
Getting More Out of the Exposed Structure in
Constraint Programming Models of Combinatorial Problems

Gilles Pesant
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Abstract
To solve combinatorial problems, Constraint Programming
builds high-level models that expose much of the structure
of the problem. The distinctive driving force of Constraint
Programming has been this direct access to problem struc-
ture. This has been key to the design of powerful filtering
algorithms but we could do much more. Considering the set
of solutions to each constraint as a multivariate discrete dis-
tribution opens the door to more structure-revealing computa-
tions that may significantly change this solving paradigm. As
a result we could improve our ability to solve combinatorial
problems and our understanding of the structure of practical
problems.

Introduction
Many efficient computational methodologies have been de-
signed to solve combinatorial problems. Among those
which proceed by building a formal model of the problem,
SAT and MIP solvers express theirs in a restricted syntax
(Boolean clauses, linear constraints) that allows them to
apply powerful algorithms and data structures specialized
for that homogeneous form. Constraint Programming (CP)
solvers followed a different route, having developed over
the years a very rich and heterogeneous modelling language
(Beldiceanu et al. 2007) with an extensive set of inference
algorithms, each dedicated to a primitive of that language.
These high-level primitives, termed global constraints, ex-
pose much of the combinatorial structure of a problem. They
have been identified over time as being complex enough to
provide structural insight yet simple enough for some de-
sired computing tasks to remain tractable. As a result one
often finds that an otherwise challenging problem can be
modelled using just a few such constraints. The distinctive
driving force of CP has been this direct access to problem
structure.

NP-hard problems often combine a few “easy” (i.e.
polytime-solvable) problems — it is the combination that
makes them hard to solve. Consider the well-known TSP:
it can be seen as the combination of an assignment prob-
lem (minimum weight matching) and of subtour avoidance;
or alternately as the combination of the minimum span-
ning tree problem (strictly speaking, the minimum one-tree)
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and of limiting the degree of vertices to be at most two.
Taken separately, each of these parts is easy. The field
of Operations Research has exploited such structural de-
composition for a long time through the concept of prob-
lem relaxation which provides bounds on the value of the
cost function. Lagrangian decomposition provides another
opportunity by working on these substructures separately
while linking them in the cost function — recent work has
adapted this approach to improve communication between
constraints in CP (Bergman, Ciré, and van Hoeve 2015;
Ha, Quimper, and Rousseau 2015).

A problem to be solved by CP is typically expressed
as a Constraint Satisfaction Problem (X,D,C) where
X = {x1, x2, . . . , xn} is a finite set of variables, D =
{D1, D2, . . . , Dn} a corresponding finite set of domains
specifying the possible values that each variable in X can
take, and C = {c1, c2, . . . , cm} a finite set of constraints re-
stricting the combinations of values that the variables may
take, which can be seen as relations over subsets of X . The
exposed structure in CP models, corresponding to each con-
straint cj , has been key to the design of powerful filter-
ing algorithms (van Hoeve and Katriel 2006) that identify
some variable-value pair (xi, d) which, given the current do-
mains of the other variables, cannot possibly satisfy cj and
hence filter out d from Di. To a lesser degree we also ex-
ploit that structure to guide search (Boussemart et al. 2004;
Pesant, Quimper, and Zanarini 2012) and to explain failure
and filtering during search (Stuckey 2010). But we could do
much more.

There is a wealth of information inside each of these con-
straints. In this paper I present a unified perspective that
generalizes some of the key features of CP and offers novel
powerful ways to exploit combinatorial problem structure.

