

Identifying Useful Inference Paths in Large
Commonsense Knowledge Bases by Retrograde Analysis

Abhishek Sharma Keith M. Goolsbey
Cycorp, Inc.,7718 Wood Hollow Drive, Suite 250, Austin TX 78731

abhishek@cyc.com, goolsbey@cyc.com

Abstract
Commonsense reasoning at scale is a critical problem for
modern cognitive systems. Large theories have millions of
axioms, but only a handful are relevant for answering a giv-
en goal query. Irrelevant axioms increase the search space,
overwhelming unoptimized inference engines in large theo-
ries. Therefore, methods that help in identifying useful in-
ference paths are an essential part of large cognitive sys-
tems. In this paper, we use retrograde analysis to build a da-
tabase of proof paths that lead to at least one successful
proof. This database helps the inference engine identify
more productive parts of the search space. A heuristic based
on this approach is used to order nodes during a search.
We study the efficacy of this approach on hundreds of que-
ries from the Cyc KB. Empirical results show that this ap-
proach leads to significant reduction in inference time.

 Introduction and Motivation
Cognitive systems need large bodies of general com-
monsense knowledge about the external world to perform
complex, real-world tasks robustly [Lenat & Feigenbaum
1991, Forbus et al. 2007]. Therefore, domain-general
knowledge-based systems (KBSs) contain millions of
commonsense axioms and other general facts. KBSs often
draw deductively valid conclusions from known facts to
make plans and to reason about the external world. Typi-
cally, the goal query is provable from a very small subset
of millions of axioms and facts available in the knowledge
base (KB). However, due to the intractability of reasoning
in first-order logic (FOL), unoptimized inference engines
find it difficult to distinguish between a handful of relevant
axioms and the millions of other axioms/facts available in
the KB. Without search control knowledge, inference en-
gines cannot answer even relatively simple queries within
minutes. Therefore, it is common thinking that resolution-
based theorem provers are overwhelmed when they are

Copyright © 2017, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

expected to work on large KBs [Hoder & Voronkov 2011].
Efficient reasoning in such systems is critical for develop-
ing large-scale realistic cognitive systems.
 Inference algorithms of expressive KBSs (e.g., back-
ward inference in Cyc, tableaux algorithms in description
logic (DL)) typically represent the search space as a graph,
the structure of which is determined by the axioms appli-
cable to nodes in the graph. Generally, hundreds of rules
simultaneously apply to a node and the order of rule and
node expansion can have a significant effect on efficiency
[Tsarkov & Horrocks 2005, Sharma et al. 2016]. There-
fore, ordering heuristics play an important role in the opti-
mization of reasoning in large KBSs.
 Large KBSs have a very large set of axioms Ax, and a
goal G. Since only a tiny subset, S, of Ax is sufficient for
proving G, researchers have worked to identify a small set
R, such that S R Ax. The relevant set of axioms, R,
can be used in a variety of ways. The inference engines of
KBSs can prune axioms not in R, or can use them in order-
ing algorithms by prioritizing resolution steps that use axi-
oms in R. In this paper, we argue that retrograde analysis
can be used to identify useful parts of the search space. We
propose an algorithm that uses this analysis to identify use-
ful proof paths by using a bottom-up level-by-level path
expansion approach. The resulting database of proof paths
helps us in identifying a small number of axioms that can
be useful in a given search state. This database is used to
order nodes during a search. Experimental results show
that this approach helps in significantly reducing inference
time.
 This paper is organized as follows. We start by discuss-
ing relevant previous work. Our approach to generating a
database of useful axiom sequences is presented next. We
conclude by discussing our results and plans for future
work.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

