et al. 2016) adopts two proposal generation methods, a ran-
dom forest classifier, and a CNN regression model. They
each takes 1-3 seconds, about 7s in total. (Gupta, Vedaldi,
and Zisserman 2016) proposes a YOLO-like model called
FCRN, followed by the same random forest classifiers and a
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CNN regression model. It takes 1.27s excluding the regres-
sion step, whose running time is not reported. TextBoxes
achieves the highest detection accuracy while being the
fastest among them.

Weaknesses

TextBoxes performs well in most situations. However, it still
fails to handle some difficult cases, such as overexposure
and large character spacing. Some failure cases are shown
in Fig. 3 and Fig. 4.

Conclusion

We have presented TextBoxes, an end-to-end fully convo-
Iutional network for text detection, which is highly stable
and efficient to generate word proposals against cluttered
backgrounds. Comprehensive evaluations and comparisons
on benchmark datasets clearly validate the advantages of
Textboxes in three related tasks including text detection,
word spoting and end-to-end recognition. In the future, we
are interested to extend TextBoxes for multi-oriented texts,
and combine the networks of detection and recognition into
one unified framework.
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