
When Does Bounded-Optimal
Metareasoning Favor Few Cognitive Systems?

Smitha Milli
EECS Department

University of California
Berkeley, CA 94720
smilli@berkeley.edu

Falk Lieder
Helen Wills Neuroscience Institute

University of California
Berkeley, CA 94720

falk.lieder@berkeley.edu

Thomas L. Griffiths
Department of Psychology

University of California
Berkeley, CA 94720

tom griffiths@berkeley.edu

Abstract

While optimal metareasoning is notoriously intractable,
humans are nonetheless able to adaptively allocate their
computational resources. A possible approximation that
humans may use to do this is to only metareason over
a finite set of cognitive systems that perform variable
amounts of computation. The highly influential “dual-
process” accounts of human cognition, which postulate
the coexistence of a slow accurate system with a fast
error-prone system, can be seen as a special case of this
approximation. This raises two questions: how many
cognitive systems should a bounded optimal agent be
equipped with and what characteristics should those
systems have? We investigate these questions in two set-
tings: a one-shot decision between two alternatives, and
planning under uncertainty in a Markov decision pro-
cess. We find that the optimal number of systems de-
pends on the variability of the environment and the cost-
liness of metareasoning. Consistent with dual-process
theories, we also find that when having two systems is
optimal, then the first system is fast but error-prone and
the second system is slow but accurate.

Introduction

An agent should not think long about what to do when it is
about to get hit by a car, but should definitely do so before
declaring war. The optimal amount to think before making
a decision is dependent on the setting, involving a trade-off
between the cost of thinking and the cost of making an error.
Thus, in order for an agent to be optimal across different
settings it must metareason to adaptively choose the correct
amount to think (Russell and Wefald 1991a).

Optimal metareasoning is generally computationally in-
tractable (Russell and Wefald 1991a; Lin et al. 2015). De-
spite this, humans are still able to adaptively allocate their
computational resources in inference and decision-making
(Vul et al. 2014; Griffiths, Lieder, and Goodman 2015;
Gershman, Horvitz, and Tenenbaum 2015). One method
by which humans may perform approximate metareason-
ing is to choose between a discrete set of cognitive sys-
tems that perform variable amounts of computation (Lieder
et al. 2014; Lieder and Griffiths 2015), rather than directly
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determining the exact amount of computation that should
be done. This kind of approximation is a generalization
of dual-process accounts of human cognition (Evans 2008;
Kahneman 2011), which posit the existence of two types of
cognitive systems, one that is slow and accurate and another
that is fast but error-prone.

The postulated existence of distinct cognitive systems
raises two interesting questions. First, how many systems
should an agent have? Second, what characteristics should
those systems have? These questions are important for un-
derstanding what the existence of multiple cognitive systems
entails for human rationality (Evans 2008; Stanovich 2011)
as well as for designing bounded-optimal AI systems (Rus-
sell and Subramanian 1995) that can metareason efficiently.

We investigate these questions in two settings. The first
setting is a simple two-alternative forced choice task where
the agent samples from a posterior distribution to infer
which of two options is better. In this case, metareason-
ing selects how many samples to draw before taking an
action (Vul et al. 2014). The second setting involves plan-
ning under uncertainty in a Markov decision process (MDP)
(Lin et al. 2015). In this case, metareasoning determines the
number of rollouts to perform to approximate the solution
to the MDP with bounded real-time dynamic programming
(BRTDP; McMahan, Likhachev, and Gordan, 2005).

Our experiments show that the optimal number of sys-
tems increases with the variability of the environment but
decreases with the costliness of metareasoning. In addition,
when it is optimal to have two systems, then the difference
in their speed-accuracy tradeoffs increases with the variabil-
ity of the environment. In variable environments, this results
in one system that is accurate but costly to use and another
system that is fast but error-prone. These predictions mirror
the assertions of dual-process accounts of cognition (Evans
2008; Kahneman 2011) suggesting that bounded optimality
might provide a rational reinterpretation of those theories.

