
Configuration Planning with Temporal Constraints

Uwe Köckemann and Lars Karlsson
Center for Applied Autonomous Sensor Systems, Örebro University, Sweden

Abstract

Configuration planning is a form of task planning that takes
into consideration both causal and information dependencies
in goal achievement. This type of planning is interesting, for
instance, in smart home environments which contain various
sensors and robots to provide services to the inhabitants. Re-
quests for information, for instance from an activity recogni-
tion system, should cause the smart home to configure itself
in such a way that all requested information will be provided
when it is needed. This paper addresses temporal configura-
tion planning in which information availability and goals are
linked to temporal intervals which are subject to constrains.
Our solutions are based on constraint-based planning which
uses different types of constraints to model different types
of knowledge. We propose and compare two approaches to
configuration planning. The first one models information via
conditions and effects of planning operators and essentially
reduces configuration planning to constraint-based temporal
planning. The second approach solves information depen-
dencies separately from task planning and optimizes the cost
of reaching individual information goals. We compare these
approaches in terms of the time it takes to solve problems and
the quality of the solutions they provide.

Introduction

Smart home environments contain a large variety of sensors
that can produce different information depending on how
they are used and how their data is processed. To infer, for
instance, if a person is sitting on a chair we could either use a
pressure sensor installed in the chair or point a camera at that
chair and analyze the camera’s feed. Configuration planning
is a form of task planning that explicitly considers informa-
tion availability either as a goal or as a condition to use cer-
tain operators. A robot, for instance, may have to rely on a
camera feed to navigate an apartment. In the context of the
E-care@home project (ecareathome.se) we consider context
inference that may require information to be available dur-
ing specific temporal intervals and we employ configuration
planning to ensure that these information goals are met.

Configuration planning is the combination of task-
planning with information goals and dependencies. On one
hand task-planning operators may require information to be

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

executed (e.g., robot movement requires robot’s location).
In other scenarios information may be the goal. Consider a
smart home environment equipped with a multitude of sen-
sors that gather information about the inhabitant. Here an
information goal could be ”Is the inhabitant eating at lunch
time?”. There might be many alternative ways to get to this
information. A robot could be used to determine the human
activity with a camera during the requested time. Alterna-
tively, information from contact sensors attached to the door
of the fridge and pressure sensors attached to the seats in
the kitchen could be used to come to the same conclusion.
In addition to the dependencies themselves we may want to
consider costs. Having a robot’s camera detect a human ac-
tivity for one or two hours is more expensive than using the
alternative described above. As task planning can depend
on available information, we may also have the opposite de-
pendency, e.g., providing information with a specific sensor
may require task planning. In the above example, the robot
needs to be at a specific location in order to provide the re-
quested information.

Constraint-based planning allows to model different types
of knowledge via different types of constraints. The
constraint-based planning problem is solved by integrating
solvers for each of these constraint types. The presented
approach already integrates temporal constraints, resources,
costs, constraints for interaction with humans, and static
knowledge via Prolog. This view of planning is interesting
for configuration planning since it allows us to investigate
different ways to capture information dependencies. The
main contributions of this paper are two constraint-based
solutions to temporal configuration planning. These are, to
the best of our knowledge, the first approaches that consider
the timing of information and temporal constraints on infor-
mation goals. The first approach relies on task planning to
model information goals and dependencies. Its main appeal
is that it can rely on existing forward planning heuristics and
produce solutions very quickly. However, it does not con-
sider solution quality. The second approach utilizes problem
decomposition to satisfy information dependencies as a sub-
problem. This sub-problem is formulated as a Constraint
Satisfaction Problem (CSP) with the constraint processing
language MiniZinc (http://www.minizinc.org/). It then uses
task planning to satisfy any open goals that result from the
solution to the information sub-problem (e.g., sensors may

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

4589



have to be targeted at objects or be at specific locations). The
main appeal of this approach is that it makes use of the opti-
mization capabilities of MiniZinc to provides higher quality
solutions. However, it takes significantly longer to produce
solutions as we will see in the experimental section.

