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Abstract

Random constraint satisfaction problems (CSPs) have been
widely studied both in AI and complexity theory. Empirically
and theoretically, many random CSPs have been shown to ex-
hibit a phase transition. As the ratio of constraints to variables
passes certain thresholds, they transition from being almost
certainly satisfiable to unsatisfiable. The exact location of this
threshold has been thoroughly investigated, but only for cer-
tain common classes of constraints.
In this paper, we present new bounds for the location of these
thresholds in boolean CSPs. Our main contribution is that our
bounds are fully general, and apply to any fixed constraint
function that could be used to generate an ensemble of ran-
dom CSPs. These bounds rely on a novel Fourier analysis and
can be easily computed from the Fourier spectrum of a con-
straint function. Our bounds are within a constant factor of the
exact threshold location for many well-studied random CSPs.
We demonstrate that our bounds can be easily instantiated to
obtain thresholds for many constraint functions that had not
been previously studied, and evaluate them experimentally.

1 Introduction

Constraint satisfaction problems (CSPs) are widely used in
AI, with applications in optimization, control, and planning
(Russell et al. 2003). While many classes of CSPs are in-
tractable in the worst case (Cook 1971), many real-world
CSP instances are easy to solve in practice (Vardi 2014). As
a result, there has been significant interest in understanding
the average-case complexity of CSPs from multiple commu-
nities, such as AI, theoretical computer science, physics, and
combinatorics (Biere, Heule, and van Maaren 2009).

Random CSPs are an important model for studying the
average-case complexity of CSPs. Past works have pro-
posed several distributional models for random CSPs (Mol-
loy 2003; Creignou and Daudé 2003). An interesting feature
arising from many models is a phase transition phenomenon
that occurs as one changes the ratio of number of constraints,
m, to the number of variables, n. Empirical results (Mitchell,
Selman, and Levesque 1992) show that for many classes
of CSPs, randomly generated instances are satisfiable with
probability near 1 when m/n is below a certain threshold.
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For m/n larger than a threshold, the probability of satisfia-
bility is close to 0. The statistical physics, computer science,
and mathematics communities have focused much attention
on identifying these threshold locations (Achlioptas, Naor,
and Peres 2005; Biere, Heule, and van Maaren 2009).

Phase transitions for common classes of CSPs such as k-
SAT and k-XORSAT are very well-studied. For k-SAT, re-
searchers struggled to find tight lower bounds on the satisfi-
ability threshold until the breakthrough work of Achlioptas
and Moore, which provided lower bounds a constant factor
away from the upper bounds. Later works closed this gap
for k-SAT (Coja-Oghlan and Panagiotou 2013; 2016). More
recently, Dudek, Meel, and Vardi (2016) also studied the sat-
isfiability threshold for a more general CSP class, namely k-
CNF-XOR, where both k-SAT and k-XORSAT constraints
can be used. The results and analyses from these works,
however, are all specific to the constraint classes studied.

In this paper, we provide new lower bounds on the lo-
cation of the satisfiability threshold that hold for general
boolean CSP classes. We focus on the setting where CSPs
are generated by a single constraint type, though our analysis
can extend to the setting with uniform mixtures of different
constraint functions. We extend techniques from (Achlioptas
and Peres 2004) and build on (Creignou and Daudé 2003),
which proposes a distributional model for generating CSPs
and provides lower bounds on the satisfiability threshold
for these models. The significance of our work is that our
bounds hold for all functions that could be used to generate
random CSP instances. The lower bounds from (Creignou
and Daudé 2003) are also broadly applicable, but they are
looser than ours because they do not depend on constraint-
specific properties. Our lower bounds are often tight (within
a constant factor of upper bounds for many CSP classes)
because they depend on specific properties of the Fourier
spectrum of the function used to generate the random CSPs.
Since these properties are simple to compute for any con-
straint function, our lower bounds are broadly applicable
too.

