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Abstract

The stochastic shortest path problem is of crucial importance
for the development of sustainable transportation systems.
Existing methods based on the probability tail model seek
for the path that maximizes the probability of arriving at the
destination before a deadline. However, they suffer from low
accuracy and/or high computational cost. We design a novel
Q-learning method where the converged Q-values have the
practical meaning as the actual probabilities of arriving on
time so as to improve accuracy. By further adopting dynamic
neural networks to learn the value function, our method can
scale well to large road networks with arbitrary deadlines.
Experimental results on real road networks demonstrate the
significant advantages of our method over other counterparts.

Introduction

The sustainability of future intelligent transport systems
(ITSs) critically depends on two aspects. First, ITSs need
to be efficient, in the sense that they enable as many users
as possible to minimize their expected travel time (Wu,
Sheldon, and Zilberstein 2016; Cao et al. 2016d). Second,
ITSs need to enable the users to reliably predict their travel
time in order to meet their appointments and deadlines (Cao
et al. 2016a). Due to its ability to model uncertainties in
travel time, the stochastic shortest path (SSP) problem has
emerged as the dominant theoretical framework for dealing
with these aspects (Lim et al. 2013; Anantharam et al. 2016).
The problem is well-understood and efficiently solved in risk
neutral settings, which corresponds to the first aspect: a path
is considered as optimal if it guarantees the least expected
travel time (LET) (Miller-Hooks and Mahmassani 2000;
Ben-Elia et al. 2013). However, in many cases, such as
planning a route to attend a business meeting, people are
not risk neutral, and the second aspect is crucial: the LET
path may fail to meet driver’s expectation if there is a large
variance (i.e., risk) of travel time. To overcome this prob-
lem, the mean-risk model is developed for finding a path
that minimizes the sum of a linear combination of mean
and variance regarding the travel time (Lim et al. 2013;
Nikolova and Stier-Moses 2014; Lianeas, Nikolova, and
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Stier-Moses 2016). Although risk is alleviated by this model,
in many other cases of route planning, driver utilities are also
governed by deadlines (Fan, Kalaba, and Moore II 2005;
Samaranayake, Blandin, and Bayen 2012), such as catching
flight, fire rescue and organ delivery, all of which need arriv-
ing on time with the maximum chance. These critical cases
render the LET and mean-risk model based SSP impracti-
cal in real applications. Therefore, the probability tail model
is proposed to find a path that maximizes the probability of
reaching destination before a deadline (Nie and Wu 2009;
Lim and Rus 2012; Cao et al. 2016b). This model is promis-
ing in that it integrates travel time, risk and deadline.

Unfortunately, the theory and methods for the LET and
mean-risk settings cannot be directly extended to the prob-
ability tail model. In particular, the principle of optimality
breaks down, precluding dynamic programming approaches,
which is NP-hard in nature (Nikolova et al. 2006). Although
a number of algorithms to address this probability tail model
based SSP problem have been proposed (Lim and Rus 2012;
Lim et al. 2013), they are limited by strong assumptions,
such as Gaussian distribution of travel time, independence
among travel time on different road links, and relatively
large deadlines, which may not hold in real situations. A
data-driven solution was proposed (Cao et al. 2016b) by
formulating the path finding as a cardinality minimization
problem, which is in turn approximated as a mixed integer
linear programming (MILP) problem. This method circum-
vents the above strong assumptions, but in the meanwhile
significantly decreases computation efficiency. Additionally,
its approximate solution leaves room for further improve-
ment in terms of accuracy in finding the real optimal path.

