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Abstract

Machine learning about language can be improved by sup-
plying it with specific knowledge and sources of external in-
formation. We present here a new version of the linked open
data resource ConceptNet that is particularly well suited to
be used with modern NLP techniques such as word embed-
dings.

ConceptNet is a knowledge graph that connects words and
phrases of natural language with labeled edges. Its knowl-
edge is collected from many sources that include expert-
created resources, crowd-sourcing, and games with a pur-
pose. It is designed to represent the general knowledge in-
volved in understanding language, improving natural lan-
guage applications by allowing the application to better un-
derstand the meanings behind the words people use.

When ConceptNet is combined with word embeddings
acquired from distributional semantics (such as word2vec),
it provides applications with understanding that they would
not acquire from distributional semantics alone, nor from
narrower resources such as WordNet or DBPedia. We
demonstrate this with state-of-the-art results on intrinsic
evaluations of word relatedness that translate into improve-
ments on applications of word vectors, including solving
SAT-style analogies.

Introduction

ConceptNet is a knowledge graph that connects words and
phrases of natural language (terms) with labeled, weighted
edges (assertions). The original release of ConceptNet (Liu
and Singh 2004) was intended as a parsed representation of
Open Mind Common Sense (Singh 2002), a crowd-sourced
knowledge project. This paper describes the release of Con-
ceptNet 5.5, which has expanded to include lexical and
world knowledge from many different sources in many lan-
guages.

ConceptNet represents relations between words such as:

• A net is used for catching fish.
• “Leaves” is a form of the word “leaf ”.
• The word cold in English is studený in Czech.
• O alimento é usado para comer [Food is used for eating].

Copyright c© 2017, Association for the Advancement of Artificial
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In this paper, we will concisely represent assertions such
as the above as triples of their start node, relation label, and
end node: the assertion that “a dog has a tail” can be repre-
sented as (dog, HasA, tail).

ConceptNet also represents links between knowledge re-
sources. In addition to its own knowledge about the English
term astronomy, for example, ConceptNet contains links to
URLs that define astronomy in WordNet, Wiktionary, Open-
Cyc, and DBPedia.

The graph-structured knowledge in ConceptNet can be
particularly useful to NLP learning algorithms, particularly
those based on word embeddings, such as (Mikolov et al.
2013). We can use ConceptNet to build semantic spaces that
are more effective than distributional semantics alone.

The most effective semantic space is one that learns from
both distributional semantics and ConceptNet, using a gen-
eralization of the “retrofitting” method (Faruqui et al. 2015).
We call this hybrid semantic space “ConceptNet Number-
batch”, to clarify that it is a separate artifact from Concept-
Net itself.

ConceptNet Numberbatch performs significantly better
than other systems across many evaluations of word relat-
edness, and this increase in performance translates to im-
provements on downstream tasks such as analogies. On a
corpus of SAT-style analogy questions (Turney 2006), its ac-
curacy of 56.1% outperforms other systems based on word
embeddings and ties the previous best overall system, Tur-
ney’s LRA. This level of accuracy is only slightly lower than
the performance of the average human test-taker.

Building word embeddings is not the only application
of ConceptNet, but it is a way to apply ConceptNet that
achieves clear benefits and is compatible with ongoing re-
search in distributional semantics.

After introducing related work, we will begin by describ-
ing ConceptNet 5.5 and its features, show how to use Con-
ceptNet alone as a semantic space and a measure of word
relatedness, and then proceed to describe and evaluate the
hybrid system ConceptNet Numberbatch on these various
semantic tasks.

Related Work

ConceptNet is the knowledge graph version of the Open
Mind Common Sense project (Singh 2002), a common sense
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knowledge base of the most basic things a person knows. It
was last published as version 5.2 (Speer and Havasi 2013).

