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Abstract

Imagining the future helps anticipate and prepare for what is
coming. This has great importance to many, if not all, hu-
man endeavors. In this paper, we develop the Planning Pro-
jector system prototype, which applies plan-recognition-as-
planning technique to both explain the observations derived
from analyzing relevant news and social media, and project
a range of possible future state trajectories for human re-
view. Unlike the plan recognition problem, where a set of
goals, and often a plan library must be given as part of the
input, the Planning Projector system takes as input the do-
main knowledge, a sequence of observations derived from
the news, a time horizon, and the number of trajectories to
produce. It then computes the set of trajectories by applying
a planner capable of finding a set of high-quality plans on a
transformed planning problem. The Planning Projector proto-
type integrates several components including: (1) knowledge
engineering: the process of encoding the domain knowledge
from domain experts; (2) data transformation: the problem of
analyzing and transforming the raw data into a sequence of
observations; (3) trajectory computation: characterizing the
future state projection problem and computing a set of trajec-
tories; (4) user interface: clustering and visualizing the trajec-
tories. We evaluate our approach qualitatively and conclude
that the Planning Projector helps users understand future pos-
sibilities so that they can make more informed decisions.

Introduction

Being prepared for the future is of great importance to many,
if not all, human endeavors. In this paper, we develop the
Planning Projector system prototype that helps users (e.g.,
analysts) to not only explain the past, based on the ob-
served events, but also project the future by providing a
range of possible trajectories, where each trajectory con-
sists of a future state, and an explanation (i.e., an action se-
quence) that led to that state. The Planning Projector applies
plan-recognition-as-planning technique to explain the obser-
vations, derived from relevant news and social media posts,
and projects alternative trajectories, in accordance with a
planning domain definition that captures the expert knowl-
edge. Hence, the Planning Projector infers (or recognizes)
plans for the past and projects the future.
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Consider the following energy domain example, where
the objective is to project the price of oil and volume of
oil produced 2 years into the future. Our objective is not
to find a precise estimate of the price of oil, but rather to
project the possible range of values and provide an expla-
nation that led to those values. The Planning Projector re-
lies on domain knowledge that can either be provided by the
domain experts, or encoded by non-experts after reviewing
various sources of available knowledge, such as research pa-
pers, textbooks or Wikipedia. The domain knowledge in this
example describes possible actions affecting the oil price di-
rectly or indirectly, for example by affecting supply levels.
For instance, the decision of the leaders of Organization of
the Petroleum Exporting Countries (OPEC) to meet is an
action that is likely to affect both the price and the supply
of oil, depending on the outcome of such a meeting. The
decision to limit production will decrease the supply and in-
crease the price, or the decision to increase production can
lead to lower prices. The observations associated with these
actions, confirming or contradicting them, can be derived
from news reports. Similarly, several other events or actions
can be modeled: the discovery of a new oil field, drilling ac-
tivity in known fields, hurricanes or other natural disasters
affecting oil production, and changes in currency rates.

We present the Planning Projector system prototype that
integrates multiple components in order to explain the ob-
servations and generate future trajectories. The components
include: (1) knowledge engineering: the process to encode
the domain knowledge in planning terms; (2) data transfor-
mation: the component required to transform the raw data
into a sequence of observations; (3) trajectory computation:
the component responsible to compute a set of trajectories
given no planning goals as the input; (4) user interface: the
component needed in order to present the space of possibil-
ities in a compact and efficient way.

Figure 1 shows the system architecture of the Planning
Projector. The system takes as input news articles and so-
cial media posts, analyses and transforms the raw data via
the Data Transformation component and sends selected ana-
lytic results as a sequence of observations into the Trajectory
Computation component, which produces a set of trajecto-
ries. The Knowledge Engineering component ensures that
the required domain knowledge is captured and available to
the Trajectory Computation component. The User Interface
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Figure 1: Planning Projector system architecture

component interacts with the user to obtain additional inputs
such as the number of trajectories to compute and a time
horizon and presents the results.