The Fourier analysis of boolean functions (O’Donnell
2014) will be vital for obtaining our main results. Express-
ing functions in the Fourier basis allows for clean anal-
yses of random constraints (Friedgut and Bourgain 1999;
Barak et al. 2015; Achim, Sabharwal, and Ermon 2016). Our
use of Fourier analysis is inspired by the work of Achim,
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Sabharwal, and Ermon (2016), who analyze the Fourier
spectra of random hash functions used as constraints in CSP-
based model counting. We show that the Fourier spectrum
of our constraint-generating function controls the level of
spatial correlation in the set of satisfying assignments to the
random CSP. If the Fourier spectrum is concentrated on first
and second order coefficients (corresponding to “low fre-
quencies”), this correlation will be very high, roughly in-
creasing the variance of the number of solutions to a ran-
dom CSP and decreasing the probability of satisfiability. In
related work, Montanari, Restrepo, and Tetali (2011) also
use Fourier analysis to provide tight thresholds in the case
where odd Fourier coefficients are all zero.

2 Notation and Preliminaries

In this section, we will introduce the preliminaries necessary
for presenting our main theorem. First, we formally define
our distribution for generating random CSPs, inspired from
(Creignou and Daudé 2003).

We will use n and m to denote the number of variables
and number of constraints in our CSPs, respectively. We will
also let f : {−1, 1}k → {0, 1} denote a binary function and
refer to f as our constraint function. Often we use the term
“solution set of f” to refer to the set {u : f(u) = 1}. Using
the constraint function f , we create constraints by applying
f to a signed subset of k variables.

Definition 1 (Constraint). Let I = (i1, . . . , ik) be an or-
dered tuple of k indices in [n], and let s be a sign vector
from {−1, 1}k. Given a vector σ ∈ {−1, 1}n, we will define
the vector σI,s of size k as follows:

σI,s = (s1σi1 , . . . , skσik) (1)

Now we can denote the application of f to these indices by
fI,s(σ) = f(σI,s). We call fI,s a constraint, and we say that
σ ∈ {−1, 1}n satisfies the constraint fI,s if fI,s(σ) = 1.

The definition of a CSP generated from f follows.

Definition 2 (CSP generated from f ). We will repre-
sent a CSP with m constraints and n variables gener-
ated from f as a collection of constraints Cf (n,m) =
{fI1,s1 , . . . , fIm,sm}. Then σ ∈ {−1, 1}n satisfies
Cf (n,m) if σ satisfies fIj ,sj for j = 1, . . . ,m.

Example 1 (3-SAT). Let f : {−1, 1}3 → {1, 0} where
f(u) = 0 for u = (−1,−1,−1) and f(u) = 1 for all other
u. Then f is the constraint function for the 3-SAT problem.

With these basic definitions in place, we are ready to in-
troduce the model for random CSPs.

2.1 Random CSPs

We discuss our model for randomly generating Cf (n,m),
and formally define a “satisfiability threshold.”

To generate instances of Cf (n,m), we simply choose
I1, . . . , Im and s1, . . . , sm uniformly at random. For com-
pleteness, we sample without replacement, i.e. there are no
repeated variables in a constraint, and no duplicate con-
straints. However, sampling with replacement does not af-
fect final results. For the rest of this paper we abuse notation

and let Cf (n,m) denote a randomly generated CSP instance
following this model.

Now we formally discuss satisfiability thresholds. We let
r = m/n. For many constraint functions f , there exist
thresholds rf,sat and rf,unsat such that

lim
n→∞Pr[Cf (n, rn) is satisfiable] =

{
1 if r < rf,sat

0 if r > rf,unsat

In general, it is unknown whether rf,sat = rf,unsat, but for
some problems such as k-SAT (for large k) and k-XORSAT,
affirmative results exist (Ding, Sly, and Sun 2015; Pittel and
Sorkin 2016). If rf,sat = rf,unsat, then we say that the random
CSP Cf (n,m) exhibits a sharp threshold in m/n.

