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Abstract

Language and vision provide complementary information. In-
tegrating both modalities in a single multimodal representa-
tion is an unsolved problem with wide-reaching applications
to both natural language processing and computer vision. In
this paper, we present a simple and effective method that
learns a language-to-vision mapping and uses its output vi-
sual predictions to build multimodal representations. In this
sense, our method provides a cognitively plausible way of
building representations, consistent with the inherently re-
constructive and associative nature of human memory. Us-
ing seven benchmark concept similarity tests we show that
the mapped (or imagined) vectors not only help to fuse mul-
timodal information, but also outperform strong unimodal
baselines and state-of-the-art multimodal methods, thus ex-
hibiting more human-like judgments. Ultimately, the present
work sheds light on fundamental questions of natural lan-
guage understanding concerning the fusion of vision and lan-
guage such as the plausibility of more associative and re-
constructive approaches.

1 Introduction

Convolutional neural networks (CNN) and distributional-
semantic models have provided breakthrough advances in
representation learning in computer vision (CV) and natu-
ral language processing (NLP) respectively (LeCun, Ben-
gio, and Hinton 2015). Lately, a large body of research has
shown that using rich, multimodal representations created
from combining textual and visual features instead of uni-
modal representations (a.k.a. embeddings) can improve the
performance of semantic tasks. Building multimodal rep-
resentations has become a popular problem in NLP that
has yielded a wide variety of methods (Lazaridou, Pham,
and Baroni 2015; Kiela and Bottou 2014; Silberer and La-
pata 2014)—a general classification of strategies is pro-
posed in the next section. Additionally, the use of a map-
ping (e.g., a continuous function) to bridge vision and lan-
guage has also been explored, typically with the goal of
generating missing information from one of the modalities
(Lazaridou, Bruni, and Baroni 2014; Socher et al. 2013;
Johns and Jones 2012).
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Figure 1: Overview of our model. The imagined representa-
tions are the outputs of a text-to-vision mapping.

Here, we propose a language-to-vision mapping that pro-
vides both a way to “imagine” missing visual information
and a method to build multimodal representations. We lever-
age the fact that by learning to predict the output, the map-
ping necessarily encodes information from both modalities.
Thus, given a word embedding as input, the mapped output
is not purely a visual representation but is implicitly asso-
ciated with the linguistic modality of this word. To the best
of our knowledge, the use of mapped vectors to build multi-
modal representations has not been considered before.

Additionally, our method introduces a cognitively plausi-
ble approach to concept representation. By re-constructing
visual knowledge from textual input, our method behaves
similarly as human memory, namely in an associative and
re-constructive manner (Anderson and Bower 2014; Vernon
2014; Hawkins and Blakeslee 2007). Concretely, the goal
of our method is not the perfect recall of visual representa-
tions but rather its re-construction and association with tex-
tual knowledge.

In contrast to other multimodal approaches such as skip-
gram methods (Lazaridou, Pham, and Baroni 2015; Hill and
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Korhonen 2014) our method of directly learning from pre-
trained embeddings instead of training from a large mul-
timodal corpus is simpler and faster. Hence, the proposed
method can alternatively be seen as a fast and easy way to
generate multimodal representations from purely unsuper-
vised linguistic input. Because annotated visual representa-
tions are more scarce than large unlabeled text corpora, gen-
erating multimodal representations from pre-trained unsu-
pervised input can be a valuable resource. By using seven
test sets covering three different similarity tasks (seman-
tic, visual and relatedness), we show that the imagined
visual representations help to improve performance over
strong unimodal baselines and state-of-the-art multimodal
approaches. We also show that the imagined visual repre-
sentations concatenated to the textual representations out-
perform the original visual representations concatenated to
the same textual representations. The proposed method also
performs well in zero-shot settings, hence indicating good
generalization capacity. In turn, the fact that our evaluation
tests are composed of human ratings of similarity supports
our claim that our method provides more human-like judg-
ments.

The rest of the paper is organized as follows. In the next
section, we introduce related work and background. Then,
we describe and provide insight on the proposed method.
Afterwards, we describe our experimental setup. Finally, we
present and discuss our results, followed by conclusions.