The Knowledge Engineering component addresses one of
the main bottlenecks of applying AI planning technology,
the often manual process of obtaining the domain knowl-
edge from domain experts and encoding it in a planning lan-
guage. While it is generally assumed that a planning domain
is given as an input that may not be possible in general. That
is because the domain expert often has no AI planning back-
ground and is not able to encode the knowledge in a planning
language. Instead the domain expert might be able to capture
the knowledge in a variety of tools available and known to
them. For example, the domain expert may be able to easily
encode the domain knowledge in a diagramming tool such
as Mind Maps (Faste and Lin 2012). The system prototype
we have developed is then able to automatically translate the
available domain knowledge captured in Mind Maps into a
planning language. Further, we have developed a question-
naire in order to obtain additional domain knowledge, such
as the weights of the edges on the Mind Maps from the do-
main experts. It is also possible that domain knowledge is
extracted from online sources such as articles, textbooks or
Wikipedia or is learned (e.g., (Yang, Wu, and Jiang 2007;
Zhuo, Nguyen, and Kambhampati 2013)).

The Trajectory Computation component is responsible
for computing the trajectories given the domain knowledge
and a sequence of observations, which can be unreliable
(i.e., missing or unexplainable). To this end, it first formu-
lates the Future State Projection (FSP) problem and then ap-
plies the plan-recognition-as-planning theory that addresses
unreliable observations to transform the FSP problem into
a planning problem (Sohrabi, Riabov, and Udrea 2016;
Ramı́rez and Geffner 2010). To compute the trajectories,
the system computes a set of top-k plans (Riabov, Sohrabi,
and Udrea 2014) given the time horizon and the sequence of
observations. The User Interface component post-processes
the set of produced plans and presents the set of trajecto-
ries to the user. It also applies clustering and plan similarity
metrics (Nguyen et al. 2012; Sohrabi et al. 2016) to better
visualize similar plans and produce the summary reports.

Background: Plan Recognition as Planning

In this section, we briefly review the definition of AI plan-
ning problem and plan recognition problem. We borrow
terminology from our recent work, (Sohrabi, Riabov, and

Udrea 2016), which in turn builds on the work of Ramı́rez
and Geffner 2010/2009 to address observations over fluents
(i.e., observations over properties of a state), infer both goals
as well as plans, and explicitly address unreliable observa-
tions in the theory and transformation to planning.

Definition 1 A planning problem is a tuple P = (F,
A, I,G), where F is a finite set of fluent symbols, A is a set
of actions with preconditions, PRE(a), add effects, ADD(a),
delete effects, DEL(a), and action costs, COST(a), I ⊆ F
defines the initial state, and G ⊆ F defines the goal state.

A state, s, is a set of fluents that are true. An action a is
executable in a state s if PRE(a) ⊆ s. The successor state
is defined as δ(a, s) = ((s\DEL(a)) ∪ ADD(a)) for the exe-
cutable actions. The sequence of actions π = [a0, ..., an] is
executable in s if state s′ = δ(an, δ(an−1, . . . , δ(a0, s))) is
defined. Moreover, π is the solution to P if it is executable
from the initial state and G ⊆ δ(an, δ(an−1, . . . , δ(a0, I))).

Definition 2 A Plan Recognition problem is a tuple PR =
(F,A, I,O,G, PROB), where (F,A, I) is the planning do-
main as defined above, O = [o1, ..., om], where oi ∈ F ,
i ∈ [1,m] is the sequence of observations, G is the set of pos-
sible goals G, G ⊆ F , and PROB is the goal priors, P (G).

Unexplainable or noisy observations are defined as those
that have not been added to the state as a result of an effect of
any of the actions in a plan for a particular goal, while miss-
ing observations are those that are added to the state but are
not observed (i.e., are not part of the observation sequence).
To address the noisy observations, the definition of satisfac-
tion of an observation sequence by an action sequence is
modified to allow for observations to be left unexplained.
Given an execution trace and an action sequence, an obser-
vation sequence is said to be satisfied by an action sequence
and its execution trace if there is a non-decreasing function
that maps the observation indices into the state indices as
either explained or discarded.