4437

Related Work
Researchers have examined the use of machine learning to
identify the best heuristics1 for solving problems [Bridge et
al. 2014] and to select a small set of axioms/lemmas that is
most relevant for answering a set of queries [Sharma and
Forbus 2013, Kaliszyk et al. 2015, Kaliszyk and Urban
2015, Alama et al. 2014]. [Hoder and Voronkov 2011]
present a symbol-based axiom selection scheme, which is
based on the co-occurrence of symbols in axioms. [Meng
& Paulson 2009] apply a relevance based filtering ap-
proach in which a clause is added to a set of relevant claus-
es if it is sufficiently close to an existing relevant clause.
[Taylor et al. 2007] use reinforcement learning to guide
inference, whereas [Tsarkov and Horrocks 2005] study
different types of rule-ordering heuristics (e.g., preference
between and rules) and expansion-ordering heuristics
(e.g., descending order of frequency of usage of each of the
concepts in the disjunction). In contrast, our work was ini-
tially inspired by research in the computer games commu-
nity where exhaustive offline search has been used to con-
struct pattern and endgame databases that have proven to
be quite useful for traversal in huge search spaces [Culber-
son & Schaeffer 1998, Thompson 1986]. Our approach of
extracting useful inference paths is similar to existing
methods in the graph mining community [Kuramochi &
Karypis 2001]. Work in other fields (e.g., database com-
munity [Chaudhuri 1998], SAT reasoning [Hutter et al.
2014], answer set programming [Brewka et al. 2011]) is
less relevant because the studies do not address the com-
plexity of deep and cyclic search graphs that arise from
expressive first-order reasoning. To the best of our
knowledge, no work in the AI community has used meth-
ods similar to ours to control inference in large com-
monsense reasoning systems.

Background
We assume familiarity with the Cyc representation lan-
guage [Lenat and Guha 1990, Matuszek et al. 2006, Taylor
et al. 2007]. In Cyc, concept hierarchies are represented by
the ‘genls’ relation. For instance, (genls Person Mammal)
holds. During backward inference, the rule P(x) Q(x) is
used to transform a query like Q(a) into P(a). The link be-
tween Q(a) and P(a) is a type of transformation link. Every
node in the search graph is timestamped with an id. A node
y is called a successor of x if there is a path consisting of
transformation links from x to y and id(x) < id(y). A node x
is a parent of y if a transformation link exists between x
and y and id(x) < id(y). Parents(x) and Successors(x) de-
note the sets of all parents and successors of node x respec-

1 Examples of heuristics (or strategies) include “give priority to axioms in
clause selection” and “sort symbols by inverse frequency”.

tively. Let S be the set of all nodes in a search graph.
Then, a transformation link set p = {a(1), a(2), …,a(n)} is a
set of transformation links that transform an initial state s0
to an intermediate state sn. TRule(a) and Substitutions(a)
denote the rule and bindings associated with the transfor-
mation link a.

 Cognitive systems often need to make deep inference
chains. Let us introduce some notation with the help of the
following example:
 (p ?x ?y) (q ?y ?z) (r ?x ?z) … (Axiom A1)
 (w ?x ?y) (p ?x ?y) …(Axiom A2)
 (s ?x ?y) (q ?x ?y) …(Axiom A3)
 (m ?x ?y) (w ?x ?y) …(Axiom A4)
 Given a query of the type (r ?x ?z), the inference engine
would create the proof tree shown in Figure 1a. Since we
are primarily interested in sequences of axiom choices dur-
ing resolution, we aim to understand the utility of axiom
sequence chosen by the inference engine (see Figure 1b).
 In Table 1, we introduce the notation that is used in the
next section. Candidatesk refers to the set of all proof paths
consisting of k axioms. Each element of Candidatesk is a
tuple <head, RuleSet>, where head is the rule used at the
root node of the proof tree, and RuleSet is the set of all
rules used in the proof. For instance, the proof path shown
in Figure 1b is an element of Candidates3, and it is repre-
sented as <A1, {A1, A2, A3}>. Some of the these proof
paths are productive, and solutions for open variables of
the root node can be found. The set of all axiom sequences
that correspond to productive paths forms the set Gk, and
graph.count refers to the number of solutions for the top-
level query. Therefore, if the proof path shown in Figure 1a
leads to two solutions for the root node, then the axiom
sequence shown in Figure 1b would be an element of G3,
and graph.count for the corresponding graph would be 2.
Finally, we use RootPred(graph) to refer to the predicate in
the root node of the graph.