We are concerned with finding lower bounds rf,low on
rf,unsat such that there exists a constant C > 0 independent
of n so that for sufficiently large n,

Pr[Cf (n, rn) is satisfiable] > C for all r < rf,low (2)

For CSP classes with a sharp threshold, (2) implies that

lim
n→∞Pr[Cf (n, rn) is satisfiable] = 1 for all r < rf,low

We also wish to find upper bounds rf,up such that

lim
n→∞Pr[Cf (n, rn) is satisfiable] = 0 for all r > rf,up

For an example of these quantities instantiated on a concrete
example, refer to the experiments in Section 5.

We provide a value for rf,up which was derived earlier in
(Creignou and Daudé 2003). Dubois (2001) and Creignou,
Daudé, and Dubois (2007) provide methods for obtaining
tighter upper bounds, but the looser values that we use are
sufficient for showing that rf,low is on the same asymptotic
order as rf,unsat for many choices of f .

The bound rf,low depends on both the symmetry and size
of the solution set of f . The more assignments u ∈ {−1, 1}k
such that f(u) = 1, the more likely it is that each con-
straint is satisfied. Increased symmetry reduces the variance
in the number of solutions to Cf (n, rn), so solutions are
more spread out among possible CSPs in our class and the
probability that Cf (n, rn) will have a solution is higher. We
will formally quantify this symmetry in terms of the Fourier
spectrum of f , which we introduce next.

2.2 Fourier Expansion of Boolean Functions

We discuss basics of Fourier analysis of boolean func-
tions. For a detailed review, refer to (O’Donnell 2014).
We define the vector space Fk of all functions mapping
{−1, 1}k to R. The set Fk has the inner product 〈f1, f2〉 =∑

u∈{−1,1}k f1(u)f2(u)/2
k for any f1, f2 ∈ Fk.

This inner product space has orthonormal basis vectors
χS , where the parity functions χS follow χS(u) =

∏
i∈S ui

for all S ⊆ [k], subsets of the k indices. Because (χS)S⊆[k]

forms an orthonormal basis, if we write

f̂(S) = 〈f, χS〉 = 1

2k

∑
u∈{−1,1}k

f(u)χS(u) (3)

then we can write f as a linear combination of these vectors:
f =

∑
S⊆[k] f̂(S)χS . We note that when S = ∅, the empty

3959



set, f̂(∅) is simply the average of f over {−1, 1}k. We will
refer to the coefficients (f̂(S))S⊆[k] as the Fourier spectrum
of f . Since these coefficients are well-studied in theoretical
computer science (O’Donnell 2014), the Fourier coefficients
of many boolean functions are easily obtained.

Example 2 (3-SAT). For 3-SAT, f̂(∅) = 7/8. f̂({1}) =

f̂({2}) = f̂({3}) = 1/8, and f̂({1, 2}) = f̂({2, 3}) =

f̂({1, 3}) = −1/8.
Representing f in the Fourier bases will facilitate our

proofs, providing a simple way to express expectations over
our random CSPs. The Fourier spectrum can also provide a
measure of “symmetry” in f - if some values of f̂(S) are
high where |S| = 1, then satisfying assignments to f are
more skewed in the variable corresponding to S. We will
show how this impacts satisfiability in Section 3.2.

3 Main Results

We provide simple formula for rf,up. A similar result is in
(Creignou and Daudé 2003), and the full proof is in the com-
panion technical report.
Proposition 1. For all constraint functions f , let

rf,up =
log 2

log 1/f̂(∅) <
log 2

1− f̂(∅)
If r ≥ rf,up, limn→∞ Pr[Cf (n, rn) is satisfiable] = 0.

Proof Sketch. We compute the expected solution count for
Cf (n, rn). The expected solution count will scale with f̂(∅),
since 2kf̂(∅) is simply the number of u ∈ {−1, 1}k where
f(u) = 1 and therefore governs how easily each constraint
will be satisfied. If r > rf,up, the expected solution count
converges to 0 as n → ∞, so Markov’s inequality implies
that the probability that a solution exists goes to 0.