The solution to the PR problem is the posterior prob-
abilities, the probability of a plan given the observations,
P (π|O), and the probability of a goal given the observa-
tions, P (G|O). P (π|O) can be approximated by normaliz-
ing three objectives over a set of sample plans: (1) cost of the
original actions, (2) number of missing observations, and (3)
number of noisy observations. P (G|O) can be computed by
a summation over P (π|O) for all plans that achieve G and
satisfy O. The sampled set of plans can be computed using
either diverse planning or top-k planning on the transformed
planning problem (Sohrabi, Riabov, and Udrea 2016).

Future State Projection Problem

In this section, we discuss how we extend the plan-
recognition-as-planning theory to define the projection prob-
lem and how to modify the transformation to planning to
allow for explanation of past observations as well as projec-
tion of the future. We will also discuss how to compute the
trajectories using an AI planner.
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Definition 3 A Future State Projection problem is defined
as a tuple FSP = (F,A, I,O, T,K), where (F,A, I) is the
planning domain as defined above, O = [o1, ..., om], where
oi ∈ F , i ∈ [1,m] is the sequence of observations, T is
the number of time steps into the future, K is the number of
trajectories to produce.

Similar to the plan recognition problem, each observation
is over a fluent rather than an action, as it is often the case
that the actions are not directly observable, but their effects
through the change in the state of the world are observable.
Note that this problem definition does not include a set of
possible goals as the input, instead, T , a number of time
steps into the future, is given. In other words, we define T as
the number of actions that must be executed after the last ob-
servation is explained or discarded. Hence, a trajectory that
considers T steps into the future, considers T many future
actions. However, it is possible that each action can be asso-
ciated with a duration, and that T can measure the real time.
In that case, a temporal planner can be used to compute the
trajectories (Benton, Coles, and Coles 2012).

Definition 4 Given a FSP problem (F,A, I,O, T,K) as
defined above, a trajectory is a tuple (s, π), where (1) π =
[a0, ..., an, an+1, ..., an+T ] is an action sequence that is ex-
ecutable from the initial state I and results in state s =
δ(an+T , . . . , δ(a0, I)), and (2) the observation sequence O
is satisfied by the action sequence [a0, ..., an]. A solution to
the FSP problem is a collection of K trajectories.

The trajectory includes the final state s together with
its “explanation”, π. Each action sequence π, comprises
of actions that explain or discard the observations (i.e.,
[a0, ..., an]) and T many future actions reachable in T steps
after the last observation, om, is either explained or dis-
carded, according to the domain description. While there are
many trajectories for a given FSP problem, a trajectory with
an action sequence that has the lowest cost, lowest number
of missing, and lowest number of noisy observations is more
probable. Note that this is the same objective function de-
fined for the PR problem that is used to estimate the poste-
rior probabilities. This objective function also maps to the
cost of the plan in the transformed planning problem.

Transformation to Planning

Next, we discuss how to transform the FSP problem into
a planning problem with action costs. We build on our re-
cent work but modify it in order to be able to address the
different inputs to the problem (Sohrabi, Riabov, and Udrea
2016). The time horizon together with the observations now
comprise the goal for the planning problem rather than the
set of given goals G in prior work.

To address generation of future T many actions, we add
a special observable fluent ϕ to the set of fluents, F , and
also to the add effect of all the original actions (i.e., for all
actions a ∈ A, ϕ ∈ ADD(a)). We also explicitly modify the
sequence of observations O to add T many observations of
type ϕ. This simple modification to O will generate T many
future actions based on the planning domain.

We also ensure the order of observations is preserved, that
is, first the past observations are explained or discarded, and
then T many future observations are explained. To do so,
we use a set of special fluents, one for each observation that
is set to true if that observation is either explained or dis-
carded by the extra actions, “explain” or “discard”, which
we add for each observation to the set of actions, A. Note,
we disallow discarding the future observation. Each of the
“explain” or “discard” actions can only be executed if the
previous observation was either explained or discarded. Fur-
thermore, to explain the past observation, the fluent associ-
ated with that observation must be true in the state, and to
explain the future observation, the special fluent ϕ must be
true in the state, so it must have been added by an action.
We also add to the goal state, the special fluent associated
with the final observation. This ensures that all of the obser-
vations are either explained or discarded. Note, we set the
cost of the discard action higher than the explain action to
encourage explaining as many observations as possible.