 (r ?x ?z) A1

 A1

(p ?x ?y) (q ?y ?z) A2

A2 A3

(w ?x ?y) (s ?y ?z) A3

Figure 1a: Example of a Figure 1b: Axiom
proof tree. sequence that leads

to the proof tree in
Figure 1a.

 (r

 A

? ?)

?z)

(q ?y ?z

A3

?y ?z)

?x ?y)

2

w ?x ?y

A2

 A3

4438

 Table 1: Notation
Notation Description

Gk The set of proof trees that lead to
successful proof(s) and use k
axioms for resolution.

Candidatesk The set of candidates proof paths
that use k axioms.

graph.count

RootPred(graph)

The number of solutions for the
root node when the inference
engine is allowed to only use
axioms in graph.

The predicate in the root node of
the graph.

Rules(graph)

Head(graph)

The set of rules used in the graph.

The rule used at the root node of
the proof tree.

 Reasoning in Cyc KB is difficult due to the sheer size of
the KB and the expressiveness of the CycL representation
language. In its default inference mode, the Cyc inference
engine uses the following types of axioms/facts during
backward inference: (i) 21,743 role inclusion axioms (e.g.,
P(x, y) Q(x, y)), (ii) 2,601 inverse role axioms (e.g.,
P(x, y) Q (y, x)), (iii) 365,593 concepts and 986,965
concept inclusion axioms (i.e., ‘genls’ facts), (iv) 817 tran-
sitive roles, (v) 99,238 complex role inclusion axioms
(e.g., P(x, y) Q (y, z) R (x, z)), and (vi) 31,897 binary
roles and 7,980 roles with arities greater than 2. The KB
has 21.7 million assertions and 652,037 individuals. To
control search in such a large KBS, inference algorithms
use various strategies. They distinguish between a set of
clauses known as the set of support2 that defines the im-
portant facts about the problem and a set of usable axioms
that is outside the set of support (e.g., see the OTTER theo-
rem prover [Russell and Norvig 2003]). At every step, such
theorem provers resolve an element of the set of support
against one of the usable axioms. To perform best-first
search, a heuristic control strategy measures the “weight”
of each clause in the set of support, picks the “best” clause,
and adds to the set of support the immediate consequences
of resolving it with the elements of the usable list [Russell
and Norvig 2003]. Cyc uses a set of heuristic modules to
identify the best clause from the set of support. A heuristic
module is a tuple hi = (wi, fi), where fi is a function fi: S

that assesses the quality of a node, and wi is the weight
of hi. The net score of a node s is iwifi(s), and the node
with the highest score is selected for further expansion.
Cyc uses a number of heuristic modules for controlling the
search. One of these modules prefers rules that have a
higher success rate. Other heuristic modules use decision
trees and linear regression-based models [Sharma et al.
2016]. In the next section, we discuss a new heuristic mod-
ule for ordering nodes during a search.

2 For instance, the negated query is often used as the set of support.

Retrograde Analysis
 The basic idea behind this approach involves finding the
value of using axioms at the end of proof construction, and
backing up the values towards the root node (cf, Bjornsson
et al. 2005). Let us illustrate this with the help of an exam-
ple. Consider the axioms shown below:
 (isa ?PUNISH Punishing) (performedBy ?PUNISH UNSecurityCouncil)

 (performedBy ?PUNISH UnitedNationsOrganization) …(Axiom A5)
 (isa ?INS1 HidingOneself) (isa ?INS2 Agent-PartiallyTangible)

 (objectHidden ?INS1 ?INS2) (performedBy ?INS1 ?INS2) ..(Axiom A6)