In this paper, we propose a novel method without strong
assumptions. It is based on the key insight that the prob-
lem can be reformulated in such a way that dynamic pro-
gramming approaches do apply. A disadvantage of this re-
formulation is that it may blow up the state space by tak-
ing the cartesian product of the set of nodes (intersections
of the road network) and the set of possible amounts of
time-to-deadline (i.e., time left before deadline). This is es-
pecially problematic in the typical setting where the latter
set is continuous. To overcome this problem, we propose
to generalize over the continuous space of remaining time
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by using neural networks to approximate the value func-
tion. To find a solution for the reformulated problem, we
consider the Q-learning method (Watkins and Dayan 1992;
Wiering 2000). It is designed to maximize the probability of
arriving on time, which is approximated as the ratio between
the number of times in which the vehicle reaches destination
before deadline, i.e., success, and the total number of travels.

Overall, the main benefit of the proposed method is its
practicality, in that it can be readily applied in the real world,
specifically: 1) it is computationally feasible even for large
road networks, 2) it is interpretable by the users: the con-
verged Q-values have the practical meaning as the actual
probabilities of reaching destination before deadline, 3) it
enables the capability of providing time-dependent path rec-
ommendations, 4) it directly utilizes available travel time
data and does not require any strong assumptions. We con-
duct extensive experiments on both artificial and real road
networks, and the results justify the significant advantages
of our method over others. Thus, our solution has high po-
tential to be deployed in real vehicles for field test.

Background

The probability tail model based SSP problem can be math-
ematically described as follows: in a directed graph G =
(V,L), V is a set of nodes representing road intersections, L
is a set of edges representing road links, and o,d ∈ V repre-
sent the origin and destination, respectively. The objective is
to maximize Prob(�w��x ≤ τ), where �w is a random vector
containing the travel time for each road link, τ is the time-
to-deadline (i.e., the deadline is defined by user), and �x is a
set of road links in which an element is “1” if the road link
is on the corresponding path (Cao et al. 2016b). This prob-
lem is difficult to solve efficiently as it does not follow any
typical optimization forms, e.g., convex optimization.

Rather than treating the problem as a monolithic non-
convex optimization problem, it can also be treated as a se-
quential decision making problem. In particular, in the next
section we will describe how the problem can be modeled
as a Markov decision process (MDP) (Puterman 1994). An
MDP is defined by a five-tuple (S, A, P s′

s,a, R(s), γ ∈ [0, 1]),
where S represents the state space (s, s′ ∈ S), A represents
the set of actions, P s′

s,a represents the transition distribution
from s to s′ by action a (a ∈ A), R(s) represents the reward
at s, and γ is the discount factor. The MDP aims to find an
optimal policy π∗ which maps states to actions in such a
way that the expected cumulative discounted reward is max-
imized. In cases where the MDP is not known in advance,
reinforcement learning (RL) methods can be used to learn
the optimal policy (Sutton and Barto 1998). For instance, Q-
learning (Watkins and Dayan 1992) repeatedly applies the
following equation to sampled transitions (s, a, s′, r):

Q(s, a)←Q(s, a)+α[R(s′)+γmax
a′ Q(s′, a′)−Q(s, a)], (1)

with learning rate α ∈ (0, 1]. This can be shown to converge
to an optimal Q-function: the converged Q-values represent
the expected summation of discounted future reward, i.e.,
Q∗(s, a) = E

(∑∞
k=0 γ

kRk

)
. From Q∗, the optimal policy

can be extracted by taking the greedy action in each state.
(Please refer to (Sutton and Barto 1998) for more details.)

Basic Q-Learning for Discrete Deadlines
Before dealing with the more complex and realistic case of
continuous time-to-deadline, we treat the case where each
time-to-deadline takes a value from a discrete finite set. This
allows for a relatively straightforward, but effective formu-
lation of the problem as a discrete MDP, and thus the appli-
cation of canonical RL algorithms, e.g., Q-learning.