Many projects strive to create lexical resources of gen-
eral knowledge. Cyc (Lenat and Guha 1989) has built an
ontology of common-sense knowledge in predicate logic
form over the decades. DBPedia (Auer et al. 2007) extracts
knowledge from Wikipedia infoboxes, providing a large
number of facts, largely focused on named entities that have
Wikipedia articles. The Google Knowledge Graph (Singhal
2012) is perhaps the largest and most general knowledge
graph, though its content is not freely available. It focuses
largely on named entities that can be disambiguated, with a
motto of “things, not strings”.

ConceptNet’s role compared to these other resources is to
provide a sufficiently large, free knowledge graph that fo-
cuses on the common-sense meanings of words (not named
entities) as they are used in natural language. This focus on
words makes it particularly compatible with the idea of rep-
resenting word meanings as vectors.

Word embeddings represent words as dense unit vectors
of real numbers, where vectors that are close together are se-
mantically related. This representation is appealing because
it represents meaning as a continuous space, where similar-
ity and relatedness can be treated as a metric. Word embed-
dings are often produced as a side-effect of a machine learn-
ing task, such as predicting a word in a sentence from its
neighbors. This approach to machine learning about seman-
tics is sometimes referred to as distributional semantics or
distributed word representations, and it contrasts with the
knowledge-driven approach of semantic networks or knowl-
edge graphs.

Two prominent matrices of embeddings are the word2vec
embeddings trained on 100 billion words of Google News
using skip-grams with negative sampling (Mikolov et al.
2013), and the GloVe 1.2 embeddings trained on 840 billion
words of the Common Crawl (Pennington, Socher, and Man-
ning 2014). These matrices are downloadable, and we will
be using them both as a point of comparison and as inputs
to an ensemble. Levy, Goldberg, and Dagan (2015) evalu-
ated multiple embedding techniques and the effects of var-
ious explicit and implicit hyperparameters, produced their
own performant word embeddings using a truncated SVD
of words and their contexts, and provided recommendations
for the engineering of word embeddings.

Holographic embeddings (Nickel, Rosasco, and Poggio
2016) are embeddings learned from a labeled knowledge
graph, under the constraint that a circular correlation of these
embeddings gives a vector representing a relation. This rep-
resentation seems extremely relevant to ConceptNet. In our
attempt to implement it on ConceptNet so far, it has con-
verged too slowly to experiment with, but this could be
overcome eventually with some optimization and additional
computing power.

Structure of ConceptNet

Knowledge Sources

ConceptNet 5.5 is built from the following sources:

Figure 1: ConceptNet’s browsable interface (conceptnet.io)
shows facts about the English word “bicycle”.

• Facts acquired from Open Mind Common Sense (OMCS)
(Singh 2002) and sister projects in other languages (Ana-
cleto et al. 2006)

• Information extracted from parsing Wiktionary, in multi-
ple languages, with a custom parser (“Wikiparsec”)

• “Games with a purpose” designed to collect common
knowledge (von Ahn, Kedia, and Blum 2006) (Nakahara
and Yamada 2011) (Kuo et al. 2009)

• Open Multilingual WordNet (Bond and Foster 2013), a
linked-data representation of WordNet (Miller et al. 1998)
and its parallel projects in multiple languages

• JMDict (Breen 2004), a Japanese-multilingual dictionary

• OpenCyc, a hierarchy of hypernyms provided by Cyc
(Lenat and Guha 1989), a system that represents common
sense knowledge in predicate logic

• A subset of DBPedia (Auer et al. 2007), a network of facts
extracted from Wikipedia infoboxes

With the combination of these sources, ConceptNet con-
tains over 21 million edges and over 8 million nodes. Its En-
glish vocabulary contains approximately 1,500,000 nodes,
and there are 83 languages in which it contains at least
10,000 nodes.

The largest source of input for ConceptNet is Wiktionary,
which provides 18.1 million edges and is mostly responsible
for its large multilingual vocabulary. However, much of the
character of ConceptNet comes from OMCS and the various
games with a purpose, which express many different kinds
of relations between terms, such as PartOf (“a wheel is part
of a car”) and UsedFor (“a car is used for driving”).

Relations

ConceptNet uses a closed class of selected relations such as
IsA, UsedFor, and CapableOf, intended to represent a rela-
tionship independently of the language or the source of the
terms it connects.