Related Research

There are many approaches where planning problems are
encoded into SAT problems or CSPs (Kautz, Selman, and
Hoffmann 2006; Kambhampati 2000). Constraint-based
planning as described by (Köckemann, Pecora, and Karls-
son 2014; 2015; Köckemann 2016) is instead an approach to
planning that models different aspects of a domain with dif-
ferent types of constraints. This approach was used to pro-
vide solutions for several challenges of human-aware plan-
ning. In this paper we use the same framework but address
a different problem. Other constraint-based planning ap-
proaches in a similar direction include EUROPA (Frank and
Jónsson 2003) and SAM (Pecora and Cirillo 2009).

Configuration planning is a relatively recent topic that
does not have a large body of related work. (Lundh 2009)
describes an approach based on an extension of hierarchi-
cal task-network planning (Nau et al. 1999). Operators are
extended to functionalities that describe information depen-
dencies. The configuration planning problem is solved as
a composition of the HTN planning problem and the prob-
lem of finding a configuration that satisfies all informa-
tion dependencies. (Di Rocco, Pecora, and Saffiotti 2013;
Di Rocco et al. 2013) go one step further and integrates in-
formation dependencies with causal, temporal and resource
reasoning. Information is still treated as static in the sense
that it does not consider information being available for
only a limited temporal interval. The configuration plan-
ning problem with multiple, partially-ordered preferences
was considered by (Silva-Lopez et al. 2015). There are also
some similarities between configuration planning and forms
of task allocation and coalition formation where sensing,
communication and information conversion are considered
(Zhang and Parker 2012).

Configuration Planning

Configuration planning is a combination of task planning
which attempts to reach a set of goals by applying opera-
tors (or actions) with information dependencies and infor-
mation goals. This can be viewed as an extension of the
task planning problem, where operators may require infor-
mation to be applicable (information dependency). A robot,
for instance, may require a camera feed of a ceiling cam-
era in order to move safely through the environment. On
the other side gathering information might be the main goal
(i.e., an information goal) that may require task planning to
be achieved. Information dependencies can be represented
by information links of the form

I
c−→

TR
O (1)

that require a set of information inputs I in order to provide
some output information O at a cost c per time unit that the

link is used. The set TR contains any non-information sub-
goals (task-requirements) that need to be achieved to use the
link. Basic information links allow to produce information
directly from sensors (I = ∅). Using sensors may require the
planner to fulfill task requirement subgoals. For instance, in
order to determine if a human is executing a specific activity
(e.g., eating) we may need to move a robot to the human so
that the robots camera can detect the activity. We refer to
these sub-goals as of information links. Note that we only
consider whether or not information is available and that the
information content has no impact on the planning problem.
For instance, we may require access to a map of the environ-
ment (information goal) to navigate a robot, but the plan is
not contingent on what information is contained in the map.
That means that we are not required to deal with uncertainty
about what will actually be observed during execution. Con-
figuration planning deals with information availability but
not with the information content.

Informally, a solution to a configuration planning problem
is a selection of information links with associated tempo-
ral intervals that provide all information goals at the correct
times and have no unsatisfied inputs. In addition, all task
requirements need to be fulfilled.

Figure 1 shows a graph representation of a set of informa-
tion links. All sx in the figure represent sensor information
provided by some sensor sx. All ix represent information
that is computed from sensors or form other information.
The graph is directed and acyclic and we consider sensors
to be the original source of all information. Sensor s2, for
instance, can provide information i4 at a cost of 43 per time
unit. Sensor s1 can be used at a cost of 71 to provide infor-
mation i10. To use sensor s1 for this purpose it needs to be
set to configuration cfg1. In the same way sensor s5 needs
to target object o2 in order to provide information i2 and s3
needs to be at location l1 to provide information i2. Infor-
mation i2 and i4 can be combined to provide information i5
at a cost of 16. This example was randomly generated with
the same script that was used for the evaluation later on.

Explicitly modeling information dependencies and goals
as part of the environment has the advantage that the source
of information could be changed dynamically in case sen-
sors are not available due to hardware failure.

Previous work on configuration planning did not consider
temporal aspects of information. Here we use constraint-
based planning with temporal reasoning to model informa-
tion availability during flexible temporal intervals. The fol-
lowing section gives a short introduction to constraint-based
planning.