MDP Formulation for Probability Tail Model

To solve the probability tail model based SSP problem by
the Q-learning method, each success of reaching destination
before deadline is considered as a reward, each pair of inter-
section and time-to-deadline are considered as a state, and
the driving direction at each intersection is considered as an
action. Naturally, s = 〈v, τ〉, s′ = 〈v′, τ ′〉, v, v′ ∈ V , and
v′ be the succeeding intersection of v. Γ (τ, τ ′ ∈ Γ) is the
set of time-to-deadlines, and we have τ − tv,v′ = τ ′, where
tv,v′ is the random travel time on road link lv,v′ (lv,v′ ∈ L),
and τ ′ is the remaining time-to-deadline at v′. Note that, τ at
origin o is determined by the user, and the remaining time-
to-deadline τ ′ at intermediate intersection v′ between origin
o and destination d is determined by τ and travel time cost
tv,v′ on the associated road links. A represents driving di-
rections. P s′

s,a = Pr(st+1 = s′|st = s, at = a) is the dis-
tribution of tv,v′ by action a such that the vehicle will move
from intersection v with time-to-deadline τ at step t, to in-
tersection v′ with time-to-deadline τ ′ at step t+ 1. R(s′) is
the immediate reward received after transiting to intersection
v′ with time-to-deadline τ ′ from intersection v with time-
to-deadline τ . The reward depends on whether the vehicle
arrives on time.

Q-Value Representation and Path Planning

The just defined MDP has a particularly nice property: we
can define the reward and discount factor in such a way that
the converged Q-value represents the probability of arriving
on time. Specifically, we denote the immediate reward as
R(s′) ∈ {0, 1} with R(s′) = 1 if and only if v′ = d and
τ − tv,v′ ≥ 0. Thus, the immediate reward is 1 only at the
intersection node preceding d if the vehicle can arrive at the
destination before the deadline; otherwise, R(s′) = 0. We
set the discount factor γ to 1. (General Q-learning with γ =
1 does not necessarily ensure convergence, but for the SSP
problem, convergence can be guaranteed with γ = 1 (Yu
and Bertsekas 2013)).

In this case, after an o-d pair is determined, we update
Q-value using Eq. (1) for each intersection, starting with v
(i.e., v = o) and the user-defined time-to-deadline τ in each
episode. To transit to next intersection v′, we employ the ac-
tion selection policy, i.e., Softmax strategy (Sutton and Barto
1998). This strategy balances between exploration and ex-
ploitation for the candidate succeeding intersections. Then,
we use P s′

s,a to sample tv,v′ to decide τ ′ at v′. These steps
are repeated until all Q-values converge.

The converged Q-values in our problem can be shown
to be the probabilities of arriving on time in the follow-
ing. From Eq. (1), Q-value converges when Qk+1(s, a) =
Qk(s, a), ∀s and ∀a. After the convergence, we have the Q-
value defined as Q∗(s, a) given by Q∗(s, a) = Q∗(s, a) +

4482



αk[R(s
′)+ γmaxa′ Q∗(s′, a′) − Q∗(s, a)]. After a simple

combination and elimination, we have

Q∗(s, a) = R(s′) + γmax
a′ Q∗(s′, a′). (2)

As this equation will be executed for a large number of
times and it will converge to Q∗(s, a) = E (R(s′)) +
γmaxa′ Q∗(s′, a′), which is exactly the probability of ar-
riving on time.

When Q-learning has converged, we can obtain an opti-
mal path by first stopping the Softmax strategy and then de-
termining the best action a∗ at a specified intersection with a
certain deadline as a∗(〈v, τ〉) = argmaxa Q(〈v, τ〉, a). We
first compute a∗(〈o, τ〉) to determine the optimal driving di-
rection at origin o, i.e., the current state, with a user-defined
deadline. The direction will determine the next intersection
and the remaining time-to-deadline, i.e., next state. Then,
we input the second intersection with the remaining time-to-
deadline, to find the next intersection. The same process is
repeated until the destination is reached. Thus, the complete
optimal path can be found.