Given a query of the type (performedBy ?event UnitedNationsOr-
ganization), an inference engine would backchain on Axiom
A5 and lead to a sub-query (performedBy ?event UNSecuri-
tyCouncil). It would then use Axiom A6 to answer it, and
that would lead to the sub-goal (objectHidden ?event UNSecuri-
tyCoucil). Such search paths are unlikely to succeed. Implau-
sible search paths are pervasive in large KBSs and recent
research work has focused on steering the search away
from these doomed paths [Sharma et al. 2016]. In this pa-
per, we have taken the approach that identifying useful
proof paths can be seen as finding connected sub-graphs
that appear in at least one successful proof. We argue that
the candidate longer proof paths can be generated by add-
ing one axiom at a time to smaller successful proof paths.
The high-level structure of our algorithm is shown in Fig-
ure 2.
 The algorithm generates small proof trees first and ex-
tends them by adding a single axiom to them in a bottom-
up fashion. In step 1 of the algorithm, we identify all axi-
oms that could be the leaves of successful proof trees. The
last step of a proof reduces to querying the antecedent of
an axiom, and inference algorithms use ground atomic
formulas (GAFs) to complete the proof. Therefore, if an
axiom appears in the last step of a successful proof, then
GAFs must suffice to find at least one solution for its ante-
cedent.
Example 1: Consider axiom A3 used in the proof tree
shown in Figure 1a. The query corresponding to its ante-
cedent is (s ?y ?z). If the KB has no GAFs to answer that
query, then the inference engine must use other axioms to
answer it. Consequently, (s ?y ?z) cannot be a leaf node,
and A3 cannot be used in the last step of a proof.
Example 2: If the KB has no instances of HidingOneself
then the GAFs alone would not suffice to solve the query
represented by the antecedent of axiom A6 (shown below)
and A6 cannot appear in the last step of a proof.
 (isa ?INS1 HidingOneself) (isa ?INS2 Agent-PartiallyTangible) ^

 (objectHidden ?INS1 ?INS2)

4439

Figure 2: A high-level description of our algorithm

The main computational loop (steps 3-8) extends the
chains detected in step 2. In step 4, we generate candidate
subgraphs of size k by integrating smaller sub-graphs. We
estimate the number of solutions for each of the candidate
subgraphs and select those that have more solutions than a
user-specified threshold (steps 5-7). In this paper, the user-
specified threshold, , was set to zero.

Candidate Generation: The function ‘GenCandidates’
(see Figure 3) takes as input selected subgraphs of size 1 to
k-1, and produces candidates subgraphs of size k.

Figure 3: Algorithm for candidate generation

The ‘GenCandidates’ algorithm iterates over all axioms in
the KB (step 2), and reasons about how they can be used
successfully at the root node. Since only some of the ante-
cedent literals might need backchaining (i.e., remaining
literals might be solved via GAF lookups), we consider all
subsets of antecedent predicates in step 4. We find proof
graphs for queries involving these predicates in steps 5

through 13. In step 6, we generate rg(p), the set of all rele-
vant graphs for the predicate ‘p’ that use less than k axi-
oms3. We compute the cartesian product of the relevant
sets in step 8. Given an n-tuple cp= (x1, x2,…,xn), each xi is
a proof path (see example in Figure 1b) that can be useful
for one of the predicates in the antecedent of axiom ax.
The set of all rules used in the n–tuple, CPRules(cp), is
given by The algorithm includes those
proof graphs that use exactly k rules. We illustrate this pro-
cess with an example.

 Consider axiom A1 shown on page 2. The set of predi-
cates in its antecedents is {p, q}. In step 4, the algorithm
finds proof graphs for all subsets of {p, q}. When the sub-
set in step 4 is {p, q}, we calculate both rg(p) and rg(q)
(via step 6). Proof paths containing axioms A2 and A3 are
elements of rg(p) and rg(q), respectively. The cross-
product (calculated in step 8) contains the tuple (<A2,
{A2}>, <A3, {A3}>). Since the aforementioned tuple uses
two rules, the condition in step 11 is satisfied when k is 3,
and a longer proof path represented by <A1, {A1, A2,
A3}> (shown in Figure 1b) is included in Candidates3.