Computing Trajectories via Top-k planning

There are several methods that can be used to compute a
set of trajectories; however, we propose the use of a top-k
planner that is capable of finding a set of plans with high
quality. Top-k planning (Riabov, Sohrabi, and Udrea 2014;
Sohrabi et al. 2016) is the problem of finding k plans that
have the highest quality. The set of top-k plans can be a set
of optimal plans, or a mix of optimal plans and suboptimal
plans depending on k. There are several techniques that can
be used to compute the top-k plans. In this paper, we use
the top-k planning planner, TK∗, that is based on the use of
a k shortest paths algorithm called K∗ (Aljazzar and Leue
2011) because it has been shown that TK∗ outperforms other
techniques for top-k planning. Each plan generated by the
top-k planner, π′ is post-processed into a trajectory, (s, π) as
follows: s is the final state reached by execution of actions in
π′, and π is constructed by removing the extra actions (i.e.,
discard, explain) from π′. Hence, the set of K trajectories
is computed by calling the top-k planner on the transformed
FSP problem and by post-processing the produced K plans.

Knowledge Engineering

While most AI planning systems assume that the domain
knowledge is expressed in Planning Domain Description
Language (PDDL) (McDermott 1998) or similar, that is of-
ten not the case in practice. Several knowledge engineer-
ing tools have been developed (e.g., (Simpson, Kitchin, and
McCluskey 2007; Vaquero et al. 2007)) with the objective
of helping domain experts to write the domain knowledge.
While some tools accept as input a language other than
PDDL (Vaquero et al. 2007; Riabov et al. 2015), it is often
the case that the existing tools assume that the domain expert
has some AI planning background and are there to provide
an additional support in writing the PDDL language; for ex-
ample, by providing an editor that has syntax highlighting,
error checking, and solver plug-ins (Muise 2016).

The approach we take in this paper is driven by two main
requirements: (1) the domain expert may not have any AI
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Figure 2: A sample Mind Map

planning background and is not willing to write the do-
main knowledge in PDDL, for example, (2) the domain ex-
pert may be comfortable writing their knowledge in a light-
weight, already existing graphically tool such as the Mind
Maps (Faste and Lin 2012). Mind Maps represent the con-
cepts and their relationship to other concepts in a simple
form. A sample Mind Map for the energy domain is shown
in Figure 2. In this Mind Map, the concepts are linked by
edges, most of which have directions to indicate the cascad-
ing effects or the order of which they happen. For example,
if OPEC agrees to increase the oil production, then the price
of oil may fall. This subsequently may result in looser mon-
etary policy for the oil importing countries, while, it may
cause currency depreciation for the oil exporting countries.

The domain knowledge can be encoded by one or more
Mind Maps connected by the same concept used in multiple
Mind Maps. The Mind Maps can be created in a tool such as
FreeMind that produces an XML representation of the Mind
Maps, which can serve as an input to our system. The system
then translates the Mind Maps into an AI planning problem
automatically. This translation is novel and an integral part
of our system. The two requirements we impose on the Mind
Maps are that the Mind Maps have directions on the edges
and that there is a cascading of events in the Mind Maps to
enable generation of rich plans.

To generate the planning model, we develop one PDDL
domain file with many possible groundings of the ac-
tions based on the given Mind Maps. The domain file
includes actions that represent the change in the tran-
sitions between two concepts. For example, the domain
file includes an action “transition ?from ?to”, with a pre-
condition “(next ?from ?to)”. The problem file then pro-
vides the grounding of the actions, as indicated by the
edges between two concepts. Following Figure 2, the prob-
lem file provides a grounding of the transition action, by
the predicate “(next OPECs-agreement-to-raise-the-groups-
production-quota low-oil-price)”. Special considerations is
given to the actions at the root of the Mind Maps using spe-
cial predicates in order to avoid repeatedly executing the
same action multiple times. Note that the size of the Mind
Map leads to a larger problem file, as the domain file is fixed.