2 Related work and background

2.1 Cognitive grounding

A large body of research evidences that human memory
is inherently re-constructive (Vernon 2014; Hawkins and
Blakeslee 2007). That is, memories are not exact static
copies of reality, but are rather re-constructed from its es-
sential elements each time they are retrieved, triggered by
either internal or external stimuli and often modulated by
our expectations. Arguably, this mechanism is, in turn, what
endows humans with the capacity to imagine themselves in
yet-to-be experiences and to re-combine existing knowledge
into new plans or structures of knowledge (Hawkins and
Blakeslee 2007). Moreover, the associative nature of human
memory is also a widely accepted theory in experimental
psychology (Anderson and Bower 2014) with identifiable
neural correlates involved in both learning and retrieval pro-
cesses (Reijmers et al. 2007).

In this respect, our method employs a retrieval process
analogous to that of humans, in which the retrieval of a vi-
sual output is triggered and mediated by a linguistic input
(Fig. 1). Effectively, visual information is not only retrieved
(i.e., mapped), but also associated to the textual informa-
tion thanks to the learned cross-modal mapping—which can
be interpreted as a human mental model of the association
between the semantic and visual components of concepts,
acquired through lifelong experience. Finally, the retrieved
(mapped) visual information is often insufficient to com-
pletely describe a concept, and thus it is of interest to pre-
serve the linguistic component. Analogously, when humans
face the same similarity task (e.g., “cat” vs. “tiger”) their

mental search necessarily includes both, the visual and the
semantic component. For this reason, we consider the con-
catenation of the imagined visual representations to the text
representations as a powerful way of comprehensively rep-
resenting concepts.

2.2 Multimodal representations

Psychological research evidences that human concept for-
mation is strongly grounded in visual perception (Barsalou
2008), suggesting that a potential semantic gain can be de-
rived from fusing text and visual features. It has also been
empirically shown that distributional semantic models and
visual CNN features capture complementary attributes of
concepts (Collell and Moens 2016). The combination of
both modalities had been considered since a long time ago
(Loeff, Alm, and Forsyth 2006), and its advantages have
been largely demonstrated in a number of linguistic tasks
(Lazaridou, Pham, and Baroni 2015; Kiela and Bottou 2014;
Silberer and Lapata 2014). Based on current literature, we
present a general classification of the existing approaches.
Broadly, we consider two families of strategies: a posteri-
ori combination and simultaneous learning. That is, multi-
modal representations are built by learning from raw input
enriched with both modalities (simultaneous learning) or by
learning each modality separately and integrating them af-
terwards (a posteriori combination).

1. A posteriori combination.

• Concatenation. The simplest approach to fuse pre-
learned visual and text features is by concatenat-
ing them (Kiela and Bottou 2014). Variations of this
method include the application of single value de-
composition (SVD) to the matrix of concatenated vi-
sual and textual embeddings (Bruni, Tran, and Baroni
2014). Concatenation has been proven effective in con-
cept similarity tasks (Bruni, Tran, and Baroni 2014;
Kiela and Bottou 2014), yet has an obvious limitation:
multimodal features can only be generated for those
words that have images available, thus reducing the
multimodal vocabulary drastically.

• Autoencoders form a more elaborated approach that do
not suffer from the above problem. Encoders are fed
with pre-learned visual and text features, and the hid-
den representations are then used as multimodal em-
beddings. This approach has shown to perform well in
concept similarity tasks and categorization (i.e., group-
ing objects into categories such as “fruit”, “furniture”,
etc.) (Silberer and Lapata 2014).

• A mapping between visual and text modalities (i.e., our
method). The outputs of the mapping themselves are
used in the multimodal representations.

2. Simultaneous learning. Distributional semantic models
are extended into the multimodal domain (Lazaridou,
Pham, and Baroni 2015; Hill and Korhonen 2014) by
learning in a skip-gram manner from a corpus enriched
with information from both modalities and using the
learned parameters of the hidden layer as multimodal
representation. Multimodal skip-gram methods have been
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proven effective in similarity tasks (Lazaridou, Pham, and
Baroni 2015; Hill and Korhonen 2014), in zero-shot im-
age labeling (Lazaridou, Pham, and Baroni 2015) and in
propagating visual knowledge into abstract words (Hill
and Korhonen 2014).