Q-Learning for Continuous Deadlines

The basic version of our Q-learning method introduced
in the previous section will become prohibitively time-
consuming in the case of continuous deadlines (i.e., the
time-to-deadline is also continuous) and large-scale road
networks due to the huge size of state space. To address
those challenges, we develop a practical value function ap-
proximation method based on the dynamic neural network to
directly learn the optimal Q-values, which approximates the
probability of arriving at the destination on time. In the fol-
lowing, we will introduce the value function update scheme,
function approximation method and the deployment steps.

Value Function Update Scheme

In order to deal with continuous deadlines and large scale
networks, we use approximator f(·) to represent the value
function V (s), where V (s) = maxa Q(s, a). We propose to
exploit the special structure of our problem: even for large
networks with thousands of nodes, the locations can still be
easily enumerated. We therefore apply the value function fit-
ting operator by enumerating all the locations, but sampling
from the travel time distributions. This means that all loca-
tions get the same amount of coverage, leading to a good
approximation in entire network1. The value function with
any time-to-deadline for any intersection is represented as:

Vk+1(s) = max
a

{∑
P s′
s,a[Vk(s

′) +R(s′)]
}
, (3)

where 0 ≤ V (s′) ≤ 1, V (s′) = 0 if v′ = d, s = 〈v, τ〉, and
s′ = 〈v′, τ ′〉. Eq. (3) uses the expected function value at s′
(for the succeeding location) in the kth iteration to compute
the function value at s in the (k+1)th iteration. In particular,
Vk(s

′) on the right hand side of Eq. (3) is computed through
the approximator fk(·) in that iteration.

1To save computation time, utilizing a subset of locations is also
feasible, which is shown in the experiments, i.e., Fig. 4(a).

Function Approximation through Neural Network

To approximate Vk(·), we adopt a two-layer dynamic neu-
ral network2 to learn function fk(·) in each iteration as the
probability of arriving on time for a given intersection with
a given deadline. Specifically, fk(·) is expressed as follows:

fk(�z) = g2(g1(�z · �ω1 + u1) · �ω2 + u2), (4)

where �z is the feature vector; �ω1, u1, �ω2, and u2 are param-
eters of the neural network; g1(·) and g2(·) are activation
functions.

The feature vector �z used to represent s is defined as fol-
lows: �z(s) = 〈τ, �μ(v), �σ(v)〉, where τ and v are the time-to-
deadline and location in s; �μ and �σ are the means and stan-
dard deviations of travel time for the K-shortest paths from
current location to destination. Note that, while we enumer-
ate locations to guarantee a sufficient number of backup op-
erations for each location, the neural network featurizes the
locations in order to generalize its prediction over locations.
The rationale for �μ(v) and �σ(v) is that the probability of ar-
riving on time is highly associated with the mean and stan-
dard deviation of travel time. �μ(v) and �σ(v) can be easily
computed based on the travel time data on each road link.
Consequently, the feature of a training sample for s can be
expressed as �z = [τ, �μ(v), �σ(v)]�, where the length of �μ(v)
and �σ(v) is K. Since f(�z) will be applied for continuous
deadlines, τ in training samples should cover extensive val-
ues. Therefore, we randomly select N deadlines, each of
which is denoted by τi, and we have τi = β · Te, where
β is the deadline parameter, and β ∈ [0, 2]. Te is the least
expected travel time from v to d. Note that larger β implies
loose deadlines, and vice versa. Thus, the entire feature vec-
tor of an individual intersection v is expressed as:

�Zs = [τ1, �μ(v), �σ(v); · · · ; τN , �μ(v), �σ(v)]�. (5)

To dynamically train the neural network at the (k+1)th itera-
tion, we can set Vk(s) on the right-hand side of Eq. (3) by the
learned fk(�z), and Vk+1(s) on the left-hand side can then
be updated accordingly. This value will be adopted as the
new label to train fk+1(�z) in the next iteration through back
propagation. This process is repeated until convergence.