ConceptNet 5.5 aims to align its knowledge resources on
its core set of 36 relations. These generalized relations are
similar in purpose to WordNet’s relations such as hyponym
and meronym, as well as to the qualia of the Generative Lex-
icon theory (Pustejovsky 1991). ConceptNet’s edges are di-
rected, but as a new feature in ConceptNet 5.5, some rela-
tions are designated as being symmetric, such as SimilarTo.
The directionality of these edges is unimportant.
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The core relations are:

• Symmetric relations: Antonym, DistinctFrom, Etymolog-
icallyRelatedTo, LocatedNear, RelatedTo, SimilarTo, and
Synonym

• Asymmetric relations: AtLocation, CapableOf, Causes,
CausesDesire, CreatedBy, DefinedAs, DerivedFrom, De-
sires, Entails, ExternalURL, FormOf, HasA, HasCon-
text, HasFirstSubevent, HasLastSubevent, HasPrerequi-
site, HasProperty, InstanceOf, IsA, MadeOf, MannerOf,
MotivatedByGoal, ObstructedBy, PartOf, ReceivesAc-
tion, SenseOf, SymbolOf, and UsedFor

Definitions and examples of these relations appear in a
page of the ConceptNet 5.5 documentation1.

Relations with specific semantics, such as UsedFor
and HasPrerequisite, tend to connect common words and
phrases, while rarer words are connected by more general
relations such as Synonym and RelatedTo.

An example of edges in ConceptNet, in a browsable inter-
face that groups them by their relation expressed in natural
English, appears in Figure 1.

Term Representation

ConceptNet represents terms in a standardized form. The
text is Unicode-normalized in NFKC form2 using Python’s
unicodedata implementation, lowercased, and split into
non-punctuation tokens using the tokenizer in the Python
package wordfreq (Speer et al. 2016), which builds
on the standard Unicode word segmentation algorithm.
The tokens are joined with underscores, and this text is
prepended with the URI /c/lang, where lang is the
BCP 47 language code3 for the language the term is in.
As an example, the English term “United States” becomes
/c/en/united states.

Relations have a separate namespace of URIs prefixed
with /r, such as /r/PartOf. These relations are given
artificial names in English, but apply to all languages. The
statement that was obtained in Portuguese as “O alimento
é usado para comer” is still represented with the relation
/r/UsedFor.

The most significant change from ConceptNet 5.4 and
earlier is in the representation of terms. ConceptNet 5.4
required terms in English to be in lemmatized form, so
that, for example, “United States” had to be represented as
/c/en/unite state. In this representation, “drive” and
“driving” were the same term, allowing the assertions (car,
UsedFor, driving) and (drive, HasPrerequisite, have license)
to be connected. ConceptNet 5.5 removes the lemmatizer,
and instead relates inflections of words using the FormOf re-
lation. The two assertions above are now linked by the third
assertion (driving, FormOf, drive), and both “driving” and
“drive” can be looked up in ConceptNet.

1https://github.com/commonsense/conceptnet5/wiki/Relations
2http://unicode.org/reports/tr15/
3https://tools.ietf.org/html/bcp47

Vocabulary

When building a knowledge graph, the decision of what
a node should represent has significant effects on how the
graph is used. It also has implications that can make linking
and importing other resources non-trivial, because different
resources make different decisions about their representa-
tion.

In ConceptNet, a node is a word or phrase of a natural lan-
guage, often a common word in its undisambiguated form.
The word “lead” in English is a term in ConceptNet, repre-
sented by the URI /c/en/lead, even though it has multi-
ple meanings. The advantage of ambiguous terms is that they
can be extracted easily from natural language, which is also
ambiguous. This ambiguous representation is equivalent to
that used by systems that learn distributional semantics from
text.