With this classification, the gap that our method fills be-
comes more clear, with it being the most aligned with the
re-constructive view of knowledge representation (Vernon
2014; Loftus 1981) that seeks the explicit association be-
tween vision and language.

2.3 Cross-modal mappings

Several studies have considered the use of mappings to
bridge modalities. For instance, Socher et al. (2013) and
Lazaridou, Bruni, and Baroni (2014) use a linear vision-to-
language projection to perform zero-shot image classifica-
tion (i.e., classifying images from a class not seen during
training). Analogously, language-to-vision mappings have
been considered, generally to generate missing perceptual
information about abstract words (Hill and Korhonen 2014;
Johns and Jones 2012) and in zero-shot image retrieval
(Lazaridou, Pham, and Baroni 2015). In contrast to our ap-
proach, the methods above do not aim to build multimodal
representations to be used in natural language processing
tasks.

3 Proposed method

In this section, we first describe the three main steps of our
method (Fig. 1): (1) Obtain visual representations of con-
cepts; (2) Build a mapping from the linguistic to the visual
space; and (3) Generate multimodal representations. After-
wards, we provide insight on our approach.

3.1 Obtaining visual representations

We employ raw, labeled images from ImageNet (Rus-
sakovsky et al. 2015) as the source of visual information
(see section 4), although alternative sources such as the ESP
game data set (Von Ahn and Dabbish 2004) or Google image
search can be used. We suggest however that both, the num-
ber of images per concept and the total number of concepts
N should be of a reasonable amount.

To extract visual features from each image, we use the
forward pass of a pre-trained CNN model. The hidden repre-
sentation of the last layer (before the softmax) is often taken
as a feature vector, as it contains higher level features. Al-
though bags of visual words such as SIFT (Lowe 1999) or
HOG (Dalal and Triggs 2005) may also be considered, they
generally yield lower performance than CNNs (Kiela and
Bottou 2014).

For each concept w, we consider two different ways of
combining the extracted visual features of individual images
into a single representation −→vw.

(1) Averaging: Component-wise average of the feature
vectors of the individual images.

(2) Maxpooling: Component-wise maximum of all fea-
ture vectors of individual images. This can be interpreted as
bags of visual properties.

3.2 Learning to map language to vision

Let L ⊂ R
dl be the linguistic space and V ⊂ R

dv the visual
space of representations, where dl and dv are the sizes of
the text and visual representations respectively. Let −→lw ∈ L
and −→vw ∈ V denote the text and visual representations for
the concept w respectively. Our goal is to learn a mapping
(regression) f : L → V such that the prediction f(

−→
lw) is

“similar” to the actual visual vector −→vw. The set of N visual
representations (described in the subsection 3.1) along with
their corresponding text representations compose the train-
ing data {(−→li ,−→vi )}Ni=1 used to learn the mapping f . In this
work, we consider two different mappings f .

(1) Linear: A simple perceptron composed of a dl-
dimensional input layer and a linear output layer with dv
units (Fig. 2, left).

(2) Neural network: A network composed of a dl-unit in-
put layer, a single hidden layer of dh Tanh units and a linear
output layer of dv units (Fig. 2, right).

Figure 2: Architecture of the linear (left) and neural network
(right) mappings.

For both, linear and neural network mappings, a mean
squared error (MSE) loss function is employed:

Loss(y, ŷ) =
1

2
||ŷ − y||22

where y is the actual (multidimensional continuous) out-
put and ŷ the model prediction.

The inclusion of cross-modality mappings that are sym-
metrical with respect to input and output such as canonical
correlation analysis (CCA) would deviate from the target of
this work, which assumes directionality. However, a com-
parison with CCA is briefly discussed in the Results section.

3.3 Generating multimodal representations

As a final step, the imagined representation −→mw of each con-
cept w is calculated as the image f(

−→
lw) of its linguistic em-

bedding −→
lw—where we notice that the input vector −→lw has

not necessarily been seen at training time. E.g., the imagined
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representation of w = dog corresponds to −−−→mdog = f(
−−→
ldog).