In addition, we also automatically develop a questionnaire
based on the given Mind Maps. A sample question is shown
in Figure 3. The answers to the questionnaire provide addi-
tional information on the weights of the edges between the

Figure 3: A sample question

two concepts in a Mind Map. This is categorized into three
levels, low, medium, and high. The likelihood and impact
levels are then encoded as a cost of the transition action in
the planning domain, assigning a higher cost/penalty for the
“low” option, a medium cost for the “medium” option, and
a lower cost for the “high” option. The produced trajectories
differ based on the answers from the questionnaire.

Data Transformation

As shown in Figure 1, the input to the system is the raw so-
cial media posts from Twitter for example, and/or news ar-
ticles with RSS feed. The Data Transformation component
must analyze the large amount of raw data available and se-
lect with the help of an analyst a sequence of observations to
be fed to the next component in order to compute the trajec-
tories. Observations are the required input in many research
areas including but not limited to the model-based diagno-
sis (Bauer et al. 2011; Cordier and Thiébaux 1994; McIl-
raith 1994), plan recognition (Ramı́rez and Geffner 2009;
Zhuo, Yang, and Kambhampati 2012), and explanation gen-
eration (Sohrabi, Baier, and McIlraith 2011; Sohrabi, Udrea,
and Riabov 2013). However, the related work often does not
discuss how the observations are obtained from the raw data.

Our implemented system continuously monitors multiple
real-world sources (e.g., news channels, social media posts)
to identify the sequence of observations. To this end, sev-
eral text analytics are implemented in order to find the in-
formation that is relevant for a particular domain in the vast
amount of information available to crawl. We define a set of
predefined relevant news sources (e.g., CNN), topics (e.g.,
oil), and organizations (e.g., OPEC) in order to refine and
filter the information. Users/analysts can also add a set of
keywords that is important for a particular domain. Ana-
lysts then review the generated results and select the obser-
vations that are the most relevant and important for them.
Note that we do not assume that the observations are per-
fect since they are coming from various different possibly
contradicting sources. It is also possible that a particular im-
portant observation was not found and is missing. However,
our system can deal with unreliable observations (i.e., noisy
and missing observation) and still generate a set of plans.

User Interface

Figure 4 shows the main input screen of the Planning Pro-
jector. At the top, the observation sequence is entered. The
observations can be entered one by one by selecting from
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Figure 4: Planning Projector input screen

a drop down menu containing known fluents. Note, the an-
alysts may interact with the system through the command
line to feed the system observations in real-time and view
and manipulate the generated plans, which can be exported
in JSON object format, in addition to being shown visually.

The selected observations are of ongoing exploration field
in North America, and of bidding on an oil field called Terra
Nova from our energy domain. The time horizon, number of
trajectories to compute, and the timeout can be specified in
the input screen. Optionally the user can express interest in
grouping the results in clusters around their values of inter-
est. These numbers can be entered by clicking on “Clusters”
at the bottom of the page. The system then post-processes
the results and shows clusters of trajectories, by picking the
entered values as the representative of the clusters. Further-
more, the system generates additional clusters using a prede-
fined threshold. The users will benefit from seeing clusters
of trajectories around other not user-predicted values.

Figure 5 shows the results page produced by our system,
which is generated by formulating a FSP problem, translat-
ing it to a planning problem, and running a planner to com-
pute a set of plans, as described in the previous sections.
The x-axis shows the time horizon, where zero indicates the
current time, the positive numbers indicate the future, and
the negative numbers indicate the past. Each action in this
domain is associated with a duration of six months; hence,
the 3 steps into the future, maps to 18 months. Note, our
mapping between time steps to months is fixed and for the
purpose of visualization only. That is while actions have du-
ration, we do not use a temporal planner and the actions are
non-concurrent. Each circle corresponds to a state, and each
rectangle represents an action. Hence, the set of trajectories
are shown by their state-action sequences. The small blue
triangle indicates the action that explained an observation in
the past. The user can move the mouse over the states and ac-
tions in order to get a more detailed description, including all
fluents that are true in the state, action name, duration, and
how the action influences the price and supply of oil. The ac-
tions are color-coded for a quick visual analysis, where red
indicates a decrease in the price of oil and green indicates an
increase. The intensity of the colors indicates the degree of
the change in price. The color coding can be set in a config-

Figure 5: Planning Projector results page

uration file and can be modified based on values of interest
of a particular domain.