Core Deployment

Considering both the value function update scheme and
function approximation method, we deploy the core part
(i.e., training value function) of our method as shown in
Alg. 1. Specifically, Lines 1-2 initialize parameters and pre-
pare feature values. Lines 3-20 dynamically learn value
functions for each intersection using the neural network. In
particular, for each intersection, the trained neural network
from the preceding iteration computes the value functions of
the succeeding intersections, which are then used to update
the value function of the current intersection (Lines 5-14).
In Lines 15-16, convergence errors of all intersections are
accumulated. In Lines 17-18, the average convergence error

2Other supervised machine learning methods, such as support
vector regression, can also be employed for function approxima-
tion. We use the dynamic neural network here because it can natu-
rally output values between zero and one (due to its sigmoid func-
tion) for representing the probabilities of arriving on time.
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input : G = (V, E), road network;
Ωv,v′ , set of travel time data on lv,v′ ;
N , size of travel time data on each road link;
N, the configured neural network; o-d pair;
ε1, the convergence error; k, the iteration number.

1 Initialize V0(s) via warm start; and set ε1 = 1; ε2 = 0;
k = 0; N = 1000; ζ = 0.025;

2 Import feature data �Zs for each s by Eq. (5);
3 while ε1 > 0.01 do
4 foreach v ∈ V do

5 foreach v′ that succeeds v do
6 Sample N travel time tv,v′ out of Ωv,v′ ;
7 if v′ �= d then
8 if k ≥ 1 then

9 Calculate Vk(s
′) in Eq. (3) through

the trained fk(�z) in Eq. (4);
10 else

11 Vk(s
′) = initial values V0(s

′);

12 else

13 Compute Rk(s
′) in Eq. (3);

14 Update Vk+1(s) in Eq. (3);
15 if k ≥ 1 then
16 Update ε2 = ε2 + |Vk+1(s)− Vk(s)|;
17 if k ≥ 1 then
18 Update ε1 = ε2/|V|; Reset ε2 = 0;

19 Learn fk+1(�z) by incorporating feature �Zs and new
label Vk+1(〈v, τ〉) for each v into N;

20 Update iteration number: k = k + 1;

output: Converged V ∗(s) for each 〈v, τ〉.
Algorithm 1: Value Function Training

is updated to determine the loop termination. In Lines 19-
20, the neural network is trained using feature values and
updated labels.

To find the optimal path before departure (which is pre-
ferred in a real application), the best action at a certain inter-
section with a given deadline is determined by:

a∗(s)=argmax
a

{∑
P s′
s,a[V

∗(s′)+R(s′)]
}
, (6)

where P s′
s,a is represented by travel time data on correspond-

ing road link. The next state s′ (which consists of v′ and τ ′)
can be decided as follows: v′ is the succeeding intersection,
and τ ′ = τ −E(tv,v′), where E(tv,v′) is the expected travel
time over the previously chosen road link. Then we itera-
tively use the same equation to compute the next action until
the complete path is achieved.

Other Practical Considerations

Here we discuss other practical features considered in our
method, including time-dependent path recommendation, si-
multaneous training for multiple destinations and accelerat-
ing the training process.

If we collect the data P s′
s,a according to a specified time

period, such as peak hour of 7am-9am, our Q-learning
method is able to provide time-dependent path recommen-
dation. Also note that our Q-learning method adopts Alg. 1
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Figure 1: Artificial Network with Discrete Deadlines

to dynamically learn the value function for a specified des-
tination from all nodes. If the destination is changed, Alg. 1
needs to run again to learn a new value function. To bet-
ter generalize our Q-learning method, we randomly select
multiple destinations on the road network, and concatenate
their feature values to the same matrix (i.e., �Zs in Eq. (5)).
Then we only need to run Alg. 1 once, and the learned
value function will be applied to any other destinations on
the same road network. When the destination is changed,
we just change the input features (i.e., �μ and �σ of the K-
shortest paths to the new destination) to the trained neural
network. In this way, our Q-learning method is able to cal-
culate the probability of arriving on time from any origin(s)
to any destination(s).