Next, we will present our value for rf,low. First, some no-
tation: let U = {u ∈ {−1, 1}k : f(u) = 1}, and let A be
the k×|U | matrix whose columns are the elements of u. We
will use A+ to denote the Moore-Penrose pseudoinverse of
A. For a reference on this, see (Barata and Hussein 2012).
Finally, let 1 be the |U |-dimensional vector of 1’s.
Example 3 (3-SAT). For 3-SAT, k = 3 and |U | = 7, and we
can write A as follows (up to permutation of its columns):

A =

[
1 1 1 1 −1 −1 −1
1 1 −1 −1 1 1 −1
1 −1 1 −1 1 −1 1

]

where columns of A satisfy the 3-SAT constraint function.
The following main theorem provides the first computable

equation for obtaining lower bounds that are specific to the
constraint-generating function f .
Theorem 1. For all constraint functions f , let

rf,low =
1

2

c

1− c
where c = f̂(∅)− 1TA+A1

2k

If r < rf,low, then there exists a constant C > 0 such that
limn→∞ Pr[Cf (n, rn) is satisfiable] > C.

The lower bound rf,low is an increasing function of c
which is dependent on two quantities. First, with higher val-
ues of f̂(∅), Cf (n, rn) will have more satisfying assign-
ments on average, so c and the threshold value will be higher.
Second, c depends on the level of symmetry in the solution
set of f , which we will show is connected to the Fourier
spectrum of f . We explain this dependence in Section 3.2.

In comparison, Creignou and Daudé (2003) obtain lower
bounds which depend only on the arity of f . While we can-
not make an exact comparison because Creignou and Daudé
use a different random CSP ensemble, for reference, they
provide the general lower bound of 1/(kek − k) expected
constraints per variable for functions of arity k. Our bounds
are much tighter because of their specificity while remain-
ing simple to compute. To demonstrate, we instantiate our
bounds for some example constraint functions in Figure 1.
Whereas their bounds are exponentially decreasing in k, our
bounds are constant or increasing in k for the functions
shown.

3.1 Constraint Functions in Figure 1

We define the constraint functions in Figure 1. Unless spec-
ified otherwise, they will be in the form f : {−1, 1}k →
{0, 1}.
1. k-SAT: f(u) = 0 if u is the all negative ones vector, and

f(u) = 1 otherwise.
2. k-XORSAT: f(u) = 1(χ[k](u) = −1)

3. k-NAESAT: f(u) = 0 if u is the all negative ones or all
ones vector, and f(u) = 1 otherwise.

4. k-MAJORITY: Defined when k is odd, f(u) = 1 if more
than half of the variables of u are 1.

5. a-MAJ ⊗ 3-MAJ: Defined when a is odd, where f :
{−1, 1}3a → {0, 1}. Defined as the composition of a-
MAJORITY on a groups of 3-MAJORITY, as follows:

f(u1, . . . , u3a) =

fa−MAJ(f3−MAJ(u1, u2, u3), . . . ,

f3−MAJ(u3a−2, u3a−1, u3a))

6. k-MOD-3: f(u) = 1 when the number of 1’s in u is di-
visible by 3, and 0 otherwise.