The last states, represented by circles at time point 18,
are of a particular interest to the user. These states can be
clustered optionally around given values of price or vol-
ume of oil. Clusters are computed by considering similar-
ities of plans as defined in previous work that address find-
ing diverse plans (e.g., (Coman and Muñoz-Avila 2011;
Nguyen et al. 2012)) combined with known clustering tech-
nique (e.g., (Xu and Wunsch 2005; Sohrabi et al. 2016)).
There are two kinds of clusters, as shown in dark blue and
in light orange. The dark blue clusters are those that are cen-
tered on the given values provided by the user, while the
light orange clusters are discovered by the system without
user guidance. The states in the blue clusters and the state
sequences leading to them confirm the prior information that
the user may have, while the values in the orange clusters are
unexpected. The orange clusters provide valuable informa-
tion to the users of the system.

Experimental Evaluation

This section is divided into two parts. First, we provide de-
tails associated with a use case we have worked on including
numbers associated with the various aspect of the domain
knowledge, and the raw data. For this use case we had ac-
cess to analysts who provided us with the Mind Maps and
were able to provide keywords to filter the relevant sources
in order to obtain the observations. For confidentiality rea-
sons, we cannot elaborate on the use case, but the energy ex-
ample we discussed throughout the paper is similar in nature
to this use case. In the second part, we provide a qualitative
evaluation on the computation of plans using different re-
cent plan-recognition-as-planning approaches (Ramı́rez and
Geffner 2010; Sohrabi, Riabov, and Udrea 2016) on the en-
ergy domain. All our experiments were run on a 2.5 GHz
Intel Core i7 processor with 16 GB RAM.

We ran the Planning Projector on a specific use case (de-
tails of the use case omitted). The end user (i.e., a num-
ber analysts) provided us with a list of possible keywords,
such as organizations of interest, key people, key topics,
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and were able to pick the relevant sequence of observations
when we presented them with the results of the Data Trans-
formation component. For RSS publications, around 3,000
news abstracts from 64 publishers, and for Twitter, around
73,000 tweets from around 32,000 users matched our key-
word search criteria. The domain experts, different from the
analysts, also provided us with many Mind Maps that have
over 300 concepts in total, each focused on cascading of
events for a particular main concept such as the oil price as
shown in Figure 2. We also automatically generated a set of
questions to ask both the domain experts as well as the ana-
lysts in order to understand the weights of the edges. This re-
sulted in around 100 questions. The resulting planning prob-
lem that aggregates the knowledge of all Mind Maps (i.e.,
the grounding of the actions based on the edges on the Mind
Maps) has around 350 predicates. The planner is able to find
100 plans with a time horizon of 5, within a minute, which
meets our objective of this use case.

We evaluate our approach to two recent plan-recognition-
as-planning approaches: (1) Ramı́rez and Geffner’s 2010 ap-
proach configured to use the LM-Cut planner (Pommeren-
ing and Helmert 2012) and (2) Sohrabi, Riabov, and Udrea’s
2016 approach configured to use the TK∗ planner (Riabov,
Sohrabi, and Udrea 2014) as well as LPG-d (Nguyen et al.
2012). The plan-recognition-as planning approaches require
as input a set of goals. We argue that in many cases, the set
of goals is not known a priori, even if known, it may be dif-
ficult to enumerate them. Furthermore, providing the set of
goals ahead of time may impose a restriction on the search
space. Instead, our approach requires a time horizon and a
number of trajectories to compute as its input. The analysts
can optionally provide a set of predefined known values and
the system will cluster the trajectories around them. The sys-
tem will also present clusters around other non-given values
as shown in light orange at the bottom of Figure 5.