Traditionally, value function V0(〈v, τ〉) is initialized as
0, which may slow down the convergence speed (Carden
2014). Therefore, we propose a warm start strategy3 that
approximates the probability of arriving on time for vehi-
cles at intersection v with time-to-deadline τ as follows:
V0(〈v, τ〉) = 1/(1 + e−ζ(τ−Te)), where ζ is the coefficient.
The rationale is that we need to increase the probability from
0 to 1 (that is why sigmoid function is used) as τ increases.

Experimentation

We conduct extensive experiments to evaluate our proposed
Q-learning method and compare with other methods on vari-
ous road networks. All experiments are performed on a typi-
cal PC with Intel Core i7-3540M processor and 16GB RAM.

Artificial Network with Discrete Deadlines

We first test the basic version of our Q-learning method for
discrete deadlines on an artificial road network – a grid with
20×20 intersections. We use m1 = 15 as mean and σ1 = 3
as standard deviation to randomly generate the mean travel
time m2 for each individual road link. We then adopt m2 and
σ2 = 0.3m2 to generate 200 instances of travel time data
for corresponding links to represent P s′

s,a. All travel time is
rounded up as positive integers in seconds. At each inter-
section, there are four travel directions (north, south, west
and east). We compare with three methods: (1) LET based
method computes a path of the least expected travel time
based on the travel time data; (2) Mean-Risk based method

3This warm start strategy is also applicable to our basic version
of the Q-learning method for discrete deadlines as long as the Q0

is calculated in the same way for V0.
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Figure 2: Accuracy Results on the Three Real Road Networks with Continuous Deadlines

computes a path with minimal value of μp+λνp, where μp is
the expected travel time, νp is the variance, and λ is the coef-
ficient (Nikolova and Stier-Moses 2014); and (3) Cardinality
method approximates and computes a path of the probabil-
ity tail model by formulating it as the MILP problem which
is further solved using a partial Lagrange multiplier method
(Cao et al. 2016c). We randomly select 100 o-d pairs and
use deadline parameters β = 0.85, 0.90, . . . , 1.10, 1.15. For
each o-d pair and specified deadline, we define the ground-
truth path (achieved through enumerating all the paths) as
the one having the maximal number of times of not being
late, given the 200 instances of data on each link.

The accuracy of finding the ground-truth path is plotted in
Fig. 1(a) (all figures are best viewed in color). For all dead-
lines, our Q-learning method always achieves average accu-
racy of 100%, confirming that the converged Q-values are
able to represent probabilities of arriving on time. The cardi-
nality method obtains the average accuracy of about 95% as
it adopts 1-norm to approximately minimize the frequency
of not being late. The LET and Mean-Risk based methods
obtain the average accuracy of around 88%. The high accu-
racy of our method also shows that the recommended path
guarantees arriving on time more often than others. This ad-
vantage comes from the fact that our method incorporates
the event of arriving on time in the reward and objective.

The accuracy of our method can also be demonstrated by
the plot of converged Q-values for an intersection which
is two grids to the north of the destination as shown in
Fig. 1(b). The converged Q-values in [0, 1] denote the prob-
abilities of arriving on time from the current location by tak-
ing a corresponding action. Meanwhile, the optimal action
usually changes with deadlines, e.g., traveling west is op-
timal when the time-to-deadline is between 10 and 20 and
traveling east is optimal when the time-to-deadline is larger
than 20. The Q-value for traveling south is not higher than
that of traveling west and east although the current location
is north to the destination. This is because the cost of trav-
eling south is always large according to the generated traffic
data. So, traveling south yields a lower chance of arriving on
time. We also see that the Q-values for all actions are 0 when
time-to-deadline is less than 4, which is too tight. Thus, we
conclude that an optimal path depends strongly on deadline
even though an origin is fixed. This factor is not incorpo-
rated in LET or Mean-Risk based methods, which is why
their average accuracy fluctuates when deadline is varied.

