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Abstract

Accurate electricity demand forecast plays a key role in sus-
tainable power systems. It enables better decision making
in the planning of electricity generation and distribution for
many use cases. The electricity demand data can often be rep-
resented in a hierarchical structure. For example, the electric-
ity consumption of a whole country could be disaggregated
by states, cities, and households. Hierarchical forecasts re-
quire not only good prediction accuracy at each level of the
hierarchy, but also the consistency between different levels.
State-of-the-art hierarchical forecasting methods usually ap-
ply adjustments on the individual level forecasts to satisfy the
aggregation constraints. However, the high-dimensionality of
the unpenalized regression problem and the estimation errors
in the high-dimensional error covariance matrix can lead to
increased variability in the revised forecasts with poor pre-
diction performance. In order to provide more robustness to
estimation errors in the adjustments, we present a new hier-
archical forecasting algorithm that computes sparse adjust-
ments while still preserving the aggregation constraints. We
formulate the problem as a high-dimensional penalized re-
gression, which can be efficiently solved using cyclical coor-
dinate descent methods. We also conduct experiments using
a large-scale hierarchical electricity demand data. The results
confirm the effectiveness of our approach compared to state-
of-the-art hierarchical forecasting methods, in both the spar-
sity of the adjustments and the prediction accuracy. The pro-
posed approach to hierarchical forecasting could be useful for
energy generation including solar and wind energy, as well as
numerous other applications.

Introduction

Recently, massive amounts of detailed individual electric-
ity consumption data has been collected by newly deployed
smart meters in households (Zheng, Gao, and Lin 2013). A
key technical challenge nowadays is to analyze such data
to better predict the electricity generation and demand to
achieve a more sustainable future (Ramchurn et al. 2012).

For example, demand forecasting is critical in understand-
ing the effect of demand response actions (Siano 2014).
There is a rich literature on forecasting the aggregated elec-
tricity demand (Hong 2010; Ba et al. 2012; Ben Taieb and
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Hyndman 2014). The literature on forecasting the smart me-
ter electricity demand is much more sparse (Mirowski et al.
2014).

We focus on electricity demand forecasting where the data
is represented in a hierarchical structure. The most disaggre-
gated level usually contains a huge amount of time series,
and there are additional series at higher levels of aggrega-
tion. The various time series of a hierarchy can interact in
varying and complex ways. In particular, time series at dif-
ferent levels of the hierarchy can contain very different pat-
terns. For example, electricity demand at the bottom level
is typically very noisy sometimes exhibiting intermittency,
while aggregated demand at higher levels is much smoother.

When forecasting these hierarchical structures, we must
ensure that the forecasts satisfy the aggregation constraints,
i.e. the forecasts must add up consistently between levels of
aggregation. The simplest approach to generate hierarchical
forecasts entails summing the individual bottom series fore-
casts. However, the high level of noise at the bottom level
and the error correlations often imply poor prediction accu-
racy at upper levels in the hierarchy. Instead, it is also possi-
ble to forecast all series of the hierarchy independently, but
it has the undesirable property of not satisfying the aggrega-
tion constraints.

Hyndman et al. (2011) proposed to compute revised fore-
casts from independent forecasts of different levels to match
the aggregation constraints. Their approach is based on op-
timal forecasts combination obtained by solving a linear re-
gression problem using information of the error forecast co-
variances. Williams et al. (2016) used similar regression-
based forecasts combination to adaptively combine tempera-
ture forecasts in a non-hierarchal setting. Mijung and Marcel
(2014) proposed a top-down forecasting method based on
forecast disaggregation in a Bayesian framework. However,
Hyndman et al. (2011) showed that any top-down method
introduces bias in the forecasts even if the base forecasts are
unbiased.