Constraint-based Planning

A promising framework for performing configuration plan-
ning is constraint-based planning. The approach to
constraint-based planning that we use in this paper mod-
els different types of knowledge via different types of con-
straints. This allows us to propose and compare two very dif-
ferent methods for configuration planning within the same
framework. Solvers for constraint-based planning problems
can be composed of solvers for individual constraint types.

4590



s1

i10

71, config(cfg1)

s2

i4

43

s3

i2

2, at(l1)

i8

86

i9

49

s4

i3

7

s5

i1

84 74, target(o2) 16

6553

i6

56

i7

56

16

i5

Figure 1: Example information dependencies. Edge labels
are costs followed by requirements (if any exist). Links with
multiple inputs are box shaped vertices where ingoing edges
are required inputs, the single outgoing edge is the derived
information, and vertex labels are link costs. We use the
prefix s for raw sensor data, i for information, o for object,
and l for location.

Each of these types poses a sub-problem and solving all sub-
problems leads to a solution to the overall problem. A sub-
problem for a constraint type can have three different out-
comes. It can be satisfied, unsatisfiable, or require to resolve
a flaw. In the latter case there might be a choice of resolvers
that need to be explored systematically. For each constraint
type we assume a solver that decides if a sub-problem can
be resolved and how. This search over resolvers of flaws
for all constraint types defines the constraint-based planning
problem as a search problem. This search is realized by Al-
gorithm 1 described later.

This view on planning is interesting for configuration
planning since it allows us to investigate different ways to
capture information dependencies. In this paper we will
compare two such ways: modeling information dependen-
cies into operator preconditions and effects directly, and
modeling them with a distinct type of constraint that is
solved separately by a constraint solver.

Compared to planning approaches using the Planning Do-
main Definition Language (PDDL) constraint-based plan-
ning has the advantage of using explicit temporal intervals
which allow to easily state constraints on the intervals during
which goals have to be achieved. This is especially relevant
for information goals that need to be achieved during a fixed
interval. While it might be possible to model our goal-based
approach with PDDL, talking about time in temporal PDDL
is surprisingly difficult and cumbersome and a comparison
between our two approaches would become difficult.

A Constraint Database (CDB) Φ is a set of constraints of
different types. Constraint types considered in this paper are
statements, arithmetic (math) and cost constraints, temporal
constraints, open goals, and interaction constraints. We will
go over each type in turn. Later, we also introduce a new
type of constraint for configuration planning that will be uti-
lized in our second approach.

The most basic type is statement. Statements relate state-
variable assignments to temporal intervals. They have the

form (I x v) where I is a temporal interval, x is the state-
variable and v the value. We use statements to model both
the context for the task planner (initial state, preconditions,
and effects), as well as information that is available during a
temporal interval. Statements require scheduling whenever
two statements with the same variable can have different val-
ues and their intervals have a non-empty intersection.

Example 1. The first two statements below represent the
location of a robot and an object. The third statement is used
to represent which object the robot is facing. The last two
statements actually represent information that is available
during their intervals.

(:statement (I1 (at robot) location)
(I2 (at object) location)
(I3 (facing robot) object)
(I4 (camera-feed-raw robot object))
(I5 (camera-feed-processed object)) )

A temporal context for statements is established by tem-
poral constraints that can impose, e.g., flexible durations,
release times or precedence constraints. We express tempo-
ral constraints via quantified Allen’s interval relations (Allen
1984; Meiri 1996) between statements in CDBs. For con-
venience, we add disjunctions of conceptually neighboring
constraints such as during-or-equals (Freksa 1992). We also
add the unary temporal constraints release, deadline, dura-
tion and at.

Example 2. The following temporal constraints applied to
the statements from Example 1 state that the robot is facing
the object while they are both at the same location. The raw
camera feed is provided during the interval where the robot
is facing the object. The two bounds state the difference be-
tween start and end times of the two intervals. Finally, the
processed camera feed is provided with a temporal delay of
10 time units.