We henceforth refer to the mapped or imagined represen-
tations as MAPf , where f indicates the mapping function
employed (lin = linear, NN = neural network). As argued
in subsection 3.4, the imagined representations are effec-
tively multimodal. However, since the predictions f(−→lw) for-
mally belong to the visual domain, we also consider the
multimodal representations built by concatenating the �2-
normalized imagined representations f(−→lw) with the textual
representations −→

lw , namely −→
lw ⊕ f(

−→
lw), where ⊕ denotes

the concatenation operator. We henceforth denote these con-
catenated representations as MAP-Cf , with f indicating the
mapping employed.

3.4 Intuition of the method

Since the outputs of a text-to-vision mapping are strictly
speaking, visual predictions, it might not be readily obvi-
ous that they contain multimodal information. To gain in-
sight on this question, it is instructive to refer to the training
phase where the parameters θ of f are learned as a function
of the training data {(−→li ,−→vi )}Ni=1. For instance, in gradient
descent, θ is updated according to

θ(t+1) = θ(t) − η
∂

∂θ(t)
Loss(θ; {(−→li ,−→vi )}Ni=1).

Hence, the parameters θ of f are effectively a function of
the training data points {(−→li ,−→vi )}Ni=1 involving an explicit
dependency on both, input and output data. It is thus ex-
pected that the outputs f(

−→
lw) are grounded with properties

of the input data {−→li }Ni=1. It can be additionally noted that
the output of the mapping f(

−→
lw) is a (continuous) transfor-

mation of the input vector −→lw . Thus, unless the mapping is
completely uninformative (e.g., a constant or a random map-
ping), the input vector −→lw will still be “present”—yet trans-
formed. In fact, the range of transformations that a linear
model can perform to the input space is limited (scaling, re-
flection, rotation, shearing and translation)—assuming non-
singular θ. Similarly, a neural network with Tanh units pre-
serves the topological properties of the input space, involv-
ing thus “stretching” and “squishing” but not cutting.

Additionally, by using the visual predictions of a mapping
that explicitly associates language to vision we seek to avoid
the inclusion of noise from the visual representations into
the multimodal ones. During the learning phase, irrelevant
visual information and noise are discarded to a large extent,
which leads us to hypothesize that the mapped vectors are
semantically richer than the original visual vectors.

4 Experimental setup

4.1 Word embeddings

We use 300-dimensional GloVe1 vectors (Pennington,
Socher, and Manning 2014) pre-trained on the Common
Crawl corpus consisting of 840B tokens and a 2.2M words
vocabulary. This embedding choice is motivated by its state-
of-the-art performance (Pennington, Socher, and Manning
2014), which provides a strong base to learn the mappings.

1http://nlp.stanford.edu/projects/glove

4.2 Visual data and features

We use ImageNet (Russakovsky et al. 2015) as our source
of visual information. This choice is motivated by: (i) Ease
of replicating our experiment, (ii) High quality and low
noise of images, and (iii) Large vocabulary coverage. Im-
ageNet covers a total of 21,841 WordNet synsets (or mean-
ings) (Fellbaum 1998) and has 14,197,122 images. For our
experiment, we only keep synsets with more than 50 im-
ages, and an upper bound of 500 images per synset is used
to reduce computation time. With this selection, we cover
9,251 unique words, taken as the most relevant word of each
synset. Hence, our training data is composed of N = 9,251
instances or (−→lw ,−→vw) pairs.

To extract visual features from each image, we use a pre-
trained VGG-m-128 CNN model (Chatfield et al. 2014) im-
plemented with the Matlab MatConvNet toolkit (Vedaldi
and Lenc 2015). We take the 128-dimensional activation of
the last layer (before the softmax) as our visual feature vec-
tor −→vw.