ConceptNet’s representation allows for more specific, dis-
ambiguated versions of a term. The URI /c/en/lead/n
refers to noun senses of the word “lead”, and is effectively
included within /c/en/lead when searching or travers-
ing ConceptNet, and linked to it with the implicit relation
SenseOf. Many data sources provide information about parts
of speech, allowing us to use this as a common representa-
tion that provides a small amount of disambiguation. Further
disambiguation is allowed by the URI structure, but not cur-
rently used.

Linked Data

ConceptNet imports knowledge from some other systems,
such as WordNet, into its own representation. These other
systems have their own target vocabularies that need to be
aligned with ConceptNet, which is usually an underspeci-
fied, many-to-many alignment.

A term that is imported from another knowledge graph
will be connected to ConceptNet nodes via the relation Ex-
ternalURL, pointing to an absolute URL that represents that
term in that external resource. This newly-introduced rela-
tion preserves the provenance of the data and enables look-
ing up what the untransformed data was. ConceptNet terms
can also be represented as absolute URLs, so this allows
ConceptNet to connect bidirectionally to the broader ecosys-
tem of Linked Open Data.

Applying ConceptNet to Word Embeddings

Computing ConceptNet Embeddings Using PPMI

We can represent the ConceptNet graph as a sparse, sym-
metric term-term matrix. Each cell contains the sum of the
weights of all edges that connect the two corresponding
terms. For performance reasons, when building this matrix,
we prune the ConceptNet graph by discarding terms con-
nected to fewer than three edges.

We consider this matrix to represent terms and their con-
texts. In a corpus of text, the context of a term would be the
terms that appear nearby in the text; here, the context is the
other nodes it is connected to in ConceptNet. We can cal-
culate word embeddings directly from this sparse matrix by
following the practical recommendations of Levy, Goldberg,
and Dagan (2015).
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As in Levy et al., we determine the pointwise mutual in-
formation of the matrix entries with context distributional
smoothing, clip the negative values to yield positive point-
wise mutual information (PPMI), reduce the dimensional-
ity of the result to 300 dimensions with truncated SVD, and
combine the terms and contexts symmetrically into a single
matrix of word embeddings.

This gives a matrix of word embeddings we call
ConceptNet-PPMI. These embeddings implicitly represent
the overall graph structure of ConceptNet, and allow us
to compute the approximate connectedness of any pair of
nodes.

We can expand ConceptNet-PPMI to restore the nodes
that we pruned away, assigning them vectors that are the av-
erage of their neighboring nodes.

Combining ConceptNet with Distributional Word
Embeddings

Having created embeddings from ConceptNet alone, we
would now like to create a more robust set of embeddings
that represents both ConceptNet and distributional word em-
beddings learned from text.

Retrofitting (Faruqui et al. 2015) is a process that adjusts
an existing matrix of word embeddings using a knowledge
graph. Retrofitting infers new vectors qi with the objective
of being close to their original values, q̂i, and also close to
their neighbors in the graph with edges E, by minimizing
this objective function:

Ψ(Q) =

n∑
i=1

⎡
⎣αi‖qi − q̂i‖2 +

∑
(i,j)∈E

βij‖qi − qj‖2
⎤
⎦

Faruqui et al. give a simple iterative process to minimize
this function over the vocabulary of the original embeddings.

The process of “expanded retrofitting” (Speer and Chin
2016) can optimize this objective over a larger vocabulary,
including terms from the knowledge graph that do not ap-
pear in the vocabulary of the word embeddings. This effec-
tively sets αi = 0 for terms whose original values are un-
defined. We set βij according to the weights of the edges in
ConceptNet.

The particular benefit of expanded retrofitting to Concept-
Net is that it can benefit from the multilingual connections
in ConceptNet. It learns more about English words via their
translations in other languages, and also gives these foreign-
language terms useful embeddings in the same space as the
English terms. The effect is similar to the work of Xiao and
Guo (2014), who also propagate multilingual embeddings
using crowd-sourced Wiktionary entries.

We add one more step to retrofitting, which is to subtract
the mean of the vectors that result from retrofitting, then re-
normalize them to unit vectors. Retrofitting has a tendency
to move all vectors closer to the vectors for highly-connected
terms such as “person”. Subtracting the mean helps to ensure
that terms remain distinguishable from each other.