(:temporal (during I3 I1 [1 inf] [1 inf])
(during I3 I2 [1 inf] [1 inf])
(during I4 I3 [1 inf] [1 inf])
(overlaps I5 I4 [10 inf] [1 inf]) )

Goal constraints use statements to express open goals for
the task planner to reach. Temporal constraints on the inter-
vals of goal statements allow to define during what interval
the goal has to be reached. Goal constraints require oper-
ators that define which statements can be reached from a
CDB. An operator o is a tuple (name,P, E , C) that consists
of a name, a set of precondition statements P that must be in
a CDB for the operator to be applicable, a set of effect state-
ments E that are added when the operator is applied, and a
set of constraints C that must be satisfied when the opera-
tor is applied. Usually, C contains temporal constraints that
relate the temporal intervals of preconditions and effects to
the operator itself. If an operator’s effect adds a statement
that can be matched to a goal that goal can be satisfied by
connecting them with a temporal equals constraint (forcing
effect and goal intervals to have the same solution space). In
the next section we will see how operators can be used to
establish information links.

4591



Example 3. The following operator requires a raw camera
feed and produces a processed one. Information is repre-
sented by precondition and effect statements. The temporal
overlaps constraint assures that the required information is
available before processing (interval ?P has to start at least
10 time units before interval ?E ). The operators interval
(represented by ?THIS ) is equal to the effect interval.

(:operator (process-camera-feed)
(:preconditions (?P (camera-feed-raw ?R ?O)) )
(:effects (?E (camera-feed-processed ?O)) )
(:constraints (:temporal (equals ?THIS ?E)

(overlaps ?P ?E [10 inf] [1 inf]) ) ) )

The following goal can be achieved by the example oper-
ator if the raw camera feed is available during a temporal
interval that can satisfy temporal constraints of both goal
and operator. The temporal equals constraint is used to link
effects with goals that they achieve (as shown below).

(:goal (G (camera-feed-processed object)) )
(:temporal (at G [0 50] [80 inf])
(equals G I5) ) ;; G is satisfied by I5

Prolog constraints are used to express constraints on static
facts. A Prolog program is provided together with the do-
main model and Prolog constraints are predicates used in
that program. Here we use Prolog constraints in operators
to express under which circumstances specific information
can be derived in one of our solutions (i.e., we specify in-
formation dependencies in Prolog and assert then via Prolog
constraints). We will see an example of this later.

Cost constraints are used to add up costs. In this paper
we use them to model the cost of making information avail-
able. Math constraints can be used to perform calculations.
Their only use in this paper is to calculate costs by using the
duration of information intervals.

An Interaction constraint (IC ) ic is composed of a condi-
tion CDB Condition(ic) and a sequence of resolver CDBs
Resolvers(ic). If for any CDB Φ we have ic ∈ Φ and Φ ∪
Condition can be satisfied, at least one r ∈ Resolvers(ic)
must be satisfiable. Previously, ICs were used to con-
strain the interaction with humans (Köckemann, Pecora, and
Karlsson 2014). Here we use them to add goals when cer-
tain information links are used (only required by our sec-
ond approach). An example will be discussed later. For
a more detailed coverage of constraint-based planning see
(Köckemann 2016).

To solve the constraint-based planning problem we use
flaw resolution search. Flaw resolution is a very convenient
way to integrate various types of knowledge. Two state-
ments with the same variable but different values whose in-
tervals intersect create a flaw that needs to be resolved by
adding a temporal constraint that separates them in time.
Open goals can be seen as flaws that need to be resolved
via task planning.