By making strong assumptions on the covariance struc-
ture of the forecast errors, Hyndman et al. (2011) computed
the revised forecasts using ordinary least squares. Exten-
sions to the method of Hyndman et al. (2011) have been pro-
posed in Hyndman, Lee, and Wang (2016) and Wickrama-
suriya, Athanasopoulos, and Hyndman (2015) with relaxed
assumption on the error covariance matrix and better com-
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putational complexity.
In all these algorithms, the revised forecasts are obtained

by adding an adjustment to the base forecasts in order to sat-
isfy the aggregation constraints at upper levels in the hier-
archy. However, the high-dimensionality of the unpenalized
regression and the estimation errors in the high-dimensional
error covariance matrix can lead to increased variability in
the revised forecasts with poor prediction performance.

We propose a new hierarchical forecasting algorithm
that seeks the sparsest adjustments in the base forecasts
while still preserving aggregate consistency. The algorithm
is based on a high-dimensional generalized elastic net re-
gression problem. With such formulation, it allows some
base forecasts to remain unchanged, which can lead to more
robustness to estimation errors in the adjustments. Another
advantage of the proposed method is the ability to dynami-
cally switch between the simple bottom-up forecasts and the
best linear unbiased revised forecasts. Finally, by including
an additional constraint, the algorithm can also guarantee the
non-negativity of the revised forecasts, which is particularly
important when dealing with non-negative quantities such as
electricity demand.

Hierarchical Time Series Forecasting

A hierarchical time series is a multivariate time series with
an hierarchical structure (Fliedner 2001). We let yt be an
n-vector containing all observations at time t, and bt be an
nb-vector with the observations at the bottom level only. We
can then write

yt = Sbt, (1)
where S ∈ R

nb×n is a summing matrix. We can equiva-
lently write [

at

bt

]
=

[
Sa

Inb

]
bt, (2)

where at is an na-vector with the observations at the differ-
ent levels of aggregation, and Inb

∈ R
nb×nb is an identity

matrix.
Given T historical observations y1, . . . ,yT , the optimal

h-period ahead forecasts under mean squared error (MSE)
loss are given by the conditional mean, i.e.

E[yT+h|y1, . . . ,yT ] = S E[bT+h|y1, . . . ,yT ], (3)

where h = 1, 2, . . . , H .
Expression (3) suggests a plug-in estimator to obtain

mean forecasts for yT+h, i.e for all series in the hierarchy.
More precisely, we can compute

ŷT+h = Sb̂T+h, (4)

where b̂T+h are mean forecasts for bT+h. These forecasts
are known as bottom-up (BU).

In practice, the series at the most disaggregated level are
hard to predict notably due to low signal-to-noise ratio. As
a result, the bottom-up forecasts will provide poor forecast
accuracy at upper levels in the hierarchy.

Another method called top-down consists in forecasting
the completely aggregated series, and then using historical
proportions to disaggregate the forecasts. Compared with

the bottom-up method, this method has the advantage of
computing forecasts for a time series with a high signal-
to-noise ratio. However, the forecast accuracy will depend
on the accuracy of the disaggregation procedure, and all the
information at the intermediate and bottom levels is disre-
garded.

Instead of aggregating or disaggregating forecasts, it is
also possible to forecast all series at all levels independently,
i.e. estimating each component on the the left hand side of
expression (3). In other words, we compute

ŷT+h =

[
âT+h

b̂T+h

]
, (5)

which we call the base forecasts (BASE).
This brings a lot of flexibility since we can use different

methods at different levels, e.g. advanced forecasting meth-
ods at higher levels, to capture smooth patterns and simple
methods at bottom levels to accommodate high signal-to-
noise ratio.

However, due to forecast errors, the base forecasts will
not satisfy the aggregation constraints. We define the con-
sistency error as

ε̃T+h = âT+h − Sab̂T+h. (6)

If ε̃T+h = 0, the hierarchical forecasts [âT+h b̂T+h]
′

enjoy the aggregate consistency property.
Since the optimal forecasts given in (3) are aggregate con-

sistent by definition, it is necessary to impose aggregate con-
sistency when generating hierarchal forecasts. Also, from a
decision making perspective, this property guarantees con-
sistent decisions over the entire hierarchy.

