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Abstract

In this paper, we propose a robust transformation estimation
method based on manifold regularization for non-rigid point
set registration. The method iteratively recovers the point cor-
respondence and estimates the spatial transformation between
two point sets. The correspondence is established based on
existing local feature descriptors which typically results in a
number of outliers. To achieve an accurate estimate of the
transformation from such putative point correspondence, we
formulate the registration problem by a mixture model with
a set of latent variables introduced to identify outliers, and
a prior involving manifold regularization is imposed on the
transformation to capture the underlying intrinsic geometry
of the input data. The non-rigid transformation is specified in
a reproducing kernel Hilbert space and a sparse approxima-
tion is adopted to achieve a fast implementation. Extensive
experiments on both 2D and 3D data demonstrate that our
method can yield superior results compared to other state-of-
the-arts, especially in case of badly degraded data.

Introduction

Point set registration is a fundamental problem and fre-
quently encountered in computer vision, pattern recognition,
medical imaging and remote sensing (Brown 1992). Many
tasks in these fields including 3D reconstruction, shape
recognition, panoramic stitching, feature-based image reg-
istration and content-based image retrieval can be solved by
algorithms operating on the point sets (e.g., salient point fea-
tures) extracted from the input data (Ma et al. 2015a; 2015c;
Bai et al. 2017; Zhou et al. 2016). The goal of point set
registration is then to determine the right correspondence
and/or to recover the spatial transformation between the two
point sets (Jian and Vemuri 2011). In this paper, we focus on
non-rigid registration where the transformation is character-
ized by a nonlinear or non-parameterized model (Zhao et al.
2011; Ma et al. 2013; Wang et al. 2015).

The registration problem is typically solved by using
an iterative framework, where a set of putative correspon-
dences is established and used to refine the estimate of
transformation, and vice versa (Besl and McKay 1992;
Chui and Rangarajan 2003). In this process, the most chal-
lenging and critical task is to develop an efficient strategy for
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robust transformation estimation from putative correspon-
dences. First, the putative correspondences are usually es-
tablished based on only local feature descriptors, where the
unavoidable noise, repeated structures and occlusions often
lead to a high number of false correspondences. Therefore,
a robust procedure of outlier removal is required. Second,
to establish reliable correspondence, the putative set usually
removes a large part of the original point sets whose feature
descriptors are not similar enough. However, the point sets
are typically extracted from the contour or surface of a spe-
cific object, and hence can provide intrinsic structure infor-
mation of the input data which is beneficial to the transfor-
mation estimation. Therefore, it is desirable to incorporate
the whole point sets into the objective function formulation
during transformation estimation. Third, for large scale point
cloud data, the number of points can reach tens of thousands.
This poses a significant burden on typical point registration
methods, particularly in the non-rigid case. Therefore, it is of
particular advantage to develop a more efficient technique.

To address these issues, we formulate the registration
problem by a mixture model with a set of latent variables
introduced to identify outliers. We also assume a prior on
the geometry involving manifold regularization to impose a
non-parametric smoothness constraint on the spatial trans-
formation (Ma et al. 2014; Belkin, Niyogi, and Sindhwani
2006). The manifold regularization defined on the whole
input point sets controls the complexity of the transforma-
tion and is able to capture the underlying intrinsic geome-
try of the input data. This leads to a maximum a posteriori
(MAP) estimation problem which can be solved by using
the Expectation-Maximization (EM) algorithm (Dempster,
Laird, and Rubin 1977) to estimate the variance of the prior,
while simultaneously estimating the outliers, with the vari-
ance given a large initial value. Moreover, a sparse approx-
imation based on a similar idea as the subset of regressors
method (Poggio and Girosi 1990) is introduced to improve
the computational efficiency.

Our contribution in this paper includes the following three
aspects. Firstly, we introduce the manifold regularization to
the point set registration problem, which can capture the in-
trinsic geometry of the input point sets and hence helps to
estimate the transformation. Secondly, we propose a new
formulation for robust transformation estimation based on
manifold regularization, which could estimate transforma-
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tion from point correspondences contaminated by outliers.
Thirdly, we provide a fast implementation for our method
by using sparse approximation, which enables our method
to handle large scale datasets such as 3D point clouds.