7. ORb⊗ XORa: In this case, f : {−1, 1}ab → {0, 1}, and
f is the composition of a OR over b groups of XORs over
a variables, as follows:

f(u1, . . . , uab) =

fORb
(fXORa

(u1, . . . , ua), . . . ,

fXORa
(uab−a+1, . . . , uab))

While the last four constraint functions have not been ana-
lyzed much in the existing CSP literature, these types of gen-
eral constraints are of practical interest because of (Achim,
Sabharwal, and Ermon 2016), which performs probabilis-
tic inference by solving CSPs based on arbitrary hash func-
tions. For example, Achim, Sabharwal, and Ermon (2016)
show that MAJORITY constraints are effective in practice
for solving probabilistic inference problems.
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CSP class (f ) Best lower bound on rf,unsat Our bound rf,low Upper bound rf,up

k-XORSAT 1 1
2 1

k-SAT 2k ln 2− 1+ln 2
2 − ok(1) 2k−1 −O(k) 2k ln 2

k-NAESAT 2k−1 ln 2− ln 2
2 − 1

4 − ok(1) 2k−2 − 1
2 2k−1 ln 2

k-MAJORITY ?
1
2−k(

k−1
k−1
2
)
2
2−2k+1

1+k(
k−1
k−1
2
)
2
2−2k+2

= 0.111− oa(1) 1

a-MAJ ⊗3-MAJ ?
1
2−3a(

a−1
a−1
2
)
2
2−2a−1

1+3a(
a−1
a−1
2
)
2
2−2a−2

= 0.177− oa(1) 1

k-MOD-3 ? 1
4 − ok(1)

ln 2
ln 3 + ok(1)

ORb⊗ XORa ? 2b−1 − 1/2 2b−1 ln 2

Figure 1: We compare the best known lower bounds on the satisfiability threshold to our lower and upper bounds. For k-
XORSAT (Pittel and Sorkin 2016), k-SAT (Ding, Sly, and Sun 2015), and k-NAESAT (Coja-Oglan and Panagiotou 2012), the
numbers listed are known as exact sharp threshold locations. For the last four, we do not know of existing lower bounds. ⊗ is
the composition operator for boolean functions, and we define these functions in Section 3.1.

3.2 Connecting Bounds with Fourier Spectrum

We explain how the Fourier spectrum can help us interpret
Theorem 1. We first show the connection between c and the
Fourier spectrum. Let f̂S:|S|=1 be the k-dimensional vector
whose entries are Fourier coefficients of f for size 1 sets.
Let B be the k × k matrix with diagonal entries Bii = f̂(∅)
and off-diagonal entries Bij = f̂({i, j}) for i �= j.
Example 4 (3-SAT). Following the coefficients in Example
2, for 3-SAT, f̂S:|S|=1 = (1/8, 1/8, 1/8) and

B =

[
7/8 −1/8 −1/8

−1/8 7/8 −1/8
−1/8 −1/8 7/8

]

Lemma 1. When the rows of A are linearly independent,
c = f̂(∅)− f̂T

S:|S|=1B
−1f̂S:|S|=1.

From this lemma, we see that larger values of c corre-
spond to smaller f̂S:|S|=1. These terms will measure the
amount of “symmetry” in the solution set for f . The matrix
B and vectors f̂S:|S|=1 are easily obtained for many f since
Fourier coefficients are well-studied (O’Donnell 2014).

Figure 1 shows how f̂(∅) − c and f relate. Since k-
SAT has a mostly symmetric solution set, f̂k−SAT(∅) − c =
O(k/22k) since c = 1 − 2−k − O(k/22k), which is small
compared to f̂k−SAT(∅). The solution set of k-NAESAT
is completely symmetric as if fk−NAESAT(x) = 1, then
fk−NAESAT(−x) = 1. Thus, fk−NAESAT has 0 weight on
Fourier coefficients for sets with odd size so we can compute
that f̂k−NAESAT(∅)− c = 0. k-MAJORITY, however, is less
symmetric, as shown by larger first order coefficients. Here,
the bound in Figure 1 gives limk→∞ f̂k−MAJORITY(∅)− c =

1/π, which is large compared to f̂k−MAJORITY(∅) ≈ 1/2.