4.3 Evaluation sets

We tested the proposed method with 7 benchmark tests, cov-
ering three different tasks: (i) General relatedness: MEN
(Bruni, Tran, and Baroni 2014) and Wordsim353-rel (Agirre
et al. 2009); (ii) Semantic or taxonomic similarity: Sem-
Sim (Silberer and Lapata 2014), Simlex999 (Hill, Reichart,
and Korhonen 2015), Wordsim353-sim (Agirre et al. 2009)
and SimVerb-3500 (Gerz et al. 2016); (iii) Visual similar-
ity: VisSim (Silberer and Lapata 2014) which contains the
same word pairs as SemSim, rated for visual similarity in-
stead of semantic similarity. All test sets contain pairs of
words along with their associated human similarity rating.
The tests Wordsim353-sim and Wordsim353-rel correspond
to the similarity and relatedness subsets of the original Word-
sim353 (Finkelstein et al. 2001) respectively, as proposed by
Agirre et al. (2009) who noted that the distinction between
similarity (e.g., “tiger” is similar to “cat”) and relatedness
(e.g., “stock” is related to “market”) yields different results.
Hence, for being redundant with its subsets, we do not count
the whole Wordsim353 as an extra test set, yet it is included
in the Results section for completeness.

It is important to notice that a large part of words in our
test sets do not have a visual representation −→vw available,
i.e., they are not present in our training data. We refer to
these words as zero-shot (ZS).

4.4 Evaluation metric and prediction

We employ Spearman correlation ρ between model predic-
tions and human similarity ratings as evaluation metric. The
prediction of similarity between two concept representa-
tions, −→u1 and −→u2, is computed by their cosine similarity:

cos(−→u1,−→u2) =
−→u1 · −→u2

‖−→u1‖ · ‖−→u2‖
4.5 Model settings

Both, neural network and linear models are learned by
stochastic gradient descent and a total of nine parameter
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combinations are tested (learning rate = [0.1, 0.01, 0.005]
and dropout rate = [0.5, 0.25, 0.1]). We find that the models
are not very sensitive to variations (especially of the dropout
rate) and all of them perform reasonably well. We report a
linear model with learning rate of 0.1 and dropout rate of 0.1,
running it for 175 epochs. For the neural network, we addi-
tionally test three different architectures with 50, 150 and
300 hidden units. We find performance with 150 and 300
hidden units to be almost identical, whilst performance with
50 units slightly drops. We report a neural network with 300
hidden units, dropout rate of 0.25 and learning rate of 0.1,
trained for 25 epochs.

All mappings are implemented with the scikit-learn
toolkit (Pedregosa et al. 2011) and our embeddings are pub-
licly available2.

5 Results and discussion

For clarity, the following notation is introduced. We refer
to the averaged and maxpooled visual features as CNNavg

and CNNmax respectively. CONC refers to the concatena-
tion of CNNavg and GloVe, which can be seen as the same
method of Kiela and Bottou (2014) with our base unimodal
representations. Since maxpooled and averaged visual repre-
sentations performed similarly (both, the CNN features and
the mappings learned from them), only results on averaged
representations are discussed below and in Tab. 1.

Overall performance We perform post-hoc Nemenyi
tests by regarding the disjoint regions of each test set (i.e.,
ZS and VIS) as different sets, which yields 14 sets (exclud-
ing Worsim353). We find that both MAP-Clin and MAP-
CNN perform significantly better than GloVe (p ≈ 0.03) and
than CNNavg (p ≈ 0.06)—the latter test includes only the
seven VIS regions. Therefore, our multimodal representa-
tions MAP-C clearly accomplish one of their foremost goals,
namely to improve the unimodal representations of GloVe
and CNNavg .

Multimodal grounding Clearly, the consistent improve-
ment of MAPlin and MAPNN over CNNavg in all seven
test sets supports our claim that the imagined visual repre-
sentations are more than purely visual representations and
contain multimodal information—as analytically argued in
subsection 3.4. Moreover, the MAP-C method generally per-
forms better than the MAP vectors alone, implying that even
though the MAP vectors are indeed multimodal, they are still
predominantly visual and therefore their concatenation with
textual representations helps.