Combining Multiple Sources of Embeddings

Retrofitting can be applied to any existing matrix of word
embeddings, without needing access to the data that was

used to train them. This is particularly useful because it al-
lows building on publicly-released matrices of embeddings
whose input data is unavailable or difficult to acquire.

As described in the “Related Work” section, word2vec
and GloVe both provide recommended pre-trained matrices.
These matrices represent somewhat different domains of text
and have complementary strengths, and the way that we can
benefit from them the most is by taking both of them as in-
put.

To do this, we apply retrofitting to both matrices, then find
a globally linear projection that aligns the results on their
common vocabulary. This process was inspired by Zhao,
Hassan, and Auli (2015). We find the projection by con-
catenating the columns of the matrices and reducing them
to 300 dimensions using truncated SVD. We then use this
alignment to infer compatible embeddings for terms that are
missing from one of the vocabularies.

In ongoing work, we are experimenting with additionally
including distributional word embeddings from corpora of
non-English text in this merger. Preliminary results show
that this improves the multilingual performance of the em-
beddings.

After retrofitting and merging, we have a labeled ma-
trix of word embeddings whose vocabulary is derived from
word2vec, GloVe, and the pruned ConceptNet graph. As
in ConceptNet-PPMI, we re-introduce all the nodes from
ConceptNet by looking up and averaging their neighboring
nodes.

Evaluation

To compare the performance of fully-built systems of word
embeddings, we will first compare their results on intrinsic
evaluations of word relatedness, then apply the word embed-
dings to the downstream tasks of solving proportional analo-
gies and choosing the sensible ending to a story, to evaluate
whether better embeddings translate to better performance
on semantic tasks.

The hybrid system described above is the system we name
ConceptNet Numberbatch, with the version number 16.09
indicating that it was built in September 2016. We now com-
pare results from ConceptNet Numberbatch 16.09 to other
systems that make their word embeddings available, both
those that were used in building ConceptNet Numberbatch
and a recently-released system, LexVec, that was not. The
systems we evaluate are:

• word2vec SGNS (Mikolov et al. 2013), trained on Google
News text

• GloVe 1.2 (Pennington, Socher, and Manning 2014),
trained on the Common Crawl

• LexVec (Salle, Idiart, and Villavicencio 2016), trained on
the English Wikipedia and NewsCrawl 2014

• ConceptNet-PPMI, described here and trained on Con-
ceptNet 5.5 alone

• ConceptNet Numberbatch 16.09, the hybrid of Concept-
Net 5.5, word2vec, and GloVe described here
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Evaluations of Word Relatedness

One way to evaluate the intrinsic performance of a semantic
space is to ask it to rank the relatedness of pairs of words,
and compare its judgments to human judgments.4 If one
word in a pair is out-of-vocabulary, the pair is assumed to
have a relatedness of 0. A good semantic space will provide
a ranking of relatedness that is highly correlated with the
human gold-standard ranking, as measured by its Spearman
correlation (ρ).

Many gold standards of word relatedness are in com-
mon use. Here, we focus on MEN-3000 (Bruni, Tran, and
Baroni 2014), a large crowd-sourced ranking of common
words; RW (Luong, Socher, and Manning 2013), a rank-
ing of rare words; WordSim-353 (Finkelstein et al. 2001),
a smaller evaluation that has been used as a benchmark for
many methods; and MTurk-771 (Halawi et al. 2012), an-
other crowd-sourced evaluation of a variety of words.

To avoid manually overfitting by designing our semantic
space around a particular evaluation, we experimented using
smaller development sets, holding out some test data until it
was time to include results in this paper:

• MEN-3000 is already divided into a 2000-item develop-
ment set and a 1000-item test set. We use the results from
the test set as the final results.

• RW has no standard dev/test breakdown. We sampled 2/3
of its items as a development set and held out the other
1/3 (every third line of the file, starting with the third).

• We used all of WordSim-353 in development. We exam-
ine its results both in English and in its Spanish translation
(Hassan and Mihalcea 2009).