Hyndman et al. (2011) observed that all existing hierar-
chical forecasting methods can be written as

ỹT+h = SP ŷT+h, (7)

for some appropriately chosen matrix P ∈ R
nb×n, and

where ŷT+h is the base forecast, and ỹT+h is the revised
forecasts satisfying the aggregation constraints.

In other words, existing methods compute a linear com-
bination of the base forecasts to obtain revised bottom fore-
casts, which are then summed by S to obtain the final fore-
casts for the whole hierarchy.

For example, we obtain bottom-up forecasts with P =
[0na×nb

|1nb×nb ], and top-down forecasts with P =[
pnb×1|0nb×(n−1)

]
where p is a vector of proportion that

sums to one. Of course, variations are possible by defining
the matrix P appropriately.

Best Linear Unbiased Revised Forecasts

One approach to find optimal P is to minimize the mean
square forecast errors, i.e.

min.
P

E

[∥∥yT+h − ỹT+h

∥∥2
2

]
, (8)

where ỹT+h is defined in (7).
Assuming unbiased base forecasts, Wickramasuriya,

Athanasopoulos, and Hyndman (2015) showed that (8) ad-
mits a closed-form solution for the best (i.e. having mini-
mum variance) linear unbiased (BLU) revised forecasts. The
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solution is given by

P ∗ = (S′W−1
h S)−1S′W−1

h , (9)

where Wh is the positive definite covariance matrix of the
h-period ahead base forecast errors, i.e.

Wh = E[êT+hê
′
T+h] =

[
Wh,a Wh,ab
W ′

h,ab Wh,b

]
, (10)

where êT+h = yT+h − ŷT+h. We will denote this method
MinT.

Computing the matrix P ∗ using (9) involves the inversion
of an n × n matrix where n is the total number of series in
the hierarchy. By exploiting the particular structure of the
summing matrix S, we can show that

P ∗ = [Pε̃ I − Pε̃Sa] , (11)

where

Pε̃ = (Wh,bS
′
a −W ′

h,ab) (12)

× [Wh,a − SaW
′
h,ab + (SaWh,b −Wh,ab)S

′
a]
−1,

which only requires the inversion of an na × na matrix,
where na is the number of series at the aggregation levels,
which is orders of magnitude smaller than n in practice.

In summary, the MinT revised forecasts for the entire hi-
erarchy can be computed as

ỹT+h
def
= Sb̃T+h, (13)

where b̃T+h are the MinT bottom revised forecasts given by

b̃T+h
def
= P ∗ŷT+h. (14)

Estimation of the Forecast Error Covariance

The BLU revised forecasts in (14) depend on the error co-
variance matrix Wh as can be seen in (9). However, in prac-
tice, this matrix is not available and needs to be estimated us-
ing historical observations of the base forecast errors. Since
Wh is particularly challenging to estimate especially for
h > 1, we will assume Wh = khW1 as in Wickramasuriya,
Athanasopoulos, and Hyndman (2015). Then, the matrix can
be estimated via

Ŵ1 = κ

∑T
t=1 λ

T−têtê
′
t∑T

t=1 λ
T−t

, (15)

where κ is a normalizing constant and λ (0 < λ ≤ 1) is
an exponential time decay parameter, which allows more
emphasis to be placed on the more recent observations. If
κ = T

T−1 and λ = 1, then the estimate reduces to the sam-
ple covariance.

However, since in practice the matrix W1 is high-
dimensional, i.e. T = O(n), the sample covariance estima-
tor will perform poorly notably due to the accumulation of
estimation errors. In particular, the sample covariance matrix
will not always be positive definite, and hence not invertible.

To overcome this limitation, one can make structural as-
sumptions on the entries of the matrix. For example, Hyn-
dman et al. (2011) used Ŵ1,OLS = I , the most simpli-
fying assumption. Hyndman, Lee, and Wang (2016) used

Ŵ1,WLS = diag(ŵ1, . . . , ŵn) where ŵj is an estimate of
the base forecast error variance for series j = 1, 2, . . . , n.