Table 1 shows a summary of our comparison on the en-
ergy domain. The objective of this experiment is to evaluate
the performance of the proposed approach and also to see
if the analysts can benefit by using the proposed approach
by seeing that new goals are discoverable. Time is mea-
sured in seconds. In the proposed approach, the time mea-
sures both the planner performance as well as the clustering
performance. The column “# of Goals” is the provided num-
ber of goals as the input. This is the same as the number of
cluster representatives the analysts selected for the proposed
approach. The column “# of clusters” is the total number of
clusters presented to the user. For the previous approaches,
this number is not defined. The column T is the time hori-
zon while “# of Plans” is the total number of plans produced
by each approach. Note, we defined the cluster representa-
tives to best resembles the given set of goals using the pred-
icates in the domain. The results show that as the number of
goals increases, the performance of Ramı́rez and Geffner’s
2010 approach slows down as it requires to call the planner
twice per each goal. The performance of Sohrabi, Riabov,
and Udrea’s 2016 approach does not increase; however, this
approach requires the provided goals as the input and does
not project into the future. In our proposed approach, new
clusters/goals that the analysts were not aware are created.

Approach Time (Sec) # of Goals # of Clusters T # of Plans
Ramı́rez 53.52 5 NA NA 10
& Geffner, 92.66 10 NA NA 20
LM-Cut 145.68 15 NA NA 30
Sohrabi 0.24 5 NA NA 1000
et al., 0.26 10 NA NA 1000
TK∗ 0.25 15 NA NA 1000
Sohrabi 2.70 5 NA NA 50
et al., 1.80 10 NA NA 50
LPG-d 2.06 15 NA NA 50

0.16 5 27 4 100
0.35 5 36 6 100
0.15 10 23 4 100

Proposed 0.37 10 24 6 100
Approach 0.15 15 28 4 100

0.35 15 29 6 100
6.31 10 43 4 1000
7.31 10 61 4 1000

Table 1: Comparison of two plan-recognition-as-planning
approaches with our proposed approach: Ramı́rez and
Geffner’s approach configured to use the LM-Cut planner,
Sohrabi, Riabov, and Udrea’s approach configured to use the
TK∗ planner as well as LPG-d. Time is measured in seconds.
“# of Goals” is the given number of goals, “# of clusters” is
the total number of clusters produced, T is the time horizon,
and “# of Plans” is the total number of plans produced by
each approach. NA indicates not applicable.

The new clusters provide useful, valuable information to the
analysts. Note, in the case of 1000 plans, the time to com-
pute the clusters and visualization can add to the overall
time in the proposed approach. The ideal case is to call the
Planning Projector with a small set of goals (i.e., provided
known cluster representatives), and let the projector create
additional clusters based on the result.

Discussion and Summary

We present the Planning Projector system prototype that is
able to infer the past observations and project the future
states by computing a set of trajectories using AI planning.
The system is comprised of four components: knowledge en-
gineering, data transformation, trajectory computation, and
user interface. The main contributions of this paper are: (1)
characterization of the FSP problem where instead of a set of
given goals, a future time horizon and number of trajectories
is given; (2) computation of the trajectories via planning;
(3) translation of the domain knowledge expressed in a tool,
such as Mind Maps into the planning language; (4) transfor-
mation of the raw data into observations; (5) presentation of
the set of plans in a compact and efficient way. While we are
unable to discuss the use case, the energy domain closely
resembles this use case. Furthermore, our approach is not
domain specific, and can be applied in a variety of differ-
ent use cases. In future, we plan to extend the formalism to
better capture concurrent actions as well as the interactions
between multiple agents acting within one domain.

There exist a body of work on the plan recognition prob-
lem with several different approaches (e.g., (Zhuo, Yang,

4616



and Kambhampati 2012)). However, most approaches as-
sume that the observations are perfect, mainly because they
do not take as input the raw data and that they do not have to
analyze and transform the raw data into observations (Suk-
thankar et al. 2014). Also, most approaches assume plan
libraries are given as the input, whereas, we use AI plan-
ning (e.g., (Goldman, Geib, and Miller 1999)). Furthermore,
there is a body of work on learning the domain knowledge
(e.g., (Yang, Wu, and Jiang 2007; Zhuo, Nguyen, and Kamb-
hampati 2013)). Learning can be beneficial in domains in
which plan traces are available.
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