Related work

The iterated closest point (ICP) algorithm (Besl and McKay
1992) is one of the representative approaches using the iter-
ative framework to solve the registration problem. In (Chui
and Rangarajan 2003), Chui and Rangarajan developed a
general framework for non-rigid registration called TPS-
RPM. Different from ICP, which uses the nearest point strat-
egy in learning the correspondence, TPS-RPM introduces
soft assignments and solves it in a continuous optimization
framework involving deterministic annealing. Zheng and
Doermann (Zheng and Doermann 2006) proposed a method
called RPM-LNS which can preserve local neighborhood
structures during matching, where the shape context (SC)
feature (Belongie, Malik, and Puzicha 2002) is used to ini-
tialize the correspondence. Ma et al. (Ma et al. 2015b) in-
troduced a non-rigid registration strategy based on Gaussian
fields, which was later improved in (Wang et al. 2016) by
using inner distance shape context (Ling and Jacobs 2007)
to construct initial correspondences. In the recent past, the
point registration is typically solved by probabilistic meth-
ods (Jian and Vemuri 2011; Myronenko and Song 2010;
Horaud et al. 2011; Ma, Zhao, and Yuille 2016). Specifi-
cally, to cope with highly articulated deformation, A global-
local topology preservation (GLTP) method (Ge, Fan, and
Ding 2014; Ge and Fan 2015) is proposed based on coherent
point drift (CPD) (Myronenko and Song 2010). These meth-
ods formulated registration as the estimation of a mixture of
densities using GMMs, and the problem is solved using the
framework of maximum likelihood and the EM algorithm.

Method

Suppose we are given a model point set {xi}Mi=1 and a target
point set {yj}Nj=1, where xi and yj are D dimensional col-
umn vectors denoting the point positions (typically D = 2
or 3), M and N are the numbers of points in the two sets,
respectively. To solve the registration problem, we consider
an iterative strategy which first constructs a putative set of
correspondences by using the local geometric structures of
points, and then estimates the spatial transformation based
on the putative set together with some global geometric con-
straints. In the following, we start by introducing the cor-
respondence estimation based on local structure informa-
tion, and then lay out the manifold regularization which
could capture the underlying spatial geometry of a point set.
We subsequently propose a formulation for robust transfor-
mation estimation from putative correspondences based on
manifold regularization, and followed by the fast implemen-
tation using sparse approximation. Finally, we present the
implementation details of the proposed approach.

Correspondence estimation

For two point sets representing similar shapes or objects,
their corresponding points will in general have similar local

geometric structures (e.g., neighborhood structures) which
could be incorporated into a feature descriptor. Therefore,
the correspondences could be established by finding for
each point in one point set (e.g., the model) the point on
the other point set (e.g., the target) that has the most sim-
ilar feature descriptor. Fortunately, there are several well-
designed feature descriptors that can fulfill this task, both
in 2D and in 3D cases (Belongie, Malik, and Puzicha 2002;
Rusu, Blodow, and Beetz 2009).

For 2D case, the shape context (Belongie, Malik, and
Puzicha 2002) has been a widely used feature descriptor.
Consider two points xi and yj , their SCs which capture
the distributions of their neighborhood points are histograms
{pi(k)}Kk=1 and {qj(k)}Kk=1, respectively. The χ2 distance
is used to measure their difference C(xi,yj):

C(xi,yj) =
1

2

K∑
k=1

[pi(k)− qj(k)]
2

pi(k) + qj(k)
. (1)

After we have obtained the distances of all point pairs, i.e.,
{C(xi,yj), i = 1, · · · ,M, j = 1, · · · , N}, the Hungarian
method (Papadimitriou and Steiglitz 1982) is applied to seek
the correspondences between {xi}Mi=1 and {yj}Nj=1.

For 3D case, we consider the fast point feature histograms
(FPFH) (Rusu, Blodow, and Beetz 2009) as the feature de-
scriptor. It is a histogram that collects the pairwise pan, tilt
and yaw angles between every point and its k-nearest neigh-
bors, followed by a reweighting of the resultant histogram of
a point with the neighboring histograms. The computation of
the histogram is quite efficient which has linear complexity
with respect to the number of surface normals. The match-
ing of FPFH descriptors is performed by a sample consensus
initial alignment method.