Real Networks with Continuous Deadlines

To verify our Q-learning method for the probability tail
model with continuous deadlines, we perform experiments
on three large road networks extracted from the city maps
of Munich, Singapore, and Beijing, as summarized in Ta-
ble 1. We randomly select 200 o-d pairs on each network,
and the average minimal number of road links between each
origin and destination is given in the third row, which gen-
erally reflects the minimum quantity of decision-making to
find an optimal path. Then, we prepare 1,000 instances of
travel time data for each road link: (1) On Munich network,
we use actual length of each road link to divide the collected
real travel speed of vehicles from July 2014 to March 20154;
(2) On Singapore network, we use actual length of each road
link as the mean to randomly generate travel time data, and
the standard deviation is 0.3 times of the length5; (3) On Bei-
jing network, we directly use the travel time data collected
from real travel trajectories of taxi from September to Octo-
ber 2013 (Wang, Zheng, and Xue 2014). For our method, we
randomly select 100 destinations on a network and concate-
nate their feature values to a same matrix (i.e., �Zs in Eq. (5)).
Note that we do not explicitly explore the dependence or cor-
relation of travel time on different road links, because it will
be naturally included in the data set if there is any, and the
travel time data is the direct input to our method.

Table 1: Settings of the Three Real Road Networks
Munich Singapore Beijing

#Nodes 51,517 6,476 129,607
#Links 115,651 10,225 294,868

#Links between o-d 221 86 358

Accuracy The accuracy of each method on the three net-
works are plotted in Figs. 2(a-c). Our Q-learning method
achieves around 95% accuracy, higher than all other meth-
ods for each deadline. Compared with the results in Fig. 2(a),
our method achieves slightly lower accuracy, because, to
handle continuous deadlines, a neural network is used to
learn value functions in which learning error may exist. Be-
sides, the three real networks are considerably larger than

4This data set is provided by the BMW Group, Germany.
5All relevant information is obtained from OpenStreetMap.
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Figure 3: Accuracy Changes with Data Size and Iterations

the grid. The accuracy of the cardinality method is higher
than the LET and Mean-Risk based methods. Moreover, the
accuracy of all methods becomes lower as deadline becomes
tighter. Our method is less affected because it dynamically
updates Q-values according to each specified deadline.

We also plot in Fig. 2(d) the overall accuracy of all meth-
ods as well as the 2%-tolerance accuracy6 of our Q-learning
method. The overall accuracy on Munich and Beijing is
slightly lower than that on Singapore for most of the meth-
ods. This is because the sizes of Munich and Beijing net-
works are much larger, so as the number of possible paths
between an o-d pair, thus making it more difficult to achieve
the ground-truth path. In particular, our method will deter-
mine a road link to traverse according to Eq. (6) at each in-
tersection. Even if only one road link is not on the ground-
truth path, the returned path is not counted as accurate. In the
case with at least 358 intersections on average (Table 1) for
each path finding on Beijing network, the overall accuracy of
around 95% is sufficiently high. Moreover, the 2%-tolerance
accuracy of our method is nearly 100%, indicating that the
paths found by our method is of high quality even if they
might not be the ground-truth path.

We also test the accuracy against the quantity of travel
time data on each road link by taking Beijing network as
an example since its size is largest. As shown in Fig. 3(a),
our method is almost not affected by the quantity of travel
time data. By contrast, the accuracy of other methods is re-
duced when data size is small. Moreover, in each iteration
of the value function learning, we record the mean absolute
error (i.e., the difference between the neural network output
and the target value) on the three road networks, shown in
Fig. 3(b). The average absolute error becomes smaller as the
iteration increases. This clearly justifies the efficacy of the
dynamic neural network to learn accurate value functions.