Algorithm 1 shows the general approach we use to solve
the constraint-based planning problem. It first uses optional
preprocessing procedures for each constraint type (lines 3
and 4). Then it starts the recursive procedure RESOLVE-
ALL that will test all constraint types in a given order (line

Algorithm 1 Constraint-based planning
Require: Φ - a CDB, O - set of operators, B - Prolog knowledge

base, Θ - an ordering of solvers
1: function CB-PLAN(Φ,O,Θ)
2: global O,Θ,B � Available to all sub-procedures
3: for t ∈ Θ do
4: PREPROCESS-t(Φ) � Optional preprocessing
5: return RESOLVE-ALL(Φ)
6: function RESOLVE-ALL(Φ)
7: for t ∈ Θ do
8: R ← TESTANDRESOLVE-t(Φ[,O][,B])
9: if R = Failure then

10: return Failure � Φ cannot be fixed
11: if R �= {Φ} then
12: for Φ′ ∈ R do
13: Φ′′ ←RESOLVE-ALL(Φ′)
14: if Φ′′ �= Failure then
15: return Φ′′ � Solution from recursive call
16: return Failure � No working resolver
17: return Φ � No flaws: Solution found

7) for flaws and inconsistencies with TESTANDRESOLVE
(line 8). Note that detection and resolution of flaws is entirly
done in TESTANDRESOLVE. If TESTANDRESOLVE returns
Failure RESOLVE-ALL fails (line 10). If it returns Φ then
Φ is accepted as a solution by type t. If flaws need to be
resolved for type t RESOLVE-ALL returns a list of resolved
CDBs that are tested recursively (lines 12 through 15). If any
of these recursive calls returns a CDB then it is a solution
(line 15). If none of them works the flaw cannot be resolved
and Failure is returned (line 16). If no type t requires a
change then Φ is returned as a solution (line 17).

Temporal reasoning is carried out in polynomial time by
solving a Simple Temporal Problem (STP) with a varia-
tion of the all-pairs-shortest path algorithm (Floyd 1962).
Scheduling of statements is handled by the approach de-
scribed by (Cesta, Oddi, and Smith 2002). Prolog con-
straints are translated into queries that are solved with the
Prolog solver YAP. Costs and math constraints do not re-
quire flaw-resolution and are reduced to simple evaluations.
Interaction constraints are solved by the approach described
by (Köckemann, Pecora, and Karlsson 2014). We use two
approaches to resolve open goals. One is based in plan-
space planning and implements the hadd heuristic with action
reuse described by (Younes and Simmons 2003). Plan-space
planning is straight-forward to use on top of our operator
definition. (Note that threats are taken care of by temporal
reasoning and scheduling.) The second one is based on a
translation of CDB and operators into a variation of a for-
ward state-space planning problem that is solved by alter-
nating between the causal graph and fast forward heuristics
(Helmert 2006; Hoffmann and Nebel 2001) together with the
lookahead suggested by (Vidal 2011).The implementation is
available open source at spiderplan.org.

Goal-based Approach

Our first approach models all information dependencies of
the configuration planning problem as preconditions and ef-

4592



fects of operators. This reduces temporal configuration plan-
ning to constraint-based temporal task planning. The opera-
tor process-camera-feed, for instance, requires the raw feed
as a precondition and provides the processed feed as an ef-
fect. In general, links (Eqn. 1) are modeled with operators
of the form olink = (I∪TR, O, C∪{(:cost (add c))}). Here,
C also contains temporal constraints that assure that the out-
put O is provided only while inputs I and task-requirements
TR are satisfied.

The concrete operators used in this approach can be di-
vided into three sets. Sensor operators deal with generat-
ing information from sensors (e.g., camera generates raw
feed), processing operators deal with processing available
information to generate new one (e.g., raw feed to processed
feed), and operators that are used to fulfill task requirements
of information links (e.g., by moving them or by targeting
objects).

We consider four sensor operators: one without any pre-
conditions (e.g., a fixed temperature sensor), one requiring
the sensor to be at a specific location (e.g., a movable hu-
midity sensor), one that it is targeting a specific object (e.g.,
a camera) and one that requires a specific configuration (e.g.,
sampling frequency). Targeting requires the sensor and the
object to be at the same location. Other combinations of
these task-requirements are also possible.

In addition, we consider six processing operators, each
requiring between one and six information inputs to com-
pute a single output information. Finally, we have a set of
operators that address the task-requirements of sensor links.
One operator allows to move sensors between different lo-
cations (if they are movable), one operator allows sensors to
pick up and put down objects (these sensor may be consid-
ered as robots), two operators allow a sensor to start and stop
targeting objects at their current location, and finally one op-
erator allows to change the configuration of a sensor. This
last set of operators is used as well by our second approach.