After using some local feature descriptor to establish cor-
respondence, we obtain a putative set S = {(xi,yi)}Li=1,
where L ≤ min{M,N} is the number of correspondence.
Without loss of generality, we assume that {xi}Li=1 and
{yi}Li=1 in the putative set correspond to the first L points in
the original model point set {xi}Mi=1 and the first L points in
the original target point set {yj}Nj=1, respectively.

Solve transformation with manifold regularization

Given a putative correspondence set S = {(xi,yi)}Li=1 es-
tablished from two point sets {xi}Mi=1 and {yj}Nj=1, our pur-
pose is to estimate the underlying spatial transformation T
between them, for example, yi = T (xi) for any correspon-
dence (xi,yi) in S. This problem is in general ill-posed as
T is non-rigid which has an infinite number of solutions. To
obtain a meaningful solution, the regularization technique
could be used which typically operates in a Reproducing
Kernel Hilbert Space (RKHS) (Aronszajn 1950) (associated
with a particular kernel). Specifically, the Tikhonov regular-
ization (Tikhonov and Arsenin 1977) in an RKHS H mini-
mizes a regularized risk functional:

T ∗ = min
T ∈H

L∑
i=1

‖yi − T (xi)‖2 + λ‖T ‖2H, (2)

where the first term enforces closeness to the data, the sec-
ond term controls complexity of the transformation T , λ is
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a regularization parameter controlling the trade-off between
these two terms, and ‖ · ‖H denotes the norm of H (we will
discuss the detailed forms of T and ‖ · ‖H later).

Recall that in our problem, due to the existence of noise,
outliers, occlusions, etc., the number of matched points is
typically less than the whole point set, i.e., L ≤ M . That is
to say, only L points x1, . . . ,xL are given labels y1, . . . ,yL

drawn from the spatial transformation T . However, for point
set registration, the points we wish to match are usually ex-
tracted from a shape contour or an object surface which pos-
sess some sort of “intrinsic geometry”. Fore instance, the
point positions for each type of shapes or objects are not ar-
bitrary, which often form a specific distribution. Therefore,
the M −L unlabeled points can provide additional informa-
tion about the characteristic of the point set. To make full
use of such additional information, we consider the man-
ifold regularization (Belkin, Niyogi, and Sindhwani 2006;
Minh and Sindhwani 2011; Zhao et al. 2015). It introduces
an additional regularizer ‖T ‖2I to penalize T along a low-
dimensional manifold, which is defined on the whole input
set {xi}Mi=1. Thus the regularized risk functional becomes:

T ∗ = min
T ∈H

L∑
i=1

‖yi −T (xi)‖2 + λ1‖T ‖2H + λ2‖T ‖2I , (3)

where the parameter λ1 controls the complexity of the trans-
formation in the input space, and λ2 regularizes with respect
to the intrinsic geometry. The term λ1 is necessary since the
manifold is a strict subset of the input space; among many
T ∈ H which give the same value on the manifold, we pre-
fer a solution which is smooth in the input space.

To define the manifold regularization term, we use the
graph Laplacian which is a discrete analogue of the man-
ifold Laplacian (Belkin, Niyogi, and Sindhwani 2006). It
models a manifold using the weighted neighborhood graph
for the data based on an assumption that the input points
are drawn i.i.d. from the manifold. Consider the weighted
neighborhood graph G given by taking the graph on vertex
set V = {x1, . . . ,xM} (the matched and unmatched points)
with edges (xi,xj) if and only if ‖xi − xj‖2 ≤ ε, and as-
signing to edge (xi,xj) the weight

Wij = e−
1
ε ‖xi−xj‖2

. (4)
The graph Laplacian of G is the matrix A given by

Aij = Dij −Wij , (5)

where D = diag
(∑M

j=1 Wij

)M
i=1

, i.e., the diagonal matrix
whose i-th entry is the sum of the weights of edges leav-
ing xi. Let t = (T (x1), . . . , T (xM ))T, then the manifold
regularization term can be defined as:

‖T ‖2I =

M∑
i=1

M∑
j=1

Wij(ti − tj)
2 = tr(tTAt), (6)

where tr(·) denotes the trace. Therefore, the regularized risk
functional (3) becomes:

T ∗ = min
T ∈H

L∑
i=1

‖yi − T (xi)‖2 + λ1‖T ‖2H + λ2tr(tTAt). (7)

We will discuss the solution of this manifold regularized
risk functional in the next section.