Let us consider another iteration of steps 4-13 in which the
subset is bound to {p}, and k is 3. rg(p) contains <A2,
{A2}> and <A2, {A2, A4}>. The latter tuple uses two axi-
oms and is extended with axiom A1 to create <A1, {A1,
A2, A4}> (shown in Figures 4a and 4b).

 Figure 4a shows that while two axioms are needed to
prove the first literal, the second literal is answered via
GAF lookup. The function ‘EstimateSolutionCount’ (see
Figure 2) estimates the productivity of a given proof chain
by restricting the inference engine to use the axioms in the
proof chain, and then asking the query represented by the
root node4.

3 In step 6, we say that a predicate q is relevant to p if answering a query
involving ‘p’ could involve answering a query involve ‘q’. For example,
the predicate ‘properSubEventTypes’ is relevant to ‘subEventTypes’
because the former is a specialization of the latter.
4 The root node query (e.g., (performedBy ?x ?y)) might have some an-
swers that are derived by mere GAF lookup or by using only a subset of
the rules in the proof chain. The function ‘EstimateSolutionCount’ in-

Algorithm 2: GenCandidates
Input: G1, G2, …, Gk-1
Output: Candidatesk

1. Candidatesk

2. for each axiom ax in KB do

3. antecedent-preds Predicates in the antecedent literals of ax

4. for each subset sb of antecedent-preds do

5. for each p in sb do

6. rg(p) {g | g Gi, 1 i k-1, p is relevant to Head(g)}

7. end for

8. cross-products rg(p1) … rg(pn), n = |sb|.

9. for each cp in cross-products do

10. gk <ax, {ax} CPRules(cp) >

11. add gk to Candidatesk if |CPRules(cp)| = k-1

12. end for

13. end for

14. end for

15. return Candidatesk

 (r ?x ?z) A1

 A1

(p ?x ?y) (q ?y ?z) A2

 A2

(w ?x ?y) A4
 A4

(m ?x ?y)
Figure 4a: Example of a Figure 4b: Axiom
proof tree. sequence that leads to
 proof tree in Figure 4a.

 (r

 A

)(p ?x

(

(w ?x

(?

r ?x ?z)

A1

 A1

 A2

Algorithm 1: Chains(KB, , depth)

1. G1 Detect all chains of length 1 in KB.
2. k 2.
3. while (Gk-1 and k < depth)
4. Candidatesk GenCandidates (G1,…,Gk-1, KB)
5. for each candidate graphk Candidatesk do
6. graphk.count EstimateSolutionCount(graphk, KB)
7. Gk { graphk Candidatesk| graphk.count > }
8. k k+1
9. return G1, G2, …, Gdepth

4440

The complexity of the ‘GenCandidates’ algorithm is
reasonable. If m is the number of literals in the antecedent
of an axiom, then steps 5-12 are repeated 2m times. The
number of n-tuples in step 8 is less than pm, where p is the
number of proof paths for a predicate. Therefore, the gen-
eration of candidate subgraphs takes O(N.2mpm) time,
where N is the number of axioms in the KB. In practice, m
is small5 (well-factored axioms have small number of liter-
als in the antecedent); therefore, the time-complexity is
essentially determined by N and p. Table 2 shows the
number of useful proof chains of different sizes. We see
that while the inference engine has to examine millions of
proof chains6, only a small fraction of these proof chains
are useful for any query.

 Table 2: Number of useful proof paths of different sizes

k |Gk|
1 33,026
2 16,837
3 14,058
4 8,179

The ‘Chains’ algorithm (Figure 2) takes O(d.N.2mpm.t0)
time, where d is the maximum number of rules in the proof
chains and t0 is the time required to estimate the number of
solutions for a given proof tree (step 6). In the next section,
we evaluate the efficacy of these proof paths.