Concreteness By employing the concreteness ratings of
Brysbaert, Warriner, and Kuperman (2014) in a 1-5 scale
(with 5 being the most concrete and 1 the most abstract) we
find that the average concreteness in the VIS regions is 4.6±
0.5, which is substantially larger than the average of 3.2±0.9
in the ZS regions. Importantly, the average concreteness is
larger than 4.4 in all VIS regions, while it is lower than 3.3
in all ZS regions except in MEN and VisSim/SemSim test
sets which average 4.2 and 4.8 respectively. Therefore, with

2http://liir.cs.kuleuven.be/software.php

Figure 3: Sample of images from the “car” (top row) and
“garage” (bottom row) synsets of ImageNet.

the exceptions of MEN, VisSim and SemSim, the inclusion of
multimodal information in the ZS regions can be generally
regarded as less beneficial than in the VIS regions, given that
visual information can only sensibly enrich representations
of words that are to some extent visual.

Visual (VIS) regions Crucially, MAP-CNN and MAP-
Clin significantly improve the performance of GloVe in all
seven VIS regions (p ≈ 0.008), with an average improve-
ment of 4.6% for MAP-CNN and 2.8% for MAP-Clin. Con-
versely, the concatenation of GloVe with the original vi-
sual vectors (CONC) does not improve GloVe (p ≈ 0.7)—
worsening it in 4 out of 7 test sets—suggesting that sim-
ple concatenation without seeking the association between
modalities might be suboptimal. Moreover, the concatena-
tion of the imagined visual vectors with GloVe (MAP-CNN )
outperforms the concatenation of the original visual vectors
with GloVe (CONC) in 6 out of 7 test sets (p ≈ 0.06), which
supports our claim that the imagined visual vectors are se-
mantically richer and less noisy than the original visual vec-
tors.

Zero-shot (ZS) regions Given the above considerations
on concreteness, as expected, MAP-C methods substantially
improve GloVe performance in the ZS regions of VisSim and
SemSim, and more slightly in MEN. Interestingly, MAP-C
also improves GloVe in the ZS region of SimVerb-3500, yet
only marginally.

General relatedness Both MAPNN and MAPlin ex-
hibit an overall gain in MEN and in the VIS region of
Wordsim353-rel. It might seem perhaps counter-intuitive
that vision can help to improve relatedness understand-
ing. However, a closer look to the particular examples re-
veals that visual features generally account for object co-
occurrences, which is often a good indicator of their related-
ness. For instance, in MEN, the human relatedness rating be-
tween “car” and “garage” is 8.2 while GloVe’s score is only
5.4. However, CNNavg’s rating is 8.7 and that of MAPnn is
8.4, which is closer to the human score. From Fig. 3, the
co-occurrences of garage-car is clear.

Visual similarity MAPNN attains the best performance in
VisSim, especially in the ZS subset. Regardless, both MAP-
Clin and MAP-CNN outperform the two unimodal base-
lines.
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Wordsim353 MEN SemSim VisSim Simlex999
ALL VIS ZS ALL VIS ZS ALL VIS ZS ALL VIS ZS ALL VIS ZS

Silberer & Lapata 2014 - - - - - - 0.7 - - 0.64 - - - - -
Lazaridou et al. 2015 - - - 0.75 0.76 - 0.72 0.72 - 0.63 0.63 - 0.4 0.53 -
Kiela & Bottou 2014 - 0.61 - - 0.72 - - - - - - - - - -

GloVe 0.712 0.632 0.705 0.805 0.801 0.801 0.753 0.768 0.701 0.591 0.606 0.54 0.408 0.371 0.429
CNNavg - 0.448 - - 0.593 - - 0.534 - - 0.56 - - 0.406 -
CONC - 0.606 - - 0.8 - - 0.734 - - 0.651 - - 0.442 -

MAPNN 0.443 0.534 0.391 0.703 0.761 0.68 0.729 0.732 0.718 0.658 0.659 0.655 0.322 0.451 0.296
MAPlin 0.402 0.539 0.366 0.701 0.774 0.674 0.738 0.738 0.74 0.646 0.644 0.651 0.322 0.412 0.286

MAP-CNN 0.687 0.644 0.673 0.813 0.82 0.806 0.783 0.791 0.754 0.65 0.657 0.626 0.405 0.404 0.417
MAP-Clin 0.694 0.649 0.684 0.811 0.819 0.802 0.785 0.791 0.764 0.641 0.647 0.623 0.41 0.388 0.422