Robust transformation estimation

The transformation could be solved by minimizing the reg-
ularized risk functional in Eq. (3). However, the putative set
S = {(xi,yi)}Li=1 typically involves some unknown false
correspondences, as only local neighborhood structures are
considered. Therefore, it is important that the transformation
estimation is robust to outliers. In this section, we propose a
method for robust transformation estimation from point cor-
respondences by using manifold regularization.

We make the assumption that, for the inliers, the noise
of point position is Gaussian on each component (dimen-
sion) with zero mean and uniform standard deviation σ;
for the outliers, the position of the target point yi lies ran-
domly in a bounded region of IRD, and the distribution is
assumed to be uniform 1/a with a denoting the volume
of this region (Ma et al. 2014). We then associate the i-th
correspondence with a latent variable zi ∈ {0, 1}, where
zi = 0 indicates a uniform distribution and zi = 1 points
to a Gaussian distribution. Let X = (x1, . . . ,xL)

T and
Y = (y1, . . . ,yL)

T ∈ IRL×D be the two sets of points
in the putative set. Thus, the likelihood is a mixture model
given by

p(Y|X,θ) =

L∏
i=1

∑
zi

p(yi, zi|xi,θ)

=

L∏
i=1

(
γ

(2πσ2)D/2
e
− ‖yi−T (xi)‖

2

2σ2 +
1− γ

a

)
, (8)

where θ = {T , σ2, γ} includes the unknown parameters,
and γ is a mixing coefficient specifying the marginal dis-
tribution over the latent variable, i.e., ∀zi, p(zi = 1) = γ.
We assume the non-rigid transformation T to lie within an
RKHS, and it should also reflect the intrinsic structure of
a point set. Thus a slow-and-smooth prior could be applied
to T : p(T ) ∝ e−

1
2 (λ1‖T ‖2

H+λ2‖T ‖2
I). Using Bayes rule, we

estimate an MAP solution of θ:

θ∗ = argmax
θ

p(θ|X,Y) = argmax
θ

p(Y|X,θ)p(T ). (9)

To optimize this objective function, we consider the EM
algorithm, which is a general technique for learning and in-
ference in the context of latent variables. We follow standard
notations (Bishop 2006) and omit some terms that are inde-
pendent of θ. Considering the negative log posterior func-
tion, the complete-data log posterior is:

Q(θ,θold) = − 1

2σ2

L∑
i=1

pi‖yi − T (xi)‖2 −
DLp

2
lnσ2+

Lp ln γ + (L− Lp) ln(1− γ)− λ1

2
‖T ‖2H − λ2

2
‖T ‖2I , (10)

where pi = P (zi = 1|xi,yi,θ
old), Lp =

∑L
i=1 pi. The

EM algorithm alternates with two steps: an expectation step
(E-step) and a maximization step (M-step).

E-step: We use the current parameter values θold to find
the posterior distribution of the latent variables. Denote P =
diag(p1, . . . , pL) a diagonal matrix which can be computed
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by applying Bayes rule:

pi =
γe−

‖yi−T (xi)‖
2

2σ2

γe−
‖yi−f(xi)‖2

2σ2 + (1− γ) (2πσ
2)D/2

a

. (11)

The posterior probability pl is a soft decision, which indi-
cates to what degree the correspondence (xi,yi) agrees with
the current estimated transformation T .

M-step: We determine the revised parameter estimate
θnew as: θnew = argmaxθ Q(θ,θold). Let T (X) =
(T (x1), . . . , T (xL))

T. Considering the diagonal matrix P
and taking derivative of Q(θ) with respect to σ2 and γ, and
setting them to zero, we obtain

σ2 =
tr((Y − T (X))TP(Y − T (X)))

DLp
, (12)

γ = tr(P)/L. (13)
Next we consider the terms of Q(θ) that are related to T .

We obtain a manifold regularized risk functional as (Mic-
chelli and Pontil 2005):

E(T ) =
1

2σ2

L∑
i=1

pi‖yi − T (xi)‖2 +
λ1

2
‖T ‖2H +

λ2

2
‖T ‖2I .