• We did not use MTurk-771 in development, holding out
the entire set as a final test, showing that ConceptNet
Numberbatch performs well on a previously-unseen eval-
uation.

We use the Spanish WordSim-353 as an example of a
prominent non-English evaluation, indicating that expanded
retrofitting is sufficient to learn vectors for non-English lan-
guages, even when all the distributional semantics takes
place in English. However, a thorough multilingual eval-
uation is beyond the scope of this paper; the systems we
compare to have only made English vectors available, and it
would add considerable complexity to the evaluation to re-
produce other systems of multilingual embeddings, account-
ing for their various ways of handling morphology and OOV
words.

Solving SAT-style Analogies

Proportional analogies are statements of the form “a1 is to
b1 as a2 is to b2”. The task of filling in missing values of
a proportional analogy was common until recently on stan-
dardized tests such as the SAT. Now, it is popular as a way
to show that a semantic space can approximate relationships

4It is sometimes important to distinguish similarity from relat-
edness. For example, the term “coffee” is related to “mug”, but
coffee is not similar to a mug. What a machine can learn from the
connectivity of ConceptNet is focused on relatedness.

between words, even without taking explicit relationships
into account.

Much of the groundwork for evaluating systems’ ability
to solve proportional analogies was laid by Peter Turney,
including his method of Latent Relational Analysis (Tur-
ney 2006), which was quite effective at solving proportional
analogies by repeatedly searching the Web for the words in-
volved in them. A newer method called SuperSim (Turney
2013) does not require Web searching. These methods are
evaluated on a dataset of 374 SAT questions that Turney and
his collaborators have collected.

Many of the best results on this evaluation have been
achieved by Turney in his own work. One interesting system
not by Turney is BagPack (Herdaǧdelen and Baroni 2009),
which could learn about analogies either from unstructured
text or from ConceptNet 4.

Solving analogies over word embeddings is often de-
scribed as comparing the difference b2 − a2 to b1 − a1
(Mikolov et al. 2013), but for the task of filling in the best
pair for a2 and b2, it helps to take advantage of more of the
structure of the question to provide more constraint than this
single comparison.

In a sensible analogy, the words on the right side of the
analogy will be related in some way to the words on the
left side, so we should aim for some amount of relatedness
between a1 and a2, and between b1 and b2, regardless of
what the other terms are. Also, in many cases, a satisfying
analogy will still make sense when it is transposed to “a1 is
to a2 as b1 is to b2”. The analogy “fire : hot :: ice : cold”,
for example, can be transposed to “fire : ice :: hot : cold”.
Recognizing this structure helps in picking the best answer
to difficult analogy questions.

This gives us three components that we can weigh to eval-
uate whether a pair (a2, b2) completes an analogy: their sep-
arate similarity to a1 and b1, the dot product of differences
between the pairs, and the dot product of differences be-
tween the transposed pairs. The total weight does not matter,
so we can put these together into a vector equation with two
free parameters:

s = a1 · a2 + b1 · b2
+ w1(b2 − a2) · (b1 − a1) + w2(b2 − b1) · (a2 − a1)

The appropriate values of w1 and w2 depend on the na-
ture of the relationships in the analogy questions, and also
on how these relationships appear in the vector space. We
optimize these parameters separately for each system we
test, using grid search over a number of possible values so
that each system can achieve its best performance. The grid
search is performed on odd-numbered questions, holding out
the even-numbered questions as a test set.

The weights found for ConceptNet Numberbatch 16.09
were w1 = 0.2 and w2 = 0.6. This indicates, surprisingly,
that the comparisons being made by the transposed form
of the analogy were often more important than the directly
stated form of the analogy for choosing the best answer pair.

An Evaluation of Common-Sense Stories

The Story Cloze Test (Mostafazadeh et al. 2016) is a recent
evaluation of semantic understanding that tests whether a
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Figure 2: Performance of word embeddings across multiple
evaluations. Error bars show 95% confidence intervals.