Background

We draw on the idea that the mind is composed of multi-
ple cognitive systems, as instantiated in dual-process theo-
ries of human cognition, and the ideas of bounded optimal-
ity and rational metareasoning developed in artificial intelli-
gence research. We review these ideas in turn.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

4422



Dual-process theories

The idea that human minds are composed of multiple in-
teracting cognitive systems first came to prominence in the
literature on reasoning (Evans 2008; Stanovich 2011). While
people are capable of reasoning in ways that are consis-
tent with the prescriptions of logic, they often do not. Dual-
process theories suggested that this is because people em-
ploy two types of cognitive strategies: fast but fallible heuris-
tics that are triggered automatically and deliberate strategies
that are slow but accurate. This idea has subsequently been
applied to explain a wide range of mental phenonomena, in-
cluding judgment and decision-making, where it has been
popularized by the distinction between System 1 and System
2 (Kahneman 2011), and moral reasoning where the distinc-
tion is made between a fast deontological system and a slow
utilitarian system (Greene 2015).

In parallel with this literature in cognitive psychology, re-
search on human reinforcement learning has led to similar
conclusions. Behavioral and neural data suggest that the hu-
man brain is equipped with two distinct decision systems: a
fast, reflexive, system based on habits and a slow, deliberate
system based on goals (Dolan and Dayan 2013). The mech-
anisms employed by these systems have been mapped onto
model-based versus model-free reinforcement learning algo-
rithms that are used to solve Markov decision processes. A
model-free and model-based distinction has also been sug-
gested to account for the nature of the two systems posited
to underlie moral reasoning (Cushman 2013).

The empirical support for the idea that the human mind is
composed of two types of cognitive systems raises the ques-
tion of why such a composition would evolve from natural
selection. Given that people outperform AI systems in most
complex real-world tasks despite their very limited cogni-
tive resources (Gershman, Horvitz, and Tenenbaum 2015;
Griffiths, Lieder, and Goodman 2015), we ask whether there
are any principled reasons why bounded agents should be
equipped with two types of reasoning systems rather than
just one system, or three or more systems.

Metareasoning

Intelligent agents with a large repertoire of possible compu-
tations can solve problems in many different ways. On the
one hand, this flexibility enables highly efficient solutions
that exploit the structure of each problem. On the other hand,
this flexibility poses the challenging problem of deciding
when to perform which computation. This problem is known
as rational metareasoning (Russell and Wefald 1991a). In-
spired by psychology, many AI architectures solve this prob-
lem through metacognition (Anderson and Oates 2007; Cox
and Raja 2011) which includes the monitoring and control
of computation as well as metalearning (Smith-Miles 2009;
Schaul and Schmidhuber 2010; Thornton et al. 2013).

The adaptive control of computation is critical for in-
telligent systems to be able to solve complex and poten-
tially time-critical problems on performance-limited hard-
ware (Horvitz, Cooper, and Heckerman 1989; Russell and
Wefald 1991a). For instance, it is necessary for a patient-
monitoring system used in emergency medicine to metar-

eason in order to decide when to terminate diagnostic rea-
soning and recommend treatment (Horvitz and Rutledge
1991). Selecting computations can be formalized as a meta-
level Markov decision process (Hay et al. 2012). This for-
mulation highlights that selecting computations optimally
is a computation-intensive problem because the value of
each computation depends on the potentially long sequence
of computations that can be performed afterwards. Con-
sequently, in most cases, solving the metareasoning prob-
lem optimally would defeat the purpose of trying to save
computation (Lin et al. 2015; Hay et al. 2012; Russell
and Wefald 1991b). Yet, people appear capable of allocat-
ing their finite computational resources near-optimally with
very little effort (Gershman, Horvitz, and Tenenbaum 2015;
Keramati, Dezfouli, and Piray 2011).