(14)

We define model the transformation T by requiring it to
lie within an RKHS H defined by a matrix-valued kernel
Γ : IRD × IRD → IRD×D. In this paper, we consider a di-
agonal decomposable kernel Γ(x,x′) = κ(x,x′) · I, where
κ(x,x′) = e−β‖x−x′‖2

is a scalar Gaussian kernel, with β
determining the width of the range of interaction between
samples. Therefore, we have the following representer theo-
rem (Belkin, Niyogi, and Sindhwani 2006).
Theorem 1. The optimal solution of the manifold regular-
ized risk functional (14) is given by

T ∗(x) =
∑M

i=1 Γ(x,xi)ci, (15)

with the coefficients {ci}Mi=1 determined by a linear system

(JTPJΓ+ λ1σ
2I+ λ2σ

2AΓ)C = JTPY, (16)

where Γ ∈ IRM×M is the so-called Gram matrix with the
(i, j)-th element being κ(xi,xj), J = (IL×L,0L×(M−L))
with I being an identity matrix and 0 being a matrix of all
zeros, C = (c1, . . . , cM )T ∈ IRM×D is a coefficient matrix.

Convergence analysis. The objective function (9) is not
convex, and hence it is unlikely that any optimization tech-
nique can find its global minimum. However, for many prac-
tical applications a stable local minimum is often enough.
To achieve this goal, we use a large value to initialize the
variance σ2 so that the objective function becomes convex
in a large region. In this situation, a lot of unstable shal-
low local minima can be filtered and a good minimum could
be achieved. As the EM iteration proceeds, the value of σ2

gradually decreases and the objective function tends to ap-
proach the true curve smoothly. This makes it likely that a
better minimum could be reached by using the old minimum

as the initial value, and finally converges to a stable local
minimum. A similar concept has been introduced in deter-
ministic annealing (Chui and Rangarajan 2003), where the
solution of an easy problem is used to recursively give ini-
tial conditions to increasingly harder problems.

Fast implementation

The most time consuming step of our proposed algorithm
is to solve the transformation T using linear system (16),
which requires O(M3) time complexity and may pose a se-
rious problem for large values of M . Even when it is im-
plementable, a suboptimal but faster method may be a bet-
ter choice. In this section, we provide a fast implementation
based on a similar kind of idea as the subset of regressors
method (Poggio and Girosi 1990).

Rather than searching for the optimal solution in the space
of HM =

{∑M
i=1 Γ(·,xi)ci

}
, we use a sparse approxima-

tion and search a suboptimal solution in a space with much
less basis functions defined as HK =

{∑K
i=1 Γ(·, x̃i)ci

}
,

and then minimize the manifold regularized risk functional
over all the sample data. Here K � M and we choose
the point set {x̃i : i ∈ IINK} as a random subset of
{xi : i ∈ IINM} according to (Rifkin, Yeo, and Poggio
2003), who found that simply selecting an arbitrary subset
of the training inputs performs no worse than those more
sophisticated and time-consuming methods. Therefore, we
search a solution with the form

T (x) =
∑K

i=1 Γ(x, x̃i)ci, (17)

with the coefficients {ci}Ki=1 determined by a linear system

(UTPU+ λ1σ
2Γs + λ2σ

2VTAV)C = UTPY, (18)

where the Gram matrix Γs ∈ IRK×K with the (i, j)-th ele-
ment being κ(x̃i, x̃j), U ∈ IRL×K and V ∈ IRM×K with
the (i, j)-th element being κ(xi, x̃j). Note that the matrix U
is composed of the first L rows of the matrix V. The deriva-
tion of Eq. (18) is similar to that of Theorem 1. Compared
with the original method, the difference of the fast version is
that it solves a linear system in Eq. (18) rather than Eq. (16).

Algorithm summary & computational complexity

The two steps of estimating correspondence and transfor-
mation are iterated to obtain a reliable result. In this paper,
we use a fixed number of iterations, typically 10 but more in
case of badly degraded data, for example, large degree of de-
formation, high level of noise or large percentage of outliers
in the point sets. As our Robust Point Matching algorithm
is based on Manifold Regularization, we name it MR-RPM.
We summarize the MR-RPM method in Algorithm 1.