Evaluation Dev Test Final

MEN-3000 (ρ) .859 .866 .866
Rare Words (ρ) .609 .586 .601
MTurk-771 (ρ) — .810 .810
WordSim-353 (ρ) .828 — .828
WordSim-353 Spanish (ρ) .685 — .685
Story Cloze Test (acc) .604 .594 .594
SAT Analogies (acc) .535 .588 .561

Table 1: The Spearman correlation (ρ) or accuracy (acc) of
ConceptNet Numberbatch 16.09, our hybrid system, on data
used in development and data held out for testing.

method can choose the sensible ending to a simple story.
Prompts consist of four sentences that tell a story, and two
choices are provided for a fifth sentence that concludes the
story, only one of which makes sense.

This task is distinguished by being very challenging for
computers but very easy for humans, because of the extent
that it relies on implicit, common sense knowledge. Most
systems that have been evaluated on the Story Cloze Test
score only marginally above the random baseline of 50%,
while human agreement is near 100%.

Our preliminary attempt to apply ConceptNet Number-
batch to the Story Cloze Test is to use a very simple “bag-of-
vectors” model, by averaging the embeddings of the words
in the sentence and choosing the ending whose average is
closest. This allows us to compare directly to one of the
original results presented by Mostafazadeh et al., in which a
bag of vectors using GenSim’s implementation of word2vec
scores 53.9% on the test set.

This bag-of-vectors model uses no knowledge of how one
event might sensibly follow from another, only which words
are related in context. Improving the score of this model
should not be portrayed as actual “story understanding”, but
it recognizes that sensible stories do not suddenly change
topic.

Results and Discussion

Word Relatedness

Figure 2 compares the performance of the systems we com-
pared across all evaluations. For word-relatedness evalua-
tions, the Y-axis represents the Spearman correlation (ρ), us-
ing the Fisher transformation to compute a 95% confidence
interval that assumes the given word pairs are sampled from

Analogy-solving system Accuracy 95% conf.

BagPack (2009) .441 .390 – .493
word2vec (2013) .486 .436 – .537
SuperSim (2013) .548 .496 – .599
LRA (2006) .561 .510 – .612
ConceptNet Numberbatch .561 .510 – .612

Table 2: The accuracy of different techniques for solving
SAT analogies, including ConceptNet Numberbatch 16.09,
our hybrid system.

an unobservable larger set (Bonett and Wright 2000). For
the analogy and story evaluations, the Y-axis is simply the
proportion of questions answered correctly, with 95% confi-
dence intervals calculated using the binomial exact test.

The scores of our system on all these evaluations appear in
Table 1, including a development/test breakdown that shows
no apparent overfitting. The “Final” column is meant for
comparisons to other papers and used in the graph. It uses
the standard test set that other publications use, if it exists
(which is the case for MEN-3000 and Story Cloze), or all of
the data otherwise.

On all of the four word-relatedness evaluations, Concept-
Net Numberbatch 16.09 (the complete system described in
this paper) is state of the art, performing better than all other
systems evaluated to an extent that exceeds the confidence
interval of the choice of questions. Its high scores on both the
Rare Words dataset and the crowd-sourced MEN-3000 and
MTurk-771 datasets, exceeding the performance of other
embeddings with high confidence, shows both the breadth
and the depth of its understanding of words.

SAT Analogies

ConceptNet Numberbatch performed the best among the
word-embedding systems at SAT analogies, getting 56.1%
of the questions correct (58.8% on the half that was held out
for final testing). These analogy results outperform analo-
gies based on other word embeddings, when evaluated in
the same framework, as shown by Figure 2.

The analogy results also tie or slightly outperform the
performance of best-in-class systems on this evaluation5.
Table 2 compares our results to the other systems intro-
duced in the “Solving SAT-Style Analogies” section: Bag-
Pack (Herdaǧdelen and Baroni 2009), the previous use of
ConceptNet on this evaluation; LRA (Turney 2006), the sys-
tem whose record has stood for a decade, which spends nine
days searching the Web during its evaluation; and Super-
Sim (Turney 2013), the more recent system that held the
record among self-contained systems. We also include the
optimized results we found for word2vec (Mikolov et al.
2013), which scored best among other word-embedding sys-
tems on this task.