Solution Sets as Multivariate Distributions
Let’s examine the combinatorial structure of individual con-
straints by considering the set of solutions to a constraint
as a multivariate discrete distribution. If we wanted to de-
sign algorithms able to query the distribution of solutions
to an instance of a constraint, would that be hard? It turns
out that for several combinatorial structures we can achieve
a lot in polynomial time. What sort of query would we be
interested in? Consider the derived marginal distributions
over individual variables. Fig. 1 depicts the simple example
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Figure 1: Simple examples of constraints on two variables.

of a constraint on two variables: each row of a grid corre-
sponds to a possible value for the first variable, each column
corresponds to a possible value for the second variable, and
the dark cells represent the pairs of values that satisfy the
constraint (its solutions). On the left of and below a grid
are depicted the marginal distributions over the first and sec-
ond variable respectively (i.e. the projection of the set of
solutions onto each axis). The core concept of support for
variable-value pairs in CP precisely corresponds to its name-
sake for distributions: the subset of its domain whose ele-
ments have non-zero frequency (represented as thicker seg-
ments on each axis). This concept forms the basis of the
definition of consistency and its implementation as domain
filtering algorithms. If we can compute efficiently and ex-
actly such marginal distributions then we achieve domain
consistency through their supports. A marginal distribution
whose support is a single value identifies a backbone vari-
able (Kilby et al. 2005) in a satisfiable CSP i.e. a variable
that takes the same value in all solutions. The concept of
solution density used in counting-based search is equivalent
to the marginal distribution, whose mode i.e. its most fre-

quent value, corresponds to the branching decision imple-
mented by CP heuristic maxSD (Pesant, Quimper, and Za-
narini 2012).

Hence some features or statistics of these multivariate dis-
tributions already correspond to existing concepts in CP.
And more discriminating information is readily available.
Returning to the figure, the two constraints depicted in the
top and middle grids have very different solution sets, which
is reflected in the respective number of solutions (22 vs 16),
in the marginal distributions, in their modes, but not in their
supports for each variable, which are identical: so if we rely
solely on domain consistency the constraints appear equiv-
alent, which they are not. In the context of an optimiza-
tion problem each solution has a cost, which adds even more
structure. The bottom grid shows the same set of solutions as
the one in the middle but, because we now add a cost to each
solution cell, only the ones whose cost is, say, at most 2 are
deemed of interest (darker cells). This yields a very different
marginal distribution for each variable, showing the impor-
tance of weighing solutions by their relative cost. I outline
below further opportunities to exploit the distributions.

Consistency
Domain consistency is the strongest level we can achieve if
we operate on the individual domains of variables. Weaker
levels of consistency such as bounds consistency identify a
superset of the support of marginal distributions over indi-
vidual variables. Stronger levels of consistency have also
been proposed, such as path consistency and k-consistency
(Bessiere 2006), but they work in between constraints and
cannot be reflected solely on individual domains. Now if
we consider marginal distributions over subsets of variables
(two or more), we may define stronger levels of consistency
within individual constraints akin to path and k-consistency
that can be computed efficiently on our chosen combinato-
rial structures. Hence such an investigation may give rise
to new and possibly more efficient algorithms to achieve
already-defined consistency levels or even to new forms of
consistency. But information from constraints is tradition-
ally propagated through shared variables’ domains, which
cannot represent forbidden value combinations for pairs (or
larger subsets) of variables. We will come back to this im-
portant issue of how to reflect stronger levels of consisten-
cies that cannot be captured in individual domains.

Search
For search we can investigate which features of a distribu-
tion should be used to rank the potential branching deci-
sions. Previous work on counting-based search showed that
the maxSD heuristic, which simply recommends the high-
est mode from the marginal distributions, works very well
in many cases (Pesant, Quimper, and Zanarini 2012). Fig-
ures 2 and 3 show the relative performance of that heuristic
with respect to other generic heuristics on two problems (see
the above reference for a description of these other heuris-
tics). If even this limited exploitation of distributions can
improve on state-of-the-art generic search heuristics then a
deeper analysis of the distributions may lead to even more
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Figure 2: Percentage of Magic Square Completion instances
(Problem 19 of the CSPLib) solved after a given time per in-
stance, for a few heuristics (adapted from (Pesant, Quimper,
and Zanarini 2012)).