Experimental Evaluation
The selection of benchmark problem instances is im-

portant in the design and empirical evaluation of heuristics.
We used three principles in this evaluation: (i) Heuristics
should be tested only on the hardest reasoning problems.
Since the size of the search space increases with the size
and expressiveness of KB, we tested our heuristics on the
largest commonsense KB that uses full FOL7. (ii) While
the study of artificially generated problem instances has led
to a good understanding of how syntactic properties deter-
mine problem hardness, the right methodology for generat-
ing such problems has not received sufficient attention in
the commonsense reasoning community. Therefore, we
focus on queries pertaining to real world events and appli-

cludes only those answers that use all rules in the proof chain in their
derivation.
5 Rules in Cyc KB have (on average) less than 3 literals in their anteced-
ent. (The average value of m is 2.55).
6 For example, more than 2000 axioms are relevant for answering ‘isa’
queries. Therefore, the inference engine would have to examine (in the
worst case) more than 4 million paths if the relevant proof path involves
backchaining on ‘isa’ literals twice.
7 Some KBs like ConceptNet might have more GAFs than the Cyc KB,
but they do not have axioms for deductive reasoning. Recent research has
shown that Cyc-based problems are 1-3 orders of magnitude larger than
other problems [see Table 1 in Hoder & Voronkov 2011].

cations. These queries have been created by knowledge
engineers and programmers for different projects (e.g.,
Project HALO [Friedland et al. 2004], HPKB project [Co-
hen et al. 1998]) and for testing the question-answering
(Q/A) capability of the inference engine. (iii) To expand
the frontier of inference capabilities, heuristics should be
able to solve problems that are difficult for the inference
engine. Therefore, first, we excluded simple queries that do
not need any backward inference (e.g., (genls Dog Liv-
ingOrganism), (isa BarackObama Person)). Second, to
identify queries that are difficult for the inference engine,
we divided the queries into four groups based on their time
requirements8 . The column labeled “TR” in Table 3 shows
the time requirements of the queries in the test set. These
experiments included both fully and partially bound que-
ries. Since ordering heuristics guide the inference engine
towards more productive parts of the search space, they
help in reducing the inference time when the user asks a
pre-determined number of answers.

Table 3: Experimental Results

On the other hand, these heuristics lead to more answers
when the user seeks all answers for a given query. The
English translation of one of the queries is shown below:

What causes a decrease in circulating calcium during cardiovas-

cular circulation?
The question shown above leads to the following query9:

8 For instance, the baseline inference engine needed 0 to 0.5 minutes for
each query in the first test set. Queries in the fourth set were divided into
two parts (sets 4a and 4b) due to their large time requirements.
9 (causes-SubSitTypeSubSitType S CAUSE-TYPE EFFECT-TYPE) means that in
situations of type S, events of type CAUSE-TYPE cause events of type EF-
FECT-TYPE.

TS TR Method #Q %A

Time
(hours) S

C
(%)

1 [0,0.5] Baseline 600 97 0.79 - -

 Opt 600 98 0.38 2.07 1

2 [0.5,10] Baseline 309 60 17.84 - -

 Opt 309 91 2.52 7.07 51

3 [10.40] Baseline 225 23 63.13 -

 Opt 225 80 11.27 5.60 247

4a [40,60] Baseline 140 8 109.22 -

 Opt 140 97 5.08 21.50 1112

4b [40,60] Baseline 137 20 66.91 -

 Opt 137 97 3.51 19.06 385

Meaning of Column labels: TS:Test Sets, TR: Time requirements of
test sets (in minutes), #Q: Number of queries, %A: % queries an-
swered, S: Speedup with respect to baseline, C: % Improvement in
proportion of queries answered with respect to baseline.

4441

 (causes-SubSitTypeSubSitType CardiovascularCirculation ?cause (De-
creaseOnSlotFn (QuantitySlotForArg2Fn CalciumIon amountPresentAt))))

Recall that the inference engine uses a set of heuristic
modules for ordering nodes during search and the net score
of a node is given by f(s) = iwifi(n). We define a new heu-
ristic module with the following quality function:

fc(n) =

 TRules(n) =
 ProofGraphs = k = 1, 2, 3, 4.