The results of three systems – SuperSim, LRA, and our
ConceptNet Numberbatch – are all within each other’s 95%
confidence intervals, indicating that the ranking of the re-

5See http://www.aclweb.org/aclwiki/index.php?title=
SAT Analogy Questions for a thorough list of results.
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sults could easily change with a different selection of ques-
tions. Our score of 56.1% is also within the confidence in-
terval of the performance of the average human college ap-
plicant on these questions, said to be 57.0% (Turney 2006).

We have shown that knowledge-informed word embed-
dings are up to the challenge of real SAT analogies; they
perform the same as or slightly better than non-word-
embedding systems on the same evaluation, when other
word embeddings perform worse. In practice, recent word
embeddings have instead been evaluated on simpler, syn-
thetic analogy data sets (Mikolov et al. 2013), and have not
usually been compared to existing non-embedding-based
methods of solving analogies.

We achieve this performance even though the system, like
other systems that form analogies from word embeddings, is
only adding and subtracting values that measure the related-
ness of terms; it uses no particular representation of what
the relationships between these terms actually are. There is
likely a way to take ConceptNet’s relation labels into ac-
count and perform even better at analogies.

Story Cloze Test

The performance of our system on the Story Cloze Test was
acceptable but unremarkable. ConceptNet Numberbatch
chose the correct ending 59.4% of the time, which is in fact
slightly better than any results reported by Mostafazadeh et
al. (2016), including neural nets trained on the task. How-
ever, we could also achieve a similar score by using the
same bag-of-vectors approach on other word embeddings.
The best score of 59.9% was achieved by LexVec, with Con-
ceptNet Numberbatch, GloVe, and word2vec all within its
confidence interval.

This result should perhaps be comforting to those who
aim to improve the computational understanding of stories.
A bag-of-vectors approach may be marginally more success-
ful at choosing the correct ending to a story than other ap-
proaches, but the performance of this approach has likely
reached a plateau. It seems that any sufficiently high-quality
word embeddings can choose the correct ending about 59%
of the time, based on nothing but the assumption that the end
of a story should be similar to the rest of it. Consider this a
baseline: any representation designed to usefully represent
the events in stories should get more than 59% correct.

Conclusion

We have compared word embeddings that represent only
distributional semantics (word2vec, GloVe, and LexVec),
word embeddings that represent only relational knowledge
(ConceptNet PPMI), and the combination of the two (Con-
ceptNet Numberbatch), and we have shown that the whole
is more than the sum of its parts.

ConceptNet continues to be important in a field that has
come to focus on word embeddings, because word embed-
dings can benefit from what ConceptNet knows. ConceptNet
can make word embeddings more robust and more corre-
lated with human judgments, as shown by the state-of-the-
art results that ConceptNet Numberbatch achieves at match-
ing human annotators on multiple evaluations.

Any technique built on word embeddings should consider
including a source of relational knowledge, or starting from
a pre-trained set of word embeddings that has taken rela-
tional knowledge into account. One of the many goals of
ConceptNet is to provide this knowledge in a convenient
form that can be applied across many domains and many
languages.

Availability of the Code and Data

The code and documentation of ConceptNet 5.5 can
be found on GitHub at https://github.com/commonsense/
conceptnet5, and the knowledge graph can be browsed at
http://conceptnet.io. The full build process, as well as the
evaluation graph, can be reproduced using the instructions
included in the README file for using Snakemake, a build
system for data science (Köster and Rahmann 2012), and
optionally using Docker Compose to reproduce the system
environment. The version of the repository as of the submis-
sion of this paper has been tagged as aaai2017.

The ConceptNet Numberbatch word embeddings that re-
sulted from this build process in September 2016 are the
ones evaluated in this paper; they can be downloaded as pre-
built embeddings from https://github.com/commonsense/
conceptnet-numberbatch, tag 16.09.
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