Figure 3: Percentage of Traveling Tournament Problem with
Predefined Venues instances (Problem 68 of the CSPLib)
solved after a given time per instance, for a few heuristics
(adapted from (Pesant, Quimper, and Zanarini 2012)).

robust search.
Solving combinatorial optimization problems presents the

additional technical challenge of handling distributions over
weighted solutions. (Pesant 2016) proposes a way to do this
by restricting the distribution to “good” solutions, i.e. that
are within some epsilon of a minimum-weight solution. Fig-
ure 4 shows the relative performance of a weight-aware vari-
ant of the maxSD heuristic (denoted maxSD�) with respect to
other generic heuristics on one problem (see the above refer-
ence for details). Another option is to apply some damping
to solutions according to their distance from the optimum,
making better solutions count more. There is considerable
potential here when we are confronted to a well-understood
combinatorial structure with some side constraints: we can
recommend branching decisions that correspond to solution
fragments that frequently appear in near-optimal solutions
to the “pure” problem (i.e. without the side constraints).

Model Counting
Determining the number of solutions to a CSP (model count-
ing) has a number of applications. Work in enumerative
combinatorics is typically limited to “clean” combinatorial
structures while work in AI tackles model counting by con-
sidering the problem as a whole, e.g. (Ivrii et al. 2016;
Gogate and Dechter 2008). Another option here is to count
exactly or at least closely for each constraint and then to
combine the results, for example by selecting a subset of the

Figure 4: Percentage of Balanced Academic Curriculum
Problem instances (Problem 30 of the CSPLib) solved to op-
timality after a given time per instance, for a few heuristics
(adapted from (Pesant 2016)).

constraints forming a partition of the variables and multiply-
ing the results, thus obtaining an upper bound (Pesant 2005).

Uniform Sampling
The ability to sample a complex combinatorial space uni-
formly at random has important applications such as in test
case (or stimuli) generation for software and hardware val-
idation. Knowledge of the marginal distributions over indi-
vidual variables allows us to draw samples from the set of
solutions uniformly at random by considering one variable
at a time, deciding which value to assign according to its
marginal distribution (viewed as a probability), and then ad-
justing the marginal distributions to take into account this
assignment. If the combinatorial space is described using
several structures each with its marginal distributions, the
challenge is to adapt this sampling approach in order to pre-
serve as much as possible the uniformity property.

Structural Insights
Starting from the multivariate distribution, which describes
the whole structure of the solution set of a constraint, we can
take more or less insightful peeks at the structure depending
on the nature of our queries. Variable domains are the very
flat projections of that distribution on each individual vari-
able. Here are a couple of more revealing ideas.

Learning whether a variable’s value is dependent on an-
other variable’s value is useful information for search and is
related to the concept of backdoor (Kilby et al. 2005). While
one can sometimes distinguish between main and auxiliary
variables by simple inspection of the CP model, in general
identifying such relationships proves much harder. We can
quantify the amount of dependency between a pair of vari-
ables by comparing the marginal distribution over that pair
to the product of the marginal distributions over each vari-
able (a perfect match would indicate variable independence).