To make optimal use of their finite computational re-
sources bounded-optimal agents (Russell and Subramanian
1995) must optimally distribute their resources between
metareasoning and reasoning about the world. This gener-
ally requires an efficient approximation to optimal metar-
easoning. But exactly how rational metareasoning should be
approximated to maximize the agent’s overall computational
efficiency is an open problem. One common approximation
to optimal metareasoning is the meta-myopic approximation
(Russell and Wefald 1991b; Hay et al. 2012) which assumes
that the agent will act immediately after executing the first
computation. This approximation fails when no single com-
putation can improve the agent’s decision but a longer se-
quence of computations would improve it significantly.

Another strategy to approximate rational metareasoning is
to exploit computational properties of the specific computa-
tional process being controlled (Russell and Wefald 1989;
Lin et al. 2015; Vul et al. 2014). For instance, Vul et
al. exploited the statistical properties of sampling from a
Bernoulli distribution to solve the problem of when to termi-
nate deliberation using the sequential probability ratio test.
Lin et al. were also able to make metareasoning about plan-
ning tractable by making a meta-myopic assumption and
then exploiting specific convergence properties of BRTDP.

A third approximation strategy is to metareason only over
a limited number of computational mechanisms that gener-
ate decisions (Lieder et al. 2014). This approximation can
drastically reduce the computational complexity of metarea-
soning while achieving human-level performance (Lieder et
al. 2014; Lieder and Griffiths 2015). However, reducing the
space of computational mechanisms the agent can choose
from entails that there may be problems for which the opti-
mal computational mechanisms will be no longer available.
This induces a tradeoff between the efficiency of metarea-
soning and the performance of the best available computa-
tional mechanism. Although expanding the computational
repertoire increases the expected performance of the se-
lected mechanism, it also makes metareasoning more costly.
This raises the question of how many and which computa-
tional mechanisms a bounded-optimal metareasoning agent
should be equipped with, which we proceed to explore in the
following sections.
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Optimal Choice of Cognitive Systems

At an abstract level, each cognitive system can be charac-
terized by how it trades off speed versus accuracy. In the re-
mainder of this paper we characterize the optimal set of cog-
nitive systems an agent should be equipped with in terms of
the systems’ speed-accuracy tradeoffs. To address this ques-
tion as straight-forwardly as possible, we study sets of sim-
ple decision-making algorithms that abstract away the com-
plexity of real cognitive systems but capture the diversity
of their speed-accuracy tradeoffs. Specifically, we investi-
gate what determines the optimal set of cognitive systems
M� for an agent acting in an environment characterized
by a distribution P over a set of decision problems D. An
unboundedly rational agent would always pick the utility-
maximizing action, a∗ = argmaxa∈A Ud(a), where Ud(a)
is the utility of taking action a in decision problem d and A
is the set of possible actions. However, any physical agent
is necessarily bounded. This means when the agent executes
an algorithm t ∈ T to decide which action to take it incurs
some execution cost ce(t) corresponding to the required time
and computational resources. Hence, bounded agents have
to balance the cost of thinking with the expected value of
the subsequent action A. In this case, the optimal thinking
algorithm, t∗, for the agent to use on decision problem d is:

t∗ = argmax
t∈T

E [Ud(A)|t]− ce(t). (1)

To be optimal across all decision problems in its environ-
ment, the agent must metareason to adapt its algorithm t∗

to each individual problem d ∈ D. However, T is a poten-
tially infinite set. Hence, metareasoning over all algorithms
in T can be intractable or prohibitively expensive. For this
reason, instead of forcing an agent to metareason over the
entirety of T , the designer of the agent may opt to equip the
agent only with a small set of cognitive systems M ⊂ T to
make metareasoning tractable.