Unlike in the example operator process-camera-feed the
sensor and processing operators we use in this approach rely
on Prolog background knowledge to determine information
dependencies and conditions. This background knowledge
is central to the approach as it specifies the information links
that are available. It allows us to specify operator templates
(as in the following example).
Example 4. Consider the following operator.

(:operator
(sense ?S - sensor ?I - info ?C- cost)
(:effects (?E1 (available ?I))
(?E2 (sensor-state ?S) on) )

(:constraints (:temporal
(equals ?THIS ?E1)
(during ?THIS ?E2 [1 inf] [1 inf]) )

(:prolog kb (linkSensor ?S none ?I ?C))
(:math (eval-int (cost-term ?E1) (mult (

sub (EET ?E1) (LST ?E1)) ?C)))
(:cost (add link-cost (cost-term ?E1))) ) )

It does not have any task requirements (TR = ∅) so there
are no preconditions. It turns on sensor ?S and makes in-
formation ?I available. It calculates the cost by taking the
minimum duration of ?E1 and multiplying it with the cost

per time unit ?C. To determine which sensors can be used
to make certain information available it uses a Prolog con-
straint.

Every line in the Prolog knowledge base kb that matches
this constraint determines an information link without task
requirements. Consider the following Prolog code that rep-
resents three of the links from Figure 1.

linkSensor(s1,config(cfg1),i10,71).
linkSensor(s5,none,i1,84).
link2(i5,i2,i4,16).

Sensor s1 can be used to produce information i10 with
cost 71 per time unit when it has configuration cfg1. Sensor
s5 can be used to produce information i1 with cost 84 per
time unit without any special condition. This allows to apply
the basic sensor operator to use this link. Information i5 can
be produced using i2 and i4 for a cost of 16 per time unit.

This approach captures all information dependencies by
modeling them as part of a task planning problem. Our sec-
ond approach attempts to model information goals as a sep-
arate problem that can be solved with constraint processing.

CSP-based Approach

This approach models information goals and dependencies
as a separate type of knowledge. We introduce a new type
of constraint that allows to model information dependen-
cies via links with attached costs and to specify informa-
tion goals. This kind of solution is enabled by Algorithm
1, since we just need to add a new type t and provide the
method TESTANDRESOLVE-t. This solver is integrated with
the constraint-based planner shown in Algorithm 1.

The new type configuration-planning uses the following
elements. An information dependency is modeled with a
link

(link O I c)
that models Eqn. 1 where O is the output, I is the required
input, and c is the cost per time-unit of using the link.

Example 5. The knowledge base used in Example 4 would
be represented as follows.

(link i10 {s1} 71)
(link i1 {s5} 84)
(link i5 {i2 i4} 16)

Note that special conditions are not covered in these links.
We will see how they are added at the end of this section.

Information goals are modeled as
(goal interval target)

and include a temporal interval that can be used to deter-
mine when the target information has to be available. While
we consider information goals as the main purpose for plan-
ning in this paper, this approach can also be used to model
operators that require information to be used. In this case
one simply needs to add an information goal to the set of
constraints of the operator (recall that open goals are seen as
constraints in our approach).

The configuration planning solver converts links into in-
put data for a CSP formulated in the language MiniZinc. It
solves one information goal at a time while minimizing the
costs of the involved links. The CSP for a single information

4593



goal attempts to find the cheapest selection of links to pro-
vide the information goal. Each selected link must also have
all its requirements satisfied. The only information sources
without information sub-goals are sensors. For each infor-
mation link that is chosen, a statement is added together with
temporal constraints to assure that all input information is
available when it is needed. The CSP does not consider re-
quirements of sensors such as targeting. Instead it uses In-
teraction Constraints (ICs) to add goals in case links with
attached conditions are used. These goals are then taken care
of by a task planner that uses plan-space planning. The rea-
son we use an open goal solver based on plan space planning
is that we attempt to resolve interaction constraints and open
goals after each satisfied information goal. The planner used
in the goal-based approach is efficient because it is based on
state-space planning but this also makes it harder to modify
existing plans.