# inst. 353 63 290 3000 795 2205 6933 5238 1695 6933 5238 1695 999 261 738

Wordsim353-rel Wordsim353-sim SimVerb-3500
ALL VIS ZS ALL VIS ZS ALL VIS ZS

GloVe 0.644 0.759 0.619 0.802 0.688 0.783 0.283 0.32 0.282
CNNavg - 0.422 - - 0.526 - - 0.235 -
CONC - 0.665 - - 0.664 - - 0.437 -
MAPNN 0.33 0.606 0.267 0.536 0.599 0.475 0.213 0.513 0.21
MAPlin 0.28 0.553 0.243 0.505 0.569 0.477 0.212 0.338 0.21
MAP-CNN 0.623 0.778 0.589 0.769 0.696 0.745 0.286 0.49 0.284
MAP-Clin 0.629 0.797 0.601 0.781 0.698 0.766 0.286 0.371 0.285
# inst. 252 28 224 203 45 158 3500 41 3459

Table 1: Spearman correlations between model predictions and human ratings. For each test, ALL correspond to the whole set
of word pairs, VIS to those pairs for which we have both visual representations, and ZS denotes its complement, i.e., zero-shot
words. Boldface indicates the best results per column and # inst. the number of word pairs in each region (ALL, VIS, ZS). We
notice that comparison methods are not available for test sets in the second row. Additionally, the VIS subset of the compared
methods is only approximated, as the authors do not report the exact evaluated instances.

Unimodal baselines We use low dimensional (128-d) vi-
sual representations to reduce the number of parameters—
and thus the risk of overfitting. However, to test whether
results are independent of the choice of the CNN, we
repeat the experiment using a pre-trained AlexNet CNN
model (Krizhevsky, Sutskever, and Hinton 2012) (4096-
dimensional features) and a ResNet CNN (He et al. 2015)
(2048-dimensional features) and find that both perform sim-
ilar to the VGG-m-128 CNN reported here. Not only the
visual representations (CNNavg) perform closely, but the
mapped vectors perform similarly too.

On the linguistic side, we additionally test word2vec
(Mikolov et al. 2013) word embeddings, which fare
marginally worse than GloVe—both, the text embeddings
themselves and the imagined vectors learned from them.
Thus, we report results on our strongest text baseline.

Mappings MAP-CNN and MAP-Clin exhibit similar per-
formance trends. However, MAP-CNN generally shows
larger improvements in the VIS regions with respect to
GloVe than MAP-Clin does, arguably because the neural
network is able to better fit the visual vectors, thus preserv-
ing more information from the visual modality. In fact, it
can be observed that the performance of MAP-CNN gener-
ally deviates more from that of GloVe than MAP-Clin does.

We additionally find (not shown in Tab. 1) that MAPlin

from a linear model trained for only 2 epochs improves
GloVe in 5 of our test sets, with an average improvement
of ≈ 3%. However, the R2 fit of this model is lower than 0
and thus we cannot guarantee that the improvement comes
from the visual vectors. We attribute this gain to an artifact
caused by scaling and smoothing effects of backpropagation,
yet more research is needed to better understand this effect.

For completeness, we test a CCA model learned in our
training data as a baseline method (not shown here). It con-
sistently performs worse than GloVe in each test, suggesting
that mapping into a common latent space might not be an
appropriate solution to the problem at hand.

6 Conclusions

We have presented a cognitively-inspired method capable of
generating multimodal representations in a fast and simple
way by using pre-trained unimodal text and visual represen-
tations as a starting point. In a variety of similarity tasks and
7 benchmark tests, our method generally outperforms strong
unimodal baselines and state-of-the-art multimodal meth-
ods. Moreover, the proposed method exhibits good perfor-
mance in zero-shot settings, indicating that the model gener-
alizes well and learns relevant cross-modal associations. In
conclusion, its effectiveness as a simple method to generate
multimodal representations from purely unsupervised lin-
guistic input is supported. Finally, the overall performance
increase supports the claim that our approach builds more
human-like concept representations.

Ultimately, the present paper sheds light on fundamen-
tal questions of natural language understanding such as the
plausibility of re-constructive and associative processes to
fuse vision and language. The present work advocates for
more cognitively inspired methods, although we aim to in-
spire researchers to further investigate this question.
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