For the linear system (16), the matrix JTPJΓ+λ1σ
2I+

λ2σ
2AΓ is of size M × M , and hence it requires O(M3)

time complexity to solve the transformation T . However,
for the linear system (18), the matrix UTPU + λ1σ

2Γs +
λ2σ

2VTAV is of size K × K, and hence the time com-
plexity for solving the linear system reduces to O(K3).
Nevertheless, the time complexity of compute the matrix
UTPU + λ1σ

2Γs + λ2σ
2VTAV is O(KM2), due to the

4221



Algorithm 1: The MR-RPM Algorithm

Input: Model point set {xi}Mi=1, target point set
{yj}Nj=1, parameters ε, β, λ1, λ2

Output: Aligned model point set {x̂i}Mi=1

1 Compute feature descriptors for target set {yj}Nj=1;
2 Set a to the volume of the output space;
3 repeat

4 Compute feature descriptors for model set {xi}Mi=1;
5 Construct S = {(xi,yi)}Li=1 using descriptors;
6 Compute graph Laplacian A by Eqs. (4) and (5);
7 Compute Gram matrix Γ using the definition of Γ;
8 Initialize γ, P = I, T (xi) = xi, and σ2 by Eq. (12);
9 repeat

10 E-step:
11 Update P = diag(p1, . . . , pL) by Eq. (11);
12 M-step:
13 Update σ2 and γ by Eqs. (12) and (13);
14 Update C by solving linear system (18);
15 until Q converges;
16 Update model point set {xi}Mi=1 ← {T (xi)}Mi=1;
17 until reach the maximum iteration number;
18 The aligned model point set {x̂i}Mi=1 is given by

{T (xi)}Mi=1 in the last iteration.

multiplication operation on the M × M graph Laplacian
matrix A. As K is a constant which is not dependent on
M and K � M , the total time complexity of solving the
transformation T in our fast implementation can be writ-
ten as O(M2). The space complexity of our method scales
like O(M2) due to the memory requirements for storing the
graph Laplacian matrix A.

Implementation details

Before solving the registration problem, we first normalize
the input point sets with a linear scaling, so that they are
expressed in the same coordinate system, more specifically,
the points in both of the two sets both have zero mean and
unit variance. Besides, we solve a displacement function v
defined as T (x) = x + v(x) rather than directly solving
the transformation T , which can be achieved by directly
setting the output as y − x in our formulation. The use of
displacement field guarantees more robustness (Myronenko
and Song 2010; Ma et al. 2014).

Parameter settings. There are four main parameters in our
MR-RPM: ε, β, λ1 and λ2. Parameter ε is a threshold used to
construct the neighborhood graph. Parameter β determines
the width of the range of the interaction between samples.
The rest two parameters control the trade-off between the
closeness to the data and the smoothness of the solution,
where λ1 and λ2 regularize with respect to the whole input
space and the intrinsic geometry, respectively. In general, we
found that our method was robust to parameter changes. We
set ε = 0.05, β = 0.1, λ1 = 3, λ2 = 0.05 throughout this
paper. The inlier percentage parameter γ needs an initial as-
sumption, as shown in Line 8 in Algorithm 1, here we fix it

(a)

(b)

(c)

(d)

(e)

(f)

Figure 1: Qualitative results of our MR-GRL algorithm on
the fish (a-c) and Chinese character (d-f) shapes shown in
every two rows. For each group, the upper figures are the
model (‘+’) and target (‘◦’) point sets, while the lower fig-
ures are our registration results, and the degradation level
increases from left to right. From top to bottom, different
degradations involving deformation, noise and occlusion.

to 0.9. Moreover, to use the fast implementation, we set the
solution base number K to 15 in the 2D case and 50 in the
3D case; the uniform distribution parameter a is set to be the
volume of the bounding box of the data.

Experimental results

In order to evaluate the performance of our MR-RPM, we
conduct experiments on both 2D shape contour and 3D point
cloud. The experiments were performed on a laptop with 3.0
GHz Intel Core CPU, 8 GB memory and Matlab Code.

Results on 2D shape contour

We use the same synthesized data as that in (Chui and Ran-
garajan 2003) and (Zheng and Doermann 2006), which con-
sists of two shape patterns (i.e., a fish and a Chinese charac-
ter) with different kinds of degenerations including deforma-
tion, noise, outlier, rotation and occlusion. For each kind of
degeneration, it involves several different degeneration lev-
els and each degeneration level contains 100 samples. Note
that the outlier is somewhat similar to the occlusion, as in
both cases one point set contains some points not contained
in the other point set. But for the test data, the occlusion
is more practical as the non-common points come from the
shape contour while in the outlier case they are randomly
spread over the shape patterns. Besides, the rotation could be
well addressed by using rotation invariant feature descrip-
tors. Therefore, we only test our method on three kinds of
degenerations such as the deformation, noise and occlusion.