In this work, we will consider a shrinkage estimator with
a diagonal target given by

Ŵ1,shrink = λŴ1,WLS + (1− λ)Ŵ1, (16)

where λ ∈ [0, 1] is a shrinkage factor. As a result, the off-
diagonal entries of the matrix are shrunk towards zero, while
the diagonal entries remains unchanged. A closed-form ex-
pression for the optimal shrinkage factor has been proposed
by Schäfer and Strimmer (2005), and is given by

λ̂ =

∑
i�=j V̂ar(r̂ij)∑

i�=j r̂
2
ij

(17)

where r̂ij is the ij-th entry of the sample correlation matrix
R̂1. The same shrinkage estimator has been used in Wickra-
masuriya, Athanasopoulos, and Hyndman (2015) for hierar-
chical forecasting with tourism applications.

Regularization in Hierarchical Forecasting

The MinT bottom revised forecasts given by (14) can also be
computed as the Generalised Least Squares (GLS) solution
of the following regression model:

ŷT+h = Sβ + εT+h, (18)

where β = E[bT+h|y1, . . . ,yT ] and εT+h ∼ N (0, Ŵh).
The previous regression model is high-dimensional since

it involves n = na +nb observations and nb predictors with
n = O(nb) where na and nb are the number of series in the
aggregation levels and the bottom level, respectively.

If we apply the change of variable β = b̂T+h + θ, then
the optimization problem of the GLS regression can be for-
mulated as

min.
θ∈Rnb

(ẑT+h − Sθ)′Ŵ−1
h (ẑT+h − Sθ), (19)

where

ẑT+h = ŷT+h − Sb̂T+h = [ε̃T+h 0]
′
, (20)

and ε̃T+h is the consistency error defined in (6). The bottom
revised forecasts are then given by

b̃T+h = b̂T+h + θ̂, (21)

where θ̂ is the estimated adjustment applied to the base fore-
casts.

Furthermore, if we plug (11) in (14), we can see that the
MinT adjustment has a closed-form expression given by

θ̂ = P̂ε̃ ε̃T+h. (22)

The previous expression shows the importance of prop-
erly estimating Ŵh since the adjustment θ̂ depends on P̂ε̃,
which is computed using Ŵh as can be seen in (12). In other
words, the estimation errors in the high-dimensional matrix
Ŵh could negatively affect the revised forecasts. In partic-
ular, when ε̃T+h �= 0, i.e. when the forecasts are not aggre-
gate consistent, the MinT adjustment θ̂ will not be sparse
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even in the extreme scenario where Ŵh is an identity ma-
trix. This implies that the MinT adjustments do not allow
the base forecasts to remain unchanged, i.e. θ̂j �= 0 for all j.

Finally, using (21) and (22), we can see that na consis-
tency errors in ε̃T+h will affect all the nb bottom base fore-
casts b̃T+h where na is significantly smaller than nb in al-
most all applications of hierarchical forecasting. However,
for example in hierarchal electricity demand forecasting, we
want to avoid few consistency errors to affect the forecasts
of every single household in the hierarchy.

Revised Forecasts With Sparse Adjustments

In order to mitigate the effect of estimation errors in the ad-
justments, we propose to compute the sparsest adjustments
with the best forecast accuracy. It is important to note that we
do not seek sparse revised forecasts but rather sparse adjust-
ments. This is important when dealing with strictly positive
demand as is often the case with electricity demand.

To preserve aggregate consistency, our revised forecasts
will have the same form as (13), i.e. the revised forecasts
for the entire hierarchy are computed by summing revised
bottom forecasts. Sparsity can be achieved by constraining
the number of non-zero coefficients s = ‖θ‖0 where ‖·‖0 is
the L0 “norm”. The MinT forecasts typically have s = nb,
while the BU forecasts have s = 0, i.e. no adjustments. Our
goal is to find a good tradeoff between these two extreme
cases.