Example 6. Consider the first link of Example 5. As men-
tioned before, compared to Example 4, we are missing the
required configuration of this link. We address this problem
in the following way. If a link is used by the configuration
planning solver, a statement will be added to the CDB.

(:statement (I (link i10 {s1} 71)))

The condition of the following IC checks if such a state-
ment exists in a CDB and if it does exist its resolver requires
to add a goal for the sensor to have the required configura-
tion at the right time.

(:ic (link-requires-targeting ?I s1 i10)
(:condition (:statement (?I (link i10 {s1} 71))))
(:resolver (:goal (?G (config s1) cfg1))
(:temporal (during ?I ?G [1 inf] [1 inf]))))

The benefit of this approach is that it isolates the sub-
problem of satisfying information dependencies and allows
to reduce the cost of reaching information goals. Note that
the resulting solution is not necessarily globally optimal
since one information goal is satisfied at a time and a glob-
ally optimal solution would need to solve all information
goals at once and possibly have to consider temporal infor-
mation since costs are per time-unit of the intervals during
which information links are used. The resulting task plan-
ning problem contains only goals that actually require task
planning. The drawback is that links with competing condi-
tions may be chosen. In such cases it could take Algorithm
1 a long time to realize that no plan can be found for a se-
lected set of links. Since the search is systematic, however,
a solution will be found eventually.

Experiments

We compare the two presented approaches wrt. solving time
and solution quality. In order to do so, we created three
random domains and for each of these domains we cre-
ated 200 problems for both presented approaches. Param-
eters for domain generation are the number of sensors (20,
30, 40), information types (60, 90, 120), information links
(100, 150, 200), objects (20), locations (10), sensor config-
urations (5), information cost (uniformly random between 0
and 100), goal start time (uniformly random between 100

Figure 2: Average time to solve 20 problems for a varying
number of information goals.

Figure 3: Average cost of the solutions to 20 problems for a
varying number of information goals.

and 100000), goal minimum duration (uniformly random
between 50 and 100), required targeting conditions (2,3,4),
required location conditions (2,3,4), required configuration
conditions (2,3,4). Since costs of information links are cho-
sen randomly they are not influenced by the fact that they
may have special conditions. In a real-world domain we
would expect that using sensors with such conditions (likely
robots) would usually come at a higher cost than using a sta-
tionary sensor. All domain, problem, and planner definitions
used in this paper can be found online (spiderplan.org).

For each domain we generated 20 problems for a vary-
ing number of information goals (5, 10, . . . , 50) resulting in
a total of 200 problems per domain. For each problem we
generated a goal-based version and a CSP-based version that
contain exactly the same goals. We refer to our two ap-
proaches as Goal and CSP. Results for approach and domain
combinations are written Goal-20, Goal-30, Goal-40, CSP-
20, CSP-30, and CSP-40 (using the number of sensors in the
domain).

Figure 2 shows the average time to solve 20 random prob-

4594



lems for different numbers of information goals. We can see
that the solving time is clearly superior for the goal based ap-
proach. This is not surprising since the goal-based approach
uses very efficient planning heuristics while the CSP-based
approach relies on plan-space planning which requires re-
solving threats. Figure 3 shows the average costs of the so-
lutions. The problems generated for each domain are the
same for both approaches, so costs for Goal-x and Sensor-x
are comparable. Costs are much lower for the CSP-based ap-
proach. This can be explained by the fact that the goal based
approach does not consider optimization at all. If a piece of
expensive information is required once very early and once
at a later point in time, both goals can be satisfied by one
interval. If in a real-world example we need a camera to see
if a person is sleeping in the morning and in the evening, the
goal-based approach would use the camera the entire day
to satisfy both goals. While not globally optimal, the CSP-
based approach optimizes individual information goals and
thus does not suffer from this issue. Solving one goal at a
time would not have the same effect for the goal-based ap-
proach, since it would simply extend an existing information
interval to fit a goal if possible.

Conclusions & Future Work
We employed constraint-based planning to introduce and
compare two approaches to temporal configuration plan-
ning. Our results confirm our intuition that the goal-based
approach finds solutions very efficiently, while the CSP-
based approach finds higher quality solutions but may re-
quire more time to find them.