However as the number of systems increases, so does the
difficulty of choosing between them. To capture this, we in-
troduce the metareasoning cost cm : P(T ) → R. The opti-
malM∗ for the agent designer to choose is

M∗ = argmax
M⊂T

E [UD(A)− ce(πM(D))]− cm(M), (2)

where πM(D) : D →M is the agent’s metareasoning pol-
icy, the way the agent chooses which system to pick from the
set M, and A is the action selected after using that system.
Next, we evaluate M∗ through computational experiments
in two settings: a simple two-alternative forced choice task
and planning under uncertainty.

Two-Alternative Forced Choice

Our first experiment focuses on a two-alternative forced
choice (2AFC) task, a one-shot decision problem where the
agent must choose between two actions. Here, the agent
gets a reward of +1 for picking the correct action and 0
for picking the incorrect action. An unboundedly rational
agent would always pick the action with a higher probability
of being correct. Yet, although simple in set-up, computing
the probability of an action being correct generally requires

Figure 1: The expected utility per time of the optimal choice
of systems,M, as |M| increases. As the costliness of metar-
easoning, 1

rm
decreases, the optimal number of systems in-

creases. In this example E[re] = 100 and σ(re) = 100.

|M| Var(re)
103 104 105

1 3 3 1
2 3, 5 1, 5 1, 7
3 3, 5, 7 1, 3, 7 1, 3, 9
4 1, 3, 5, 7* 1, 3, 5, 7 1, 3, 7, 13

(*) Any set of four systems that included 3, 5, 7 was optimal.

Table 1: The optimal set of algorithms,M, for different val-
ues of |M| as Var(re) increases. This example is the 2AFC
setting with E[re] = 100 and rm = 1000.

complex inferences over many interconnected variables. To
approximate these often intractable inferences people appear
to perform probabilistic simulations of the outcomes, and
the variability and biases of their predictions (Griffiths and
Tenenbaum 2006; Lieder, Griffiths, and Goodman 2012) and
choices (Vul et al. 2014; Lieder, Hsu, and Griffiths 2014)
match those of efficient sampling algorithms. Previous work
has therefore modeled people as bounded-optimal sample-
based agents (Vul et al. 2014; Griffiths, Lieder, and Good-
man 2015). A sample-based agent draws a number of sam-
ples from the distribution over correct actions and then picks
the action that was sampled most frequently.

For the 2AFC setting, let a0 and a1 be the actions avail-
able to the agent. We assume that the correct action ai given
all of the information available to the agent was sampled
from a Bernoulli distribution, that is i ∼ Bern(θ). The prob-
ability θ that a1 is correct varies across different problems.
We model this by sampling θ from a uniform distribution.
Without loss of generality, we assume that θ ∼ Pθ =
Unif(0.5, 1) because we can always rename the actions so
that a1 is more likely to be correct than a0.

Under these assumptions, the expected value of the utility
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U of a decision made based on k samples is given by

Eθ[U |k] =
∫
θ

(θ (1−ΘCDF(k/2, θ, k))

+ (1− θ) (ΘCDF (k/2, θ, k)))Pθ(dθ), (3)

where ΘCDF is the binomial cumulative density function.
If there were no cost for samples, then the agent could

take an infinite number of samples to ensure choosing the
correct action. But this is, of course, impractical in the real
world because drawing a sample takes time and time is lim-
ited. Vul et al. (2014) show how the optimal number of sam-
ples changes based on the cost of sampling in various 2AFC
problems. They parameterize the cost of sampling as the ra-
tio, re, between the time for acting and the execution time of
taking 1 sample. In this setting, the optimal number of sam-
ples an agent should draw to maximize its expected utility
per unit time is

k∗ = argmax
k∈N0

Eθ[U |k]
1 + k

re

. (4)

When the time it takes to generate a sample is at least one
tenth of the time it takes to execute the action (re ≤ 10),
then the optimal number of samples is either zero or one. In
general, the first sample provides the largest gain in decision
quality and the returns diminish with every subsequent sam-
ple.The point where the gain in decision quality falls below
the cost of sampling depends on the value of re. Since this
value can differ drastically across environments, achieving a
near-optimal tradeoff in all environments requires adjusting
the number of samples. Even a simple heuristic-based metar-
easoner that adapts the number of samples it takes based on
a few thresholds on re does better than one which always
draws the same number of samples (Icard 2014).