Table 2: Accuracy of Time-Dependent Q-learning (%)
1 2 3 4 5 6 7 8

week 94.8 93.7 95.1 93.3 94.5 92.9 90.8 91.6
day 96.1 95.0 94.2 95.5 95.8 96.3 94.1 93.2

hour 97.4 97.7 97.0 96.2 97.3 98.2 96.5 96.1

6If the difference between the probability of arriving on time for
the path returned by our method and the probability for the ground-
truth path is less than 2%, then the returned path is considered the
same as the ground-truth path as the difference is very marginal.
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Our Q-learning method is data-driven and easy to exe-
cute in a time-dependent manner, which further improves the
performance of routing service, i.e., avoiding frequent value
function learning while maintaining an acceptable level of
accuracy. To justify, we explore the travel time data of eight
continuous weeks (July-August 2014) on Munich network
and further extract eight segments according to different
time units: (1) week, we divide the data into eight weeks,
and each segment represents a week, (2) day, we extract the
data of eight Mondays separately, and each segment repre-
sents a Monday, (3) hour, we extract the data of 7am-9am
(i.e., peak hours) on each Monday separately, and each seg-
ment represents a span of peak hour. For all of the three
units, we apply our method only on the first segment of the
traffic data and then use the learned value functions to per-
form routing service based on all of the eight segments ac-
cordingly. The accuracy results are recorded in Table 2.

We can observe that, segment 1 usually achieves higher
accuracy than that of the other seven segments. This is be-
cause the training data and testing data are the same for seg-
ment 1. Generally, as the segment index increases, the ac-
curacy will decrease, but the deterioration is very slight, es-
pecially for the hour, which achieves the accuracy higher
than 96% even for week 8. Another remarkable observation
is that the higher the time resolution, the better the accu-
racy. This happens because the high time resolution usually
captures the traffic characteristics better, i.e., the peak hour
pattern captured by the hour unit. Thus, we can conclude
that the time-dependent Q-learning method helps to avoid
frequent value function learning while achieving good accu-
racy, especially for the time unit hour.

Computation Time Normally, the computation time in
each iteration of the dynamic neural network is associated
with the size of training samples. Previously, we use train-
ing samples of all nodes to learn the value function. To
improve computation efficiency, we may only use samples
from some nodes, while maintaining an acceptable level of
accuracy. Thus, we evaluate the average computation time of
our method in each iteration and its accuracy with respect to
different sizes of training samples, as plotted in Fig. 4(a). As
expected, the computation time and the accuracy decrease
as the training sample size reduces. On Beijing network, the
deterioration of accuracy is only around 1% while the reduc-
tion of computation time is about 360 seconds (i.e., almost
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half) as we use no less than 1/3 of the training samples. Note
that we did not count the computation time of the K-shortest
paths in our method, because normally those paths are static,
which can be stored in a look-up table.

We also record the average computation time of each rout-
ing for all methods in Fig. 4(b). We only count the time
of path finding for the Q-learning method since learning
value function can be done offline. The LET and Mean-Risk
based methods have the shortest average computation time,
which slightly increases as network size increases. Caused
by solving the MILP problem, the cardinality method needs
much longer time (around 15 seconds) to compute a path on
Beijing network. By contrast, our Q-learning method takes
slightly longer than the LET and Mean-Risk based methods.
It takes only 1.216 seconds to obtain an optimal path on Bei-
jing network, which is highly efficient.

Conclusion and Future Work

In this paper, we designed a practical Q-learning method to
efficiently and accurately solve the probability tail model
based SSP problem. Compared with other baselines, our
method offers several important practical features: 1) It con-
siders travel time, risk and deadlines simultaneously when
computing an optimal path; 2) It provides probability of ar-
riving on time from any origin(s) to any destination(s) once
the value function is learned; 3) It can flexibly provide time-
dependent path recommendation and avoid frequent training
even if travel time data changes. For future work, we plan to
consider other practical factors (e.g., weather condition) in
each state and deploy our method in vehicles for field test.
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