Because the L0 “norm” function is non-convex, convex
relaxation such as the LASSO (Tibshirani 2011) are typ-
ically used to obtain sparse estimate in linear regression
(Hastie, Tibshirani, and Wainwright 2015). We propose the
following penalized (generalized) least squares problem:

min.
θ

(ẑT+h − Sθ)′Ŵ−1
h (ẑT+h − Sθ) + λ

nb∑
j=1

γjRα(θj)

(23)

s.t. θ � −b̂T+h, (24)

where λ ≥ 0 is a penalty parameter, γj ≥ 0 is a penalty
scaling parameter,

Rα(θj) =

[
(1− α)

1

2
θ2j + α|θ|j

]
(25)

is the elastic net penalty (Zou and Hastie 2005) with weight-
ing parameter α ∈ [0, 1]. The bottom revised forecasts are
then given by (21). We will denote this method MinT-REG.

The constraint in (24) guarantees the non-negativity of the
bottom revised forecasts since b̃T+h � 0 if b̂T+h � 0.
This constraint is important when dealing with non-negative
quantities as in household electricity demand without energy
generation.

The penalty Rα in (25) is a convex combination of the
ridge penalty (α = 0) and the lasso penalty (α = 1). It al-
lows a compromise between these two penalties, and is par-
ticularly useful in high-dimensional setting with correlated
predictors where the lasso penalty can be unstable (Tibshi-
rani 2013).

For all α < 1, the penalty function is strictly convex, and
when α ∈ (0, 1], it is singular at 0. In this work, we will
consider α > 0 to always include a lasso penalty, and allow
sparse estimates.

When λ = 0, the objective function in (23) is equivalent
to the objective in (19) with a lower limit on the adjustments
θ. In other words, our algorithm also allows to implement
the non-negative MinT forecasting algorithm. When α =
1, we obtain the same forecasts as MinT (λ = 0) and BU
(λ =∞). By selecting the right amount of penalization, we
can move from the completely dense adjustments (MinT) to
the completely sparse adjustments (BU). Finally, since θ̂ =

b̃T+h− b̂T+h, a shrinkage of the adjustment θ̂ towards zero
is equivalent to a shrinkage of the bottom revised forecasts
b̃T+h towards the bottom base forecasts b̂T+h.

The penalty we consider in (23) involves a non-uniform
penalization (i.e. different penalties for each of the coeffi-
cients) where the penalty for the coefficient θj is λj = λγj .
This differential shrinkage is particularly important in our
case since we do not want to shrink the large forecasts of
the aggregation levels in the same way as the small forecasts
of the bottom levels. Similarly to the adaptive lasso of Zou
(2006), we use

γj =
1

|θ̂MinT
j |δ (26)

where θ̂MinT
j are the MinT adjustments, and δ > 0.

If Ŵh = CC ′ then the generalized elastic net regres-
sion problem in (23) can be reduced to a standard elastic net
problem with response variable C−1ẑT+h and design ma-
trix C−1S.

The elastic net problem can be efficiently solved by cycli-
cal coordinate descent (Friedman et al. 2007). Our imple-
mentation of the standard elastic net is based on the glmnet
package (Friedman, Hastie, and Tibshirani 2010) available
for the R programming language (R Core Team 2015).

Hierarchical Electricity Demand Forecasting

Electricity Smart Meter Data

We use the data collected during a smart metering trial con-
ducted across Great Britain by four energy supply compa-
nies (AECOM 2011). The data set contains half-hourly mea-
surements of electricity consumption gathered from over
14, 000 households between January 2008 and September
2010, along with some geographic and demographic data.

We focus on the 5701 meters which do not have missing
values, with data available between April 20,2009 and July
31, 2010; hence, each time series has T = 22, 464 observa-
tions.

The hierarchy is based on the geographic data with six dif-
ferent levels with the following number of series per level:
1 (level 1), 5 (level 2), 13 (Level 3), 34 (level 4), 94 (level
5) and 5701 (level 6). In other words, the hierarchy is com-
posed of n = 5848 series, nb = 5701 bottom series and
na = n − nb = 147 series at aggregation levels. Figure
1 gives examples of weekly electricity demand at different
levels of aggregation.
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Figure 1: One week of electricity demand for different levels
of aggregation, with the number of aggregated meters.