Here, we study an agent that chooses how many samples
to draw by metareasoning over a finite subset M of all pos-
sible numbers of samples. Furthermore, we assume that the
time spent metareasoning increases linearly with the num-
ber of systems. By analogy to Vul et al. (2014), we formal-
ize the metareasoning cost in terms of the ratio rm of the
time it takes to act over the time it takes to predict the per-
formance of a single system. This allows us to formalize the
metareasoning problem as computing a metacognitive pol-
icy πM : R → M∪ {0} that decides which of the agent’s
sampling systems (M) to use given the relative cost of sam-
pling (re). Given this formulation of the problem, the opti-
mal set of systems that a bounded sampling agent should be
equipped with is

M∗ = argmax
M⊂N

Ere

[
Eθ[U |πM(re)]

1 + πM(re)
re

+ |M|
rm

]
, (5)

where πM(re) can be an arbitrary metareasoning policy. In
the remainder of this paper, we will focus on bounded agents
that metareason optimally according Equation (4). For these
agents the optimal set of systems defined in Equation 5 be-
comes

M∗ = argmax
M⊂N

Ere

[
max

k∈M∪{0}

Eθ[U |k]
1 + k

re
+ |M|

rm

]
. (6)

Figure 2: The optimal number of systems for the 2AFC
problem as a function of the standard deviation of re and
1/rm. In this example E[re] = 10.

Note that the optimal set of systems depends on the distri-
bution of the sampling cost re across different environments.
In the following we assume that re − 1 ∼ Γ(α, β) was sam-
pled from a Gamma distribution so that acting is always as
least as costly as sampling (re ≥ 1).

Figure 1 shows a representative example1 of the expected
utility per time as a function of the number of systems for
different metareasoning costs. Note that under a large range
of metareasoning costs the optimal number of systems is just
one, but as the costliness of metareasoning decreases, the op-
timal number of systems increases. However even when the
optimal number of systems is more than one, each additional
system tends to only result in a marginal increase in utility,
suggesting that one reason for few cognitive systems may be
that the benefit of additional systems is very low.

Figure 2 shows that the optimal number of systems in-
creases with the variance of re and decreases with the cost-
liness of metareasoning (i.e., 1

rm
). Interestingly, there is a

large set of plausible combinations of variability and metar-
easoning cost for which the bounded-optimal agent has two
cognitive systems. In addition, when the optimal number of
systems is two, then the gap between the values of the two
systems picked increases with the variance of re (see Table
1), resulting in one system that has high accuracy but high
cost and another system that has low accuracy and low cost,
which matches the characteristics of the systems posited by
dual-process accounts. Thus, the conditions under which we
would most expect to see two cognitive systems like the ones
suggested by dual-process theories are when the environ-
ment has high variability but there is also a correspondingly

1For all experiments reported in this paper, we found that al-
ternative values for E[re] or Var(re) did not change the qualitative
conclusions, unless otherwise indicated.
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Figure 3: The number of actions it takes an agent to reach a
goal as a function of the number of BRTDP rollouts executed
before each action. For 0 rollouts the expected number of
actions was 500 (the maximum allowed).

high enough cost of metareasoning that the optimal number
of cognitive systems is only two.

Planning under Uncertainty

When an agent is unable to precompute an optimal policy
for an environment it must interleave planning with acting.
However, planning in the real world comes with a situation-
dependent cost, so an optimal agent must metareason to
adaptively choose how much to plan. The problem of choos-
ing how to choose the optimal sequence of computations
to plan which actions to take in the MDP corresponds to
a meta-level MDP (Hay et al. 2012).