For future work it will be interesting to investigate ways
to combine the advantages of both presented approaches. In
addition we will test the approach in a real-world setting for
context-recognition in one of the E-care@home smart-home
environments where it will receive goals from a context-
recognition system and extract information links and costs
from a sensor ontology. Another important aspect of config-
uration planning that we would like to address in the future
is re-planning and plan repair in case sensors become un-
available for any reason.

Acknowledgements
This work was supported by the Swedish Knowledge Foun-
dation (KKS) project “E-care@home”.

References
Allen, J. 1984. Towards a general theory of action and time.
Artificial Intelligence 23:123–154.
Cesta, A.; Oddi, A.; and Smith, S. 2002. A Constraint-
Based Method for Project Scheduling with Time Windows.
Journal of Heuristics 8:109–136.
Di Rocco, M.; Pecora, F.; Sivakumar, P.; and Saffiotti, A.
2013. Configuration planning with multiple dynamic goals.
In AAAI Spring Symposium.
Di Rocco, M.; Pecora, F.; and Saffiotti, A. 2013. When
robots are late: Configuration planning for multiple robots
with dynamic goals. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 9515–5922. IEEE.

Floyd, R. W. 1962. Algorithm 97: Shortest Path. Commu-
nications of the ACM 5:345–345.
Frank, J., and Jónsson, A. 2003. Constraint-based attribute
and interval planning. Constraints 8:339–364.
Freksa, C. 1992. Temporal Reasoning Based on Semi-
Intervals. Artificial Intelligence 54:199–227.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26(1):191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of AI
Research 14:2001.
Kambhampati, S. 2000. Planning graph as a (dynamic) CSP:
exploiting EBL, DDB and other CSP search techniques in
Graphplan. Journal of AI Research 12:1–34.
Kautz, H. A.; Selman, B.; and Hoffmann, J. 2006. Sat-
Plan: Planning as satisfiability. In In Proceedings of the 5th
International Planning Competition (IPC).
Köckemann, U.; Pecora, F.; and Karlsson, L. 2014. Grandpa
hates robots — interaction constraints for planning in inhab-
ited environments. In Proceedings of the 28th Conference
on Artifical Intelligence (AAAI 2014).
Köckemann, U.; Pecora, F.; and Karlsson, L. 2015. Infer-
ring context and goals for online human-aware planning. In
Proceedings of the IEEE International Conference on Tools
with Artificial Intelligence (ICTAI).
Köckemann, U. 2016. Constraint-based Methods for
Human-aware Planning. Ph.D. Dissertation, Örebro univer-
sity.
Lundh, R. 2009. Robots that Help Each Other: Self-
Configuration of Distributed Robot Systems. Ph.D. Disserta-
tion, Örebro University, School of Science and Technology.
Meiri, I. 1996. Combining Qualitative and Quantitative
Constraints in Temporal Reasoning. In Artificial Intelli-
gence, 260–267.
Nau, D. S.; Cao, Y.; Lotem, A.; and Muñoz-avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In Proceedings
of the 16th International Joint Conference on Artificial In-
telligence (IJCAI), 968–975.
Pecora, F., and Cirillo, M. 2009. A constraint-based ap-
proach for plan management in intelligent environments. In
Proceedings of the Scheduling and Planning Applications
Workshop (SPARK) at ICAPS 2009.
Silva-Lopez, L. S. d. C.; Broxvall, M.; Loutfi, A.; and Karls-
son, L. 2015. Towards configuration planning with par-
tially ordered preferences: Representation and results. KI
29(2):173–183.
Vidal, V. 2011. YAHSP2: Keep It Simple, Stupid. In
Proc. of the Int’l Planning Competition (IPC-7).
Younes, H. L. S., and Simmons, R. G. 2003. VHPOP: Ver-
satile heuristic partial order planner. Journal of Artificial
Intelligence Research 20:405–430.
Zhang, Y., and Parker, L. E. 2012. Task allocation with exe-
cutable coalitions in multirobot tasks. In Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA), 3307–3314. IEEE.

4595