In the expression shown above, pi(n) is the ith element of
the transformation link set of node n and TRules(n) is the
set of all rules that have been used to derive node n. The
function fc(n) returns 1 when an element of Gk contains all
rules that have been used to derive node n. Given the func-
tion fc discussed above, we can include a heuristic module
(wc, fc) where wc is the “weight” of the module. The base-
line version in Table 3 is obtained by setting wc to 0. We
can assess the utility of graphs in Gk by setting wc to 1 (see
rows labeled “Opt” in Table 3). The experimental data
was collected on a 4-core 3.40 GHz Intel processor with 32
GB of RAM. We see that proof chains selected by retro-
grade analysis provide significant speedup and the highest
performance gain has been obtained for problem sets that
are most difficult for the inference engine.

Conclusion and Discussion
Efficient commonsense reasoning at scale is critical for
building large-scale cognitive systems [Matuszek et al
2005, Sharma & Forbus 2010]10. The intractability of rea-
soning with first-order logic provides opportunities for
designing new search control heuristics. Research in the
computer games community has shown that large-scale
offline search (cf, pattern databases [Culberson &
Schaeffer 1998], endgame databases [Thomson 1986]) can
be used to assess and cache the utility of actions. Inspired
by the success of these databases, in this paper, we build a
database that helps the inference engine compute the utility
of resolution steps. Building this database involves per-
forming a bottom-up level-by-level analysis of search
space. We show that this method has sufficient discrimina-
tory power because it selects only a small fraction of mil-
lions of proof paths. Experimental results show that this
heuristic leads to significant speedup on the hardest prob-
lems. These results suggest two lines of future work. First,
we want to conduct even larger experiments to ensure the
validity of these methods. Second, coupling this approach

10 For a discussion on tangentially related applications that benefit from
commonsense reasoning, see [Abhishek & Basu 2005] and [Abhishek &
Rajaraman 2003].

with the research in decision-theoretic models and work on
proof planning [Smith 1989, Greiener 1991] may a more
complete theoretical model for designing new heuristics.

Acknowledgements
We thank Mary Shepherd, Doug Lenat, Dave Schneider
and Saket Joshi for their useful comments and suggestions.

References
Abhishek and A. Basu. 2005. Iconic Interfaces for Assistive
Communication. In Encyclopedia of Human Computer Interac-
tion, ed. Ghaoui, C. 295-302. IGI Global.
Abhishek and Rajaraman, V. 2005. A Computer Aided Shorthand
Expander. IETE Technical Review, Vol. 22, no. 4, 295-302.
Alama, J., Heskes, T., Kulhwein, D., Tsivtsivadze, E. and Urban,
J. 2014. Premise Selection for Mathematics by Corpus Analysis
and Kernel Methods. Journal of Automated Reasoning,
52(2):191–213.
Bjornsson, Y. Schaeffer, J. and Sturtevant, N. 2005. Partial In-
formation Endgame Databases, Proc. of 11th Intl. Conf. on Ad-
vances in Computer Games, pages 11-22.
Brewka, G., Eiter, T. and Truszcynski, M. 2011. Answer set Pro-
gramming at a Glance. Communications of the ACM, 54(12), 91-
103.
Bridge, J. P., Holden, S. and Paulson, L. 2014. Machine Learning
for first-order Theorem Proving. Journal of Automated Reason-
ing, 53(2):141–172.
Cohen, P. et al.. 1998. The DARPA High-Performance
Knowledge Bases Project. AI Magazine, 19(4), 25-48.
Culberson, J. C. and Schaeffer, J. 1998 Pattern Databases, Com-
putational Intelligence, 14(3), pp. 318-334.
Chaudhuri, S. 1998. An Overview of Query Optimization in Rela-
tional Systems, PODS, pp. 34-43.
Forbus, K. D., Riesbeck, C., Birnbaum, L., Livingston, K., Shar-
ma A., Ureel, L. 2007. Integrating Natural Language, Knowledge
Representation and Reasoning, and Analogical Processing to
Learn by Reading. In Proceedings of Twenty Second National
Conference On Artificial Intelligence (AAAI), pp. 1542-1547,
Vancouver, BC.
Friedland, N., Allen, P., Matthews, G., Witbrock, M., Curtis, J.
and Shepard, B. et al.. 2004 Project Halo: Towards a Digitial
Aristotle. AI Magazine, 25(4), 29-47.
Greiner, R. 1991. Finding Optimal Derivation Strategies in Re-
dundant Knowledge Bases, Artificial Intelligence, 50(1), pp. 95-
115.
Hoder, K. and Voronkov, A. 2011. Sine qua non for Large Theo-
ry Reasoning. In Proceedings of the CADE-23, pages 299-314
Horrocks, I. and A. Voronkov. 2006. Reasoning Support for
Expressive Ontology Languages Using A Theorem Prover. In
Foundations of Information and Knowledge Systems, pages 201-
218, Springer, 2006.
Hutter, F., Xu, L, Hoos, H. and Leyton-Brown, K. 2014. Algo-
rithm Runtime Prediction: Methods and Evaluation. Artificial
Intelligence, 206, pages 79-111