4 Proof Strategy

Our proof relies on the second moment method, which has
been applied with great success to achieve lower bounds for

problems such as k-SAT (Achlioptas and Peres 2004) and
k-XORSAT (Dubois and Mandler 2002). The second mo-
ment method is based on the following lemma, which can
be derived using the Cauchy-Schwarz inequality:

Lemma 2. Let X be any real-valued random variable. Then

Pr[X �= 0] = Pr[|X| �= 0] ≥ E[|X|]2
E[X2]

≥ E[X]2

E[X2]
(4)

If X is only nonzero when Cf (n, rn) has a solution, we
obtain lower bounds on the probability that a solution exists
by upper bounding E[X2]. For example, we could let X be
the number of solutions to Cf (n, rn). However, as shown in
(Achlioptas and Peres 2004), this choice of X fails in most
cases. Whether two different assignments satisfy Cf (n, rn)
is correlated: if the assignments are close in Hamming dis-
tance and one assignment is satisfying, it is more likely that
the other is satisfying as well. This will make E[X2] much
larger than E[X]2, so (4) will not provide useful information.
Figure 2a demonstrates this failure for k-SAT. Achlioptas
and Peres (2004) show formally that the ratio E[X]2/E[X2]
will decrease exponentially (albeit at a slow rate). On the
other hand, k-NAESAT is “symmetric”, so the second mo-
ment method works directly here. In the plot, E[X]2/E[X2]
for 3-NAESAT stays above a constant. This also follows for-
mally from our main theorem as well as (Achlioptas and
Moore 2002). We formally define our requirements on sym-
metry in (13).

We circumvent this issue by weighting solutions to reduce
correlations before applying the second moment method. As
in (Achlioptas and Peres 2004), we use a weighting which
factors over constraints in Cf (n, rn) and apply the second
moment method to the random variable

X =
∑

σ∈{−1,1}n

∏
c∈Cf (n,rn)

w(σ, c) (5)

where Cf (n, rn) is a collection of constraints
{fI1,s1 , . . . , fIm,sm} and the randomness in X comes
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over the choices of Ij , sj . Now we can restrict our attention
to constraint weightings of the form w(σ, fI,s) = w(σI,s).
In the special case where w(σI,s) = f(σI,s), X will simply
represent the number of solutions to Cf (n, rn). In general,
we require w(σI,s) = 0 whenever f(σI,s) = 0. This way, if
X �= 0, then Cf (n, rn) must have a solution.

For convenience, we assume that the index sets I1, . . . , Im
are sampled with replacement. They are chosen uniformly
from [n]k. We also allow constraints to be identical. In the
companion technical report, we justify why proofs in this
setting carry over to the without-replacement setting in Sec-
tion 2.1 and also provide full proofs to the lemmas presented
below.

In this setting, we will compute the first and second mo-
ments of the X chosen in (5) in terms of the Fourier spec-
trum of w.
Lemma 3. The squared first moment of X is given by

E[X]2 = 22n(ŵ(∅)2)rn (6)

Proof. We can expand E[X] as follows:

E[X] =
∑

σ∈{−1,1}n
E

⎡
⎣ rn∏
j=1

w(σIj ,sj )

⎤
⎦

=
∑

σ∈{−1,1}n
E[w(σI,s)]

rn (7)

where we used the fact that constraints are chosen indepen-
dently. Now we claim that for any u ∈ {−1, 1}k,

Pr[σI,s = u] =
1

2k

This follows from the fact that we choose s uniformly over
{−1, 1}k and our definition of σI,s in (1). Thus,

E[w(σI,s)] =
∑

u∈{−1,1}k
w(u) Pr[σI,s = u]

=
1

2k

∑
u∈{−1,1}k

w(u)

= ŵ(∅)
Plugging back into (7) gives the desired result.

Next, we will compute the second moment E[X2].