Experimental Setup

We focus on one-day ahead hierarchal electricity demand
forecasting using the dataset described in the previous sec-
tion. More precisely, with a forecast origin at 23:30, we
generate H = 48 half-hour forecasts for the next day.

We split the data into training, validation and test sets; the
first 12 months for training, the next month for validation
and the remaining months for testing. In both validation and
testing, we generate forecasts for lead-times ranging from
one-step to 48-steps ahead with 23:30 of each day as fore-
cast origin. We end up with 1440 and 4416 observations in
the training and test set, respectively.

For each time instant, we measure forecast accuracy using
mean square errors computed over all series in the hierarchy.
We estimate the matrix Wh using the shrinkage estimator
defined in (16) with a block-diagonal target and the estimate
is recomputed every 10 days in both validation and testing.
Finally, a different value of α and λ in (23) is used for each
half hour by minimizing mean squared forecast errors for
the associated half hours in the validation set.

Forecasting Methods

We compare our forecasting algorithm MinT-REG given in
(23) with BU, BASE and MinT given in (4), (5) and (13),
respectively.

For the base forecasts, we use an exponential smoothing
based method, called TBATS (Livera, Hyndman, and Snyder
2011), that can handle multiple seasonal cycles. This will al-
low use to capture the within-day and within-week season-
alities in the half-hourly demand. We model two seasonal
cycles of period m1 = 48 (daily) and m2 = 336 (weekly).
In order to stabilize the variance and guarantee the non-
negativity of the base forecasts, we applied a log transfor-
mation. The parameters of the TBATS model are estimated
by maximum likelihood and model selection is performed
using AIC. Multi-step ahead forecasts are computed using
a recursive forecasting strategy. For more details, we refer
the reader to Livera, Hyndman, and Snyder (2011). Our im-
plementation of the TBATS model is based on the forecast
package (Hyndman and Khandakar 2008) available for the
R programming language (R Core Team 2015).

0

50

100

150

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00
Hour of the day

ID
 o

f a
gg

re
ga

te
 s

er
ie

s

−5

0

5
log( ε~)

Figure 2: Absolute value of consistency errors (log. scale).

Experimental Results

Figure 2 shows the consistency errors ε̃t defined in (6) for
the first day in the test set 1. Each row represents one of the
147 series at upper levels in the hierarchy where the top row
is associated to the most aggregated series and the other rows
are ordered by levels in the hierarchy.

We can see that the consistency errors are increasing with
the level of aggregation. This suggest that the BU forecasts is
not able to capture certain patterns or seasonalities of the se-
ries at higher levels of aggregation by only using the raw bot-
tom base forecasts. Furthermore, we can also notice a pat-
tern by hour of the day, with lower errors during night hours
compared to day hours, and higher errors for the two peak
periods 06:00-12:00 and 17:00-22:00. This can be
explained by the fact that the electricity demand is typically
flat during night hours, and hence easier to forecast at all lev-
els, while the demand at peak hours is harder to forecast. The
heterogeneity in the consistency errors suggest that more ad-
justments of the bottom base forecasts will be required at
certain hours and levels of aggregation in order to properly
match the base forecasts at upper levels.

Figure 3 and 4 give the MSE of the different hierarchal
forecasting methods averaged over all series at the aggrega-
tion levels and all bottom series, respectively.

3
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7
8

Lo
g(

M
SE

)

00:00 02:30 05:00 07:30 10:00 12:30 15:00 17:30 20:00 22:30

MinT
MinT−REG
BASE
BU

Figure 3: MSE averaged over series in the aggregation lev-
els.

1Similar patterns are observed for other days in the test set.
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Figure 4: MSE averaged over series in the bottom level.