4442

Kaliszyk, C., J. Urban and J. Vyskocil. 2015. Efficient Semantic
Features for Automated Reasoning Over Large Theories. Pro-
ceedings of IJCAI, pp. 3084-3090, Buenos Aires, Argentina.
Kaliszyk, C. and J. Urban. Learning Assisted Theorem Proving
with Millions of Lemmas. Journal of Symbolic Computation,
69:109-128, 2015.
Kuramochi, M. and Karypis,G. 2001. Frequent Subgraph Dis-
covery, Proc. of ICDM, pp. 313-320.
Lenat, D. B. and Feigenbaum, E. 1991. On the Thresholds of
Knowledge, Artificial Intelligence, 47, 1-3, pp. 185-250.
Matuszek, C., Witbrock, M., Kahlert, R., Cabral, J., Schneider,
D., Shah, P., Lenat, D. 2005. Searching for Common Sense: Pop-
ulating Cyc from the Web, Proceedings of AAAI, Pittsburgh, PA.
Matuszek, C., Cabral, J., Witbrock, M., DeOliveira, J. 2006. An
Introduction to the Syntax and Content of Cyc. AAAI Spring
Sympoisum, Palo Alto, CA
Meng, J. and Paulson, L. C. 2009. Lightweight Relevance Filter-
ing for Machine-generated Resolution Problems. Journal of Ap-
plied Logic, 7(1):41-57.
Lenat, D. B. and Guha, R. 1990. Building Knowledge-based Sys-
tems: Representation and Inference in the Cyc Project, Addison
Wesley.
Sharma, A. and Forbus, K. D. 2010. Modeling the Evolution of
Knowledge and Reasoning in Learning Systems, Proceedings of
AAAI Fall Symposium: Commonsense Knowledge, Arlington, VA
Sharma, A. and Forbus, K. D., 2013. Automatic Extraction of
Efficient Axiom Sets from Large Knowledge Bases, Proceedings.
of AAAI, Bellevue, WA.
Sharma,A.,Witbrock, M. and Goolsbey, K. 2016. Controlling
Search in Very Large Knowledge Bases: A Machine Learning
Approach. Proc. of Advances in Cognitive Systems, Evanston, IL.
Smith, D. E. 1989. Controlling Backward Inference, Artificial
Intelligence, 39 (2), pp. 145-208.
Taylor, M., Matuszek, C., Smith, P and Witbrock, M. 2007. Guid-
ing Inference with Policy Search Reinforcement Learning, Proc.
of FLAIRS, Key West, FL
Thompson, K. 1986. Retrograde Analysis of Certain Endgames.
Journal of Intl. Computer Chess Association, Vol 9, pp. 131-139
Tsarkov, D. and Horrocks, I. 2005. Ordering Heuristics for De-
scription Logic Reasoning. In Proceedings of the IJCAI, pages
609-614.

4443