We first provide some qualitative illustrations of our MR-
RPM on the two shape patterns, as shown in Fig. 1. For each
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Figure 2: Comparison of MR-RPM with SC, TPS-RPM, RPM-LNS, GMMREG, CPD and VFC on the fish (top) and Chinese
character (bottom). The error bars indicate the registration error means and standard deviations over 100 trials.

group of results, our goal is to align the model points (‘+’)
onto the target points (‘◦’) which are both presented in the
upper figures, and the registration results are given in the
lower figures. From the results, we see that our MR-RPM
can well address all the different degradations, and the reg-
istration accuracy decreases gradually and gracefully as the
degradation level increases. It is interesting that even in case
of extreme degradation level, especially for the deformation
and occlusion, our method can still generate satisfactory re-
sults. The average run time of our MR-RPM on this dataset
with about 100 points for each shape pattern is about 0.5s.

To provide a quantitative comparison to the state-of-the-
arts, we report the results of six methods such as SC (Be-
longie, Malik, and Puzicha 2002), TPS-RPM (Chui and
Rangarajan 2003), RPM-LNS (Zheng and Doermann 2006),
GMMREG (Jian and Vemuri 2011), CPD (Myronenko and
Song 2010), GLTP (Ge, Fan, and Ding 2014), and VFC (Ma
et al. 2014), as shown in Fig. 2. For each pair of shapes, the
registration error is characterized by the average Euclidean
distance between the warped model set and its correspond-
ing target set. Then the mean and standard deviation of the
registration error on all 100 samples for each degradation
level and degradation type are computed for performance
comparison. From the results, we see that SC, GMMRGE
and GLTP are not robust to noise, while TPS-RPM degrades
badly in case of occlusion. The registration accuracies of
RPM-LNS and CPD are satisfactory which decrease grace-
fully as the degradation level increases. In contrast, VFC
and our MR-RPM have the best results in most case expect
for large noise level, and our MR-RPM almost consistently
outperforms VFC for both different degradation type and
degradation level on all the dataset. Note that a major dif-
ference of our MR-RPM and other iterative methods such

Figure 3: Qualitative results of our method on 3D wolf point
clouds involving non-rigid deformation (left two) and occlu-
sion (right two). For each group, the left figure is the model
(‘·’) and target (‘◦’) point sets, and the right is our result.

as VFC is that we introduce an additional manifold regular-
ization term; our consistently better results demonstrate that
the manifold regularization does play an important role for
improving the transformation estimation.

Results on 3D point cloud

We next test our MR-RPM for registration of 3D point cloud
data, where a wolf pattern with about 5, 000 points in differ-
ent poses is used for evaluation. The results are presented in
Fig. 3, where the left two figures test the non-rigid deforma-
tion and the right two figures test the occlusion. We see that
our method can produce almost perfect alignments for both
point cloud pair, even both the model and target sets suffer
from degradations, as shown in occlusion test. The average
runtime of our MR-RPM on this dataset is about 47s.

We also conduct a quantitative comparison with respect to
two representative state-of-the-arts such as CPD and VFC.
The average registration errors on the two point cloud pairs
shown in Fig. 3 is CPD (0.82, 0.72), VFC (1.15, 1.01), and
MR-RPM (0.78, 0.53), respectively. Clearly, our method has
the best performance, which means that our MR-RPM is ef-
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fective for both 2D and 3D point set registration.

Conclusion

Within this paper, we presented a new method called MR-
RPM for non-rigid registration of both 2D shapes and 3D
point clouds. A key characteristic of our approach is the us-
ing of manifold regularization to capture the underlying in-
trinsic geometry of the input data, leading to a better esti-
mate of the transformation. We also provide a fast imple-
mentation to reduce the algorithm complexity from cubic to
quadratic, so that large scale data (especially 3D point cloud)
could be addressed. The qualitative and quantitative results
on both 2D and 3D public available datasets demonstrate
that our MR-RPM outperforms the state-of-the-art methods
in most cases, especially when there are significant non-rigid
deformations and or occlusions in the data.
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