The solid line gives the MSE of the BASE forecasts,
which are not aggregate consistent as previously show in
Figure 2, and the other lines give the MSE of the aggregate
consistent hierarchical forecasting methods.

In Figure 3, we can see that the BU forecasts have larger
errors compared to the other methods during the two peak
hours, but lower errors during night hours and around mid-
day. This shows the limitation of computing the forecasts for
the aggregation levels by summing the noisy forecasts of the
bottom level.

The MinT-REG and MinT forecasts have a significantly
lower MSE than the BU forecasts, and achieve similar or bet-
ter performance than the BASE forecasts. The fact that both
MinT-REG and MinT do not increase forecast errors com-
pared to the BASE forecasts suggest that the adjustments ap-
plied to the bottom forecasts before summation have been
properly estimated. This also shows that the bottom fore-
casts can benefit from the higher accuracy of the forecasts at
higher levels of aggregation.

Overall, MinT-REG and MinT have similar performance
except for night hours where MinT-REG has lower errors.
However, MinT-REG enjoys sparser adjustments as can be
seen in Figure 5. In particular, we can see the high spar-
sity during night hours, and the low sparsity during peak
hours. In fact, MinT-REG is close to BU and MinT dur-
ing night hours and peak hours, respectively. In other words,
MinT-REG has the ability to dynamically switch between
MinT and BU by tracking the best between these two fore-
casts.

The amount of sparsity in Figure 5 seems to be directly
related to the amount of consistency errors in Figure 2, sug-
gesting that less consistency errors will allow more sparsity
in the adjustments. In these experiments the amount of spar-
sity has been automatically selected using a validation set.
However, it is also possible to manually tradeoff sparsity
with forecast accuracy by using the right amount of shrink-
age, for example by exploiting prior knowledge about the
forecasting problem.

By definition, the BASE and BU forecasts are equivalent at
the bottom level, as can be seen in Figure 4. However, both
MinT and MinT-REG have either similar or better forecast
accuracy than BASE, which shows that the adjustments have
also contributed to decrease forecast errors at the bottom
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Figure 5: Number of non-zero adjustments of the MinT-REG
forecasts for each hour in the test set. The horizontal line
gives the maximum number of adjustments.

level by benefiting from better forecast accuracy at upper
levels in the hierarchy.

If the forecast accuracy is the only criterion, it is often
hard to improve the base forecasts, especially with a large
number of series, and a lot of observations for each series, as
with smart electricity demand data. However, the base fore-
casts do not satisfy the aggregation constraints. So, even if
it is not possible to improve the base forecasts, MinT-REG
will compute sparse adjustments with the least increase in
forecast errors compared to the base forecasts. By doing so,
MinT-REG will provide more robustness to estimation er-
rors in the adjustments compared to MinT.

Conclusion

By applying adjustments to the individual forecasts of an hi-
erarchical time series, it is possible to obtain revised fore-
casts that satisfy the hierarchical aggregation constraints.
However, in existing approaches, the computation of these
adjustments involve a high-dimensional unpenalized regres-
sion and the estimation of a high-dimensional covariance
matrix. As a result, the existing forecasting methods can suf-
fer from extensively adjusted base forecasts with poor pre-
diction accuracy.

We overcome this challenge by proposing a new fore-
casting algorithm that adds a sparsity constraint to the ad-
justments, while still preserving the aggregation constraints.
The algorithm is based on a high-dimensional penalized re-
gression with adaptive shrinkage that can be solved effi-
ciently using cyclical coordinate descent methods.

An attractive property of the proposed method is the abil-
ity to switch in a data-driven manner between bottom-up
forecasts and BLU revised forecasts. Furthermore, the spar-
sity of the adjustments allows substantial part of the base
forecasts to remain unchanged which leads to more stabil-
ity.

The experiments performed using hierarchical electricity
demand data show the effectiveness of our approach com-
pared with the state-of-the art methods. In particular, the
revised forecasts enjoy a high sparsity in the adjustments
during night hours, and reduce to the BLU revised forecasts
during peak hours.
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