Here, we study an agent solving a stochastic shortest path
problem in a finite-horizon MDP with states S, actions A,
cost function c : S → R, transition probability t : S × A×
S → [0, 1], and horizon h. In the meta-level decision process
each time step consists of a thinking stage followed by an
acting stage. The agent is equipped with a set of planning
algorithms T , and the cost of running an algorithm t ∈ T
is given by f(t). The optimal policy in this metareasoning
problem can be expressed in terms of the trajectory ξ of the
states and chosen planning algorithms at each time step:

π∗ = argmax
π

E

⎡
⎣ ∑
(s,t)∈ξ

c(s) + f(t)

∣∣∣∣π
⎤
⎦ , (7)

where ξ depends on the agent’s metalevel policy, π.
Our agent’s thinking algorithms are based on bounded

real-time dynamic programming (BRTDP; McMahan,
Likhachev, and Gordan, 2005), an anytime online planning
algorithm for solving an MDP, that was previously used
by Lin et al. to metareason for planning under uncertainty.
BRTDP starts with an initial heuristic for a lower and up-
per bound on the value function of the MDP and updates
its estimate of the bounds via rollouts. As more rollouts are

done, the gap between the lower and upper bound decreases,
eventually converging to the optimal value function.

Because optimally solving a meta-level decision problem
is generally computationally intractable (Lin et al. 2015), we
focus on a special case where the agent’s thinking algorithms
differ only in the number of rollouts (k) they perform before
each action. During the acting stage, the agent acts greedily
with respect to the upper bound. Thus the agent’s policy is
defined entirely by k. This type of policy corresponds to the
Think*Act policy from Lin et al..

We consider environments with a constant cost for each
action (ca) and assume a constant execution cost (ce) for
each rollout of BRTDP. We can therefore reparameterize the
costs by the ratio of the cost of acting over the cost of think-
ing, re = ca

ce
. This simplifies Equation 7 to

k∗ = argmin
k∈N0

(
1 +

k

re

)
E [N |k] , (8)

where N is the number of actions taken in the MDP until
reaching the goal state or time horizon.

We assume that there is a distribution of potential MDPs
that our agent may act in, and while re is constant within
each MDP, it varies across different MDPs. Therefore, op-
timally allocating finite computational resources requires
metareasoning. Metareasoning incurs a cost, cm, that can be
similarly reparameterized as rm = ca/cm. Assuming that
the agent chooses optimally from its set of planning systems,
the optimal set of systems that it should be equipped with is

M∗ = argmin
M⊂N

Ere

[
min

k∈M∪{0}
(re + k)E [N |k]

re

]
+

|M|
rm

. (9)

We investigated the size and composition of the optimal
set of planning systems for a simple 20 × 20 grid world
where the agent’s goal is to get from the lower left corner
to the upper right corner with as little cost as possible. The
horizon was set to 500, the maximum number of rollouts at
any thinking stage to 10, and the depth of each BRTDP roll-
out to 10. BRTDP was initialized with a constant value func-
tion of 0 for the lower bound and a constant value function
of 106 for the upper bound. This means that the agent’s ini-
tial policy was to act randomly–which is highly suboptimal.
For each environment, the ratio of the cost of action over
the cost of planning (re) was again drawn from a Gamma
distribution and shifted by one, that is re − 1 ∼ Γ(α, β).
The expected number of steps required to achieve the goal
E[N |k] was estimated via simulation (see Figure 3).

We find that all our results match the 2AFC setting ex-
tremely closely. Because the agent rarely reached the goal
without planning (E[N |k = 0] = 500) one system pro-
vided the largest reduction in expected cost with each addi-
tional system providing at most marginal reductions (Figure
4). The optimal number of systems increased with the vari-
ance of re and decreased with the metareasoning cost ( 1

rm
).