Lemma 4. Let gw(α) =
∑

S⊆[k](2α − 1)|S|ŵ(S)2. The
second moment of X is given by

E[X2] = 2n
n∑

j=0

(
n

j

)
gw(j/n)

rn (8)

The function gw(α) is similar to the noise sensitivity of a
boolean function (O’Donnell 2003) and measures the corre-
lation in the value of w between two assignments σ, τ which
overlap at α(σ, τ)n locations. As a visual example, Figure
2b shows how gw(α) changes for k-XORSAT with varying
k. The key of our proof is showing that E[w(σI,s)w(τI,s)] =
gw(α(σ, τ)) for a random constraint fI,s.

We will now write E[X]2 in terms of gw. Since gw(1/2) =
ŵ(∅)2, plugging this into (6) gives us

E[X]2 = 22ngw(1/2)
rn (9)

This motivates us to apply the following lemma from
(Achlioptas and Peres 2004), which will allow us to trans-
late bounds on gw(α) into bounds on E[X]2/E[X2]:
Lemma 5. Let φ be any real, positive, twice-differentiable
function on [0, 1] and let

Sn =
n∑

j=0

(
n

j

)
φ(j/n)n

Define ψ on [0, 1] as ψ(α) = φ(α)
αα(1−α)1−α . If there exists

αmax ∈ (0, 1) such that ψ(αmax) > ψ(α) for all α �= αmax,
and ψ′′(αmax) < 0, then there exist constants B,C > 0
such that for all sufficiently large n,

Bψ(αmax)
n ≤ Sn ≤ Cψ(αmax)

n (10)

To apply the lemma, we can define φr(α) = gw(α)
r and

ψr(α) =
φr(α)

αα(1−α)1−α . Then from (9), we note that

ψr(1/2)
n = 2n(gw(1/2)

r)n = E[X]2/2n (11)

On the other hand, from (8),
n∑

j=0

(
n

j

)
φr(j/n)

n = E[X2]/2n (12)

so if the conditions of Lemma 5 hold for αmax = 1/2, we
recover that E[X]2/E[X2] ≥ C for some constant C > 0.

One requirement for ψr(α) to be maximized at α =
1/2 is that ψ′r(1/2) = 0. Expanding ψ′r(1/2) gives
2gw(1/2)

r−1(rg′w(1/2)) = 0. Since gw(1/2) = ŵ(∅)2 >
0, we thus require

g′w(1/2) = 2
∑

S⊆[k]:|S|=1

ŵ(S)2 = 0 (13)

In order to satisfy (13), we need ŵ(S) = 0 for all S ⊆ [k]
where |S| = 1. To use Lemma 5, we would like to choose
w such that (13) holds. We discuss how to choose w to op-
timize our lower bounds in the companion technical report.
In the next section, we will provide r so that the conditions
of Lemma 5 hold at α = 1/2 for arbitrary w when (13) is
satisfied.

4.1 Bounding the Second Moment For Fixed w
We give a general bound on r in terms of our weight function
w so that the conditions of Lemma 5 are satisfied for α =
1/2. For now, the only constraint we place on w is that (13)
holds. The next lemma lets us consider only α ∈ [1/2, 1].
Lemma 6. Let α ≥ 1/2. Then gw(α) ≥ gw(1− α).

This lemma follows because gw(α) is a polynomial in
(2α − 1) with nonnegative coefficients, and (2α − 1) > 0
for α > 1/2.

Now we can bound ψr(α) for α ∈ [1/2, 1]. Combined
with Lemma 6, the next lemma will give conditions on r
such that ψr(1/2) > ψr(α) for all α ∈ [0, 1].
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(a) E[X]2/E[X2] vs. n for 3-SAT and 3-
NAESAT. X is the solution count, r =
1.

(b) gw(α) when f is k-XORSAT and
w = f .

(c) ψr(α) with f as 5-NAESAT and
w = f .

Figure 2: For concreteness, we provide sample plots of the relevant quantities in our proofs.

Lemma 7. Let the weight function w satisfy (13). If

r ≤ 1

2

ŵ(∅)2∑
S:|S|≥2 ŵ(S)

2
(14)

ψr(1/2) > ψr(α) for α ∈ [0, 1] