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Abstract 
Human-aware AI is increasingly important as AI becomes 
more powerful and ubiquitous. A good foundation for hu-
man-awareness should enable ourselves and our “AIs” to 
“explain ourselves” naturally to each other. Constraint rea-
soning offers particular opportunities and challenges in this 
regard. This paper takes note of the history of work in this 
area and encourages increased attention, laying out a rough 
research agenda.  

 Explaining Ourselves: Me and My AI   
Human-aware AI (the IJCAI-16 Special Theme) is increas-
ingly important as AI becomes more powerful and ubiqui-
tous. A good foundation for human-awareness should ena-
ble ourselves and our “AIs” to “explain ourselves” natural-
ly to each other. Constraint reasoning offers particular op-
portunities and challenges in this regard. This paper takes 
note of the history of work in this area and encourages in-
creased attention, outlining a rough research agenda.  
 Constraint reasoning (or “constraint programming”) 
involves finding values for problem variables that satisfy 
constraints on which combinations of values are allowed. 
The constraints may be “soft”, representing preferences or 
probabilities or costs, introducing an element of optimiza-
tion. Constraint reasoning has been widely used in AI, 
from vision to planning, and a great many practical prob-
lems, from factory scheduling to molecular biology, can be 
modeled and solved as constraint satisfaction problems 
(CSPs) (Freuder 2006).  
 Constraints are a natural, and as opposed to rules, a de-
clarative way of expressing our needs. We encounter con-
straints in everyday interactions with computers, whether 
or not there is specifically constraint programming tech-
nology operating behind the scenes. We are able to convey 
simple constraints to our phones in plain English: “I want a 
restaurant that has vegetarian options.” We express con-
straints that “filter” our purchasing options, e.g. for flights 
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by checking boxes for which airlines to use or moving 
sliders to constrain arrival times. 
 On the one hand, we are increasingly being led to expect 
that we can simply explain to “intelligent assistants”, like 
Siri or Alexa, what our needs or preferences are, and these 
programs can then decide how best to satisfy them. On the 
other hand, by 2018 the European Union General Data 
Protection Regulation may give citizens the right to de-
mand explanations of decisions that computer algorithms 
make about them (Goodman and Flaxmanar 2016).  
 Of course, the constraint programming community has 
been addressing related issues for some time, but it has not 
been a primary focus, and now is a good time for a re-
newed emphasis on “user-friendly I/O”.  
 Twenty years ago, in a paper entitled “In Pursuit of the 
Holy Grail” (Freuder 1997), I laid out a strategic goal for 
constraint programming where the user simply states the 
problem and the computer solves it. Fifteen years ago, in 
an invited talk for the International Conference on Princi-
ples and Practice of Constraint Programming (CP), I bor-
rowed James Carville’s famous line about a U.S. presiden-
tial election “It’s the economy stupid” to claim “It’s usabil-
ity stupid”, and Barry O’Sullivan and I organized the First 
International Workshop on User-Interaction in Constraint 
Satisfaction. Ten years ago, in a paper entitled “Holy Grail 
Redux” (Freuder 2007), I spoke of the exciting opportunity 
for members of the constraint programming community to 
be pioneers of a new “usability science” and to go on to 
“engineer usability”. Of course, I am hardly the only one to 
have recognized this challenge. For example, Jean-
Francois Puget, now an IBM Distinguished Engineer, gave 
an invited talk at CP 2004 entitled “The next challenge for 
CP: Ease of use” (Puget 2004).  
 However, as one crude example of the relative attention 
to these issues, a search of over two decades of papers in 
the CP conferences reveals an approximate average of only 
one paper every two years with “explanation(s)” in the 
title. So I expect there even remains some “low hanging 
fruit” to be picked. In the following I lay out some “dimen-
sions of the orchard”. I also cite a few examples of “al-
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ready picked fruit” for illustration, but this short paper 
should by no means be considered a survey.  
 I divide the discussion into “Me” and “My AI”. The 
former is usually treated as “problem acquisition” or 
“modelling”, the latter as “explanation’, but here I view 
them both as forms of explanation: users explaining their 
problems and computers explaining their success or failure 
at solving those problems.  
 Also, while I treat these separately and sequentially, it is 
important to note that ideally these can operate in a collab-
orative cycle: a user provides a problem, or an initial por-
tion of a problem specification, a solver provides a re-
sponse, based on this response the user alters the problem 
to seek a different or more satisfactory result, or aug-
ments/refines the problem specification, and around we go 
until the user is satisfied. This unified view of a us-
er/computer dialogue is particularly relevant to the current 
interest in such themes as Human-Aware AI, Human-
Computer Collaboration, and Intelligent Personal Assis-
tants.  

Me 
For general constraint programming, high level languages 
aim to simplify the problem modeling process (Frisch et al. 
2008, Marriott et al. 2008). For industrial applications in 
specific application domains, specialized programs may 
facilitate the entry of constraints.  
 Expressing constraints is naturally embedded in the fa-
miliar spreadsheet environment (Sample and Mouhoub 
2011). (Hammond and O’Sullivan 2007) describe work on 
processing problems presented as hand-drawn “constraint 
networks”. (Kiziltan et al. 2016) have recently made pro-
gress in extracting constraints from natural language.  
 One problem with letting a naïve user describe a CSP is 
that the resulting model may be prohibitively inefficient to 
solve. However, considerable progress has been made on 
automating the reformulation of models into more ‘solver-
friendly’ form (Nightingale et al. 2014).  
 Nevertheless, there is still a considerable way to go be-
fore the computer can fully replace the human personal 
assistant on the one hand and the professional knowledge 
engineer on the other. This challenge overlaps with the 
general challenge of natural language processing. Howev-
er, users may have difficulty even articulating their con-
straints in natural language. As problems scale, we need to 
find methods to keep the interaction required manageable 
for the user.  
 A back and forth dialogue may better simulate the inter-
action with a human assistant or consultant programmer. 
(Freuder and Wallace 2002) studied a rudimentary 
“matchmaker” system that simulated the kind of interac-
tion one might have, for example, with a salesperson. The 

computer makes a suggestion (a solution to its current CSP 
model of the user’s problem), the user says ‘no, because’ 
providing an additional constraint that the system uses to 
refine its understanding of the user’s needs (update its CSP 
model), then the system makes another suggestion (a solu-
tion to the updated model), and user and system continue 
this dialogue until the user is satisfied.  
 Machine learning may reduce the burden on the user. 
Acquiring constraints from examples has a long history, 
e.g. “Boltzmann Machines: Constraint Satisfaction Net-
works that Learn” (Hinton, Sejnowski, and Ackley 1984) 
and “Constraint Acquisition” (Bessiere et al. in press).  
(Beldiceanu and Simonis 2012) describes a system that 
generates constraint models from example solutions, using 
“global constraints” from a global constraint catalog as 
primitives from which the models are created. (Shche-
kotykhin and Friedrich 2009) allows users to provide “ar-
guments” that can reduce the number of examples that they 
need to classify.  
 Articulating one’s constraints becomes an even more 
challenging issue when soft constraints are involved. (Ros-
si and Sperduti 2004) describes a system that learns prefer-
ences over constraints from preferences over solutions.  
 A further complication arises when several users are 
working together to find a mutually acceptable solution, 
and this can be complicated even more when the users are 
reluctant to reveal their constraints because of privacy is-
sues. (Gelain et al. 2010) interleaves search and preference 
elicitation, seeking to ask the user to reveal as few prefer-
ences as possible.  
 Of course, one’s needs and preferences may change, so 
maintaining an up-to-date understanding of and by the user 
also presents a challenge (Nordlander, Freuder, and Wal-
lace 2007). Fortunately, there is a body of work on “dy-
namic constraint satisfaction” that may mitigate the com-
putational issues that can be especially challenging in a fast 
changing real-time environment.  

My AI 
Explaining a successful solution for a constraint satisfac-
tion problem may seem straightforward, which is probably 
one reason why there has been little attention paid to doing 
so. One can simply show that the solution does indeed sat-
isfy each constraint. However, there may be occasions 
when more information is sought by the user. The user 
may be unsatisfied with the provided solution, because the 
problem was incompletely, incorrectly or inadequately 
specified. When there are multiple possible solutions the 
user may want to know why one was chosen, especially in 
the context of soft constraints, where indeed the user may 
want some assurance that a solution is optimal. Users may 
wish assistance in exploring the space of possible solu-

4859



tions, including those introduced by alternative choices for 
the users’ constraints. One of the difficulties users may 
have with constraint-based solutions is that a small change 
in the formulation of a problem may lead to a large change 
in the difficulty of the problem (or conceivably make it 
unsolvable) and they do not know why. Users might also 
want to see how the computer solved the problem as a way 
of learning how to solve such problems themselves.   
 A natural approach to providing a richer explanation of a 
solution would be to ‘trace’ the program’s solution pro-
cess. However, constraint solvers generally employ search, 
and tracing search tends not to provide a very satisfying 
explanation. For backtrack search: “I tried this and then 
that and hit a dead end, so I tried the other instead”. Even 
worse, for local search: “I kept getting better, but then I 
tried some other random thing”. However, constraint solv-
ing also employs inference. (Sqalli and Freuder 1996) pro-
vided explanations for logic puzzles by providing addition-
al opportunities for inference so the puzzles could be 
solved entirely by inference, without search. A subsequent 
trace of the inference, with some rudimentary natural lan-
guage processing, provided explanations for puzzles taken 
from newsstand puzzle booklets that were reasonably simi-
lar to the answer explanations provided in the back of the 
booklets.  
 Much of the work on explanation for constraint satisfac-
tion, however, has dealt with situations in which the prob-
lem as stated is unsolvable. The user then needs assistance 
in weakening or altering the problem specification to per-
mit solution. (Amilhastre, Fargier, and Marquis 2002) stud-
ies this problem for soft constraints, in particular for inter-
active configuration problems. They wanted to be able to 
answer user questions like: 
 

• “Which choices should I relax in order to recover 
consistency?” 

• “Which choices should I relax in order to render 
such a value available for such a variable?”  

• “From which subsets of current choices did incon-
sistency follow?”  

• “Why is this value not available any longer for 
this variable?”   
  

 In (Jussien and Barichard 2000) we encounter questions 
like: 
 

• “How come I do not get value x for variable v?” 
• “How come that problem has no solution?”  
• “How come y is the only remaining possible value 

for variable v?” 
 

 (Freuder, Likitvivatanavong, and Wallace 2001) uses 
“explanation trees” that show the basis for assignments and 

deletions in terms of previous selections, whether leading 
to success or failure. The intent is to provide explanations 
that help the user understand the following situations: 
 

• “Why did we get this as a solution?” 
• “Why did this choice of labels lead to a conflict?” 
• “Why was this value chosen for this variable dur-

ing processing?” 
 
and also to help users in an interactive problem-solving 
setting understand the implications of their choices by 
providing help with these kinds of questions:  
 

• “Is there a basis for choosing among values in a 
future domain?” 

• “Are there values whose choice will lead to con-
flict, even though they are consistent with the pre-
sent domains?” 

 
 (Junker 2004) describes work that provided the techno-
logical basis for the explanation facility in commercial 
products produced by ILOG, now part of IBM. (Liffiton et 
al. 2016) describes recent progress in computing “minimal 
unsatisfiable subsets”, which provide a kind of minimal 
explanation of infeasability. (O’Sullivan et al. 2007) seeks 
to assist users by identifying subsets of explanations that 
are “representative” of all possibilities. (Wallace and 
Freuder 2001) explores general issues such as what makes 
for a “good” explanation.  
 Much of the work on explaining failure actually is fo-
cused on programs explaining intermediate failures to 
themselves in order to reach a solution more efficiently. 
There has also been work on providing explanations of 
program operation to programmers for development or 
debugging. Some of this work might be repurposed to pro-
vide user explanations.   

Challenges and Opportunities 
The efforts cited here, and others like them, represent en-
couraging progress. At the same time, the issues they ad-
dress stand as continuing, and ever more timely, challenges 
and opportunities for increasing mutual understanding of 
user and machine for Human-Aware Constraint Reasoning.   
 A research roadmap might include the following sign-
posts: 
 

• Multiple interaction modalities: natural language, 
examples, analogies, stories, histories, … 

• Efficient interaction: reducing user effort 
• Multiple users: cooperative and adversarial 
• Maintainability: as needs and contexts change 
• Transparency and privacy: “need to know”   
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• Scaling up to large-scale problems 
• Extracting constraints and CSP models from “big 

data” and the web and using “deep learning” 
• Learning and improving models by observing or 

interacting with human domain experts 
• Learning from experience with users 
• Measuring confidence in, quality of, and com-

pleteness of acquired models 
• User interfaces for interactive problem solving, 

especially for real-time, dynamic problems  
• Explaining the implications of choices or changes 

in problem specification 
• Providing appropriate insight and guidance for 

human-machine collaboration  
• Acquiring, improving and utilizing “background 

knowledge” of user and problem domain con-
straints to facilitate future problem solving.  

• Incorporating “outside” constraints, legal, regula-
tory, contractual, ethical  

• Specialized methods for different classes of con-
straints 

• Specialized tools for specific application domains 
• Specialized methods for answering specific user 

questions 
• Distinguishing and evaluating varieties of expla-

nation 
• Measuring and improving explanation quality 

 
Such a research program can draw on, as well as contribute 
to, the work of many fields of AI that bear upon human-
machine communication, including machine learning, rec-
ommender systems, knowledge acquisition, intelligent user 
interfaces, and natural language understanding.  
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