This resulted in the optimal number of cognitive systems be-
ing two for a wide range of plausible combinations of vari-
ability and metareasoning cost (Figure 5). In addition, when
the number of systems was two, the difference between the
amount of planning performed by the two optimal systems
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Figure 4: The expected cost incurred is a U-shaped func-
tion of the number of planning systems. As the costliness of
metareasoning, 1

rm
, decreases, the optimal number of sys-

tems increases. The expected cost of 0 systems was 500,
thus 1 system provided the greatest reduction in cost. In this
example E[re] = 100, Var(re) = 105, and ca = 1.

|M| Var(re)
103 104 105

1 9 7 7
2 7, 9 4, 7 2, 7
3 1, 7, 9 4, 7, 9 1, 4, 9
4 1, 2, 7, 9 2, 4, 7, 9 1, 4, 7, 9

Table 2: The optimal set of algorithms,M, for different val-
ues of |M| as Var(re) increases while E[re] = 100.

increased with the variance of re. 2 This resulted in one sys-
tem that does a high amount of planning but is costly and
another system that plans very little but is computationally
inexpensive, matching the characteristics of the two types of
systems postulated by dual-process theories.

Conclusion

We found that across two different domains the optimal
number and diversity of cognitive systems increases with the
variability of the environment but decreases with the cost of
metareasoning. Each additional system tends to provide at
most marginal improvements, so the solutions tend to favor
small numbers of cognitive systems, with two systems being
optimal across a wide range of plausible values for metarea-
soning cost and variability. Furthermore, when the optimal
number of cognitive systems was two, then one of them was
typically faster but more error-prone whereas the second one
was slower but more accurate, matching the systems posited
by dual-process theories.

2This observation holds until the variance becomes extremely
high (≈ 107 for Table 2), in which case both systems move towards
lower values (Table 2). However, this is not a general problem but
merely a quirk of the skewed distribution we used for re.

Figure 5: The optimal number planning systems as a func-
tion of the standard deviation of re and rm for E[re] = 100.

One limitation of our analysis is that the cognitive sys-
tems we studied are simple algorithms that abstract away
most of the complexity and sophistication of intelligent cog-
nitive systems. A second limitation is that there is no guar-
antee that the results we obtained in the domain of decision-
making will necessary transfer to all other domains of cog-
nition. However, it seems plausible that for most metarea-
soning systems the cost of metareasoning increases with the
number of systems. As long as this is the case, the opti-
mal number of cognitive systems should still depend on the
tradeoff between metareasoning cost and cognitive flexibil-
ity studied above, even though its exact value may be differ-
ent. Thus, our key finding that the optimal number of sys-
tems increases with the variability of the environment and
decreases with the cost of metareasoning is likely to gener-
alize to other tasks and more complex architectures.

Future work in AI might apply our approach to de-
sign bounded-optimal metareasoning agents whose perfor-
mance comes closer to the impressive resource-efficiency
and flexibility of the human mind. According to our analy-
sis, bounded agents should be equipped with a small number
of cognitive systems dependent on the variability agent’s en-
vironment and the cost of metareasoning rather than just one
or dozens of reasoning systems.

Our findings also have implications for the debate about
human rationality. In this debate, some researchers have
interpreted the existence of a fast, error-prone cognitive
system that violated the rules of logic, probability theory,
and expected utility theory as a sign of human irrational-
ity (Ariely 2009; Marcus 2009). By contrast, our analysis
suggests that having a fast but fallible cognitive system in
additional to a slow but accurate system can be boundedly
optimal.

A conclusive answer to the question whether it is bound-
edly optimal for humans to have two types of cognitive sys-
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tems will require more rigorous estimates of the variability
of decision problems that people experience in their daily
lives and the cost of metareasoning. Regardless thereof, our
analysis suggests that the incoherence in human reasoning
and decision-making might be a signature of the rational use
of a bounded-optimal set of cognitive systems rather than a
sign of irrationality.
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