We already talked about backbone variables, an interest-
ing structural feature but the concept may prove too strict
for CP models with non-binary variables. We can relax that
concept to quasi-backbone variables, when the marginal dis-
tribution has a very strong mode or a very narrow head. This
may prove more useful in practice.
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Querying Distributions
All the above may sound like nice lofty goals that we won’t
achieve. Typical constraints in CP models involve many
more variables and exhibit much more intricate structure
than the simple examples at Fig. 1. But because we work
with “easy” structures, quite a few tasks can and indeed have
been accomplished efficiently. These structures have been
selected in CP because the inference task of reaching certain
levels of consistency is computationally tractable. The gam-
ble here is that some of the other queries we are interested in
are tractable as well. We review next what has been accom-
plished so far for a few common combinatorial structures.
alldifferent constraint. This constraint restricts a
set of variables to take pairwise distinct values (Régin
1994). Simply counting the number of solutions to this
constraint is intractable (#P-complete) because it corre-
sponds to computing the permanent of an associated 0-1 ma-
trix, a well-studied problem for which estimators based on
sampling and fast upper bounds have been proposed. (Pe-
sant, Quimper, and Zanarini 2012) describe an adaptation
of the latter to compute very quickly close approximations
of the marginal distributions. This idea can be extended to
global cardinality constraints (Régin 1996). (Pe-
sant 2016) gives a polytime algorithm based on the above
and on solving a minimum-weight bipartite matching prob-
lem to compute marginal distributions of good solutions for
combinatorial optimization problems.
regular constraint. This constraint expresses patterns
that must be exhibited in a sequence of variables, as spec-
ified by an automaton (Pesant 2004). A slight extension of
the data structure used by its domain consistency algorithm
suffices to compute exact marginal distributions in polyno-
mial time (Pesant, Quimper, and Zanarini 2012). (Pesant
2016) further extends the latter to compute marginal distri-
butions of good solutions for optimization problems.
knapsack constraint. This one expresses linear equalities
and inequalities. Exact marginal distributions are computed
very similarly to the above but in pseudo-polynomial time;
alternatively, approximate marginal distributions based on
a relaxation take low polynomial time to compute (Pesant,
Quimper, and Zanarini 2012).
spanning tree constraint. The identified subset of
the edges of a given graph must form a spanning tree of
it (Dooms and Katriel 2007). Starting from the Matrix-
Tree Theorem, the computation of exact marginal distribu-
tions amounts to matrix inversion (Brockbank, Pesant, and
Rousseau 2013).
dispersion constraint. In order to express balance
among a set of variables, the collection of values they take
has its mean and its deviation from that mean constrained.
It is a generalization of the spread and deviation con-
straints. Exact marginal distributions can be computed in
polynomial time under reasonable assumptions about the
range of the domains (Pesant 2015).

Out of the above a few design patterns have emerged so
far. Some constraints already maintain a compact represen-
tation of the solution set for inference, typically a layered
graph in which there is a one-to-one correspondence be-
tween paths and solutions. All that is additionally required

to compute marginal distributions over single variables is to
maintain the number of incoming and outgoing paths at ev-
ery vertex of that graph. A bigger challenge in this case is
how to compute on that graph marginal distributions on pairs
of variables or even larger subsets. For constraints on which
the counting problem is intractable, sampling interleaved
with constraint propagation has produced very accurate es-
timates within reasonable time. Some existing upper bounds
from the literature, though crude for counting, proved to be
quite accurate for marginal distributions (since we take the
ratio of two upper bounds) and much faster than sampling.
For these two design patterns computing marginal distribu-
tions over subsets of variables will be more time-consuming
but should not pose additional technical challenges. Lastly
for others a transformation to discrete random variables uni-
formly distributed over the range of their domain provides
approximate but fast algorithms.

Combining Information
So we have evidence that for several common combinato-
rial structures the underlying multivariate distribution can be
queried efficiently. For some uses, such as consistency, this
is sufficient since any value filtering from one structure is
valid for the whole CSP. However for others, such as search
and sampling, a remaining challenge is how best to combine
the information from each structure. As an example the suc-
cessful maxSD branching heuristic for search simply takes
the maximum recommendation over all constraints. Should
we devise more refined combinations e.g. by considering
the way constraints overlap? How can our ability to perform
uniform sampling on component structures be used to draw
samples from the whole CSP and what would be the statisti-
cal properties of that procedure?

Information from constraints is traditionally propagated
through shared variables’ domains. A promising avenue to
investigate is a richer propagation medium. One way to view
a variable’s domain with respect to a constraint is as a set of
variable-value pairs with non-zero frequency, which is rather
flat information since all values are on an equal footing. If
instead we share marginal distributions over individual vari-
ables we can discriminate between values from the perspec-
tive of each constraint. And if we go one step further and
allow marginal distributions over pairs of variables it makes
it easier to propagate stronger levels of consistency. Connec-
tions to Belief Propagation (Pearl 1982) should be explored
since the nature of the information we propose to share is
similar to its messages.

Conclusion
Breaking down a complex combinatorial problem into more
manageable and better understood combinatorial structures
is foundational in CP. Therefore this solving methodology
is very well positioned to exploit these structures. Focusing
on multivariate discrete distributions offers many opportuni-
ties. I expect that this deeper investigation will have a signif-
icant impact on our ability to solve combinatorial problems,
getting better solutions faster. It should also provide new in-
sights into the combinatorial structure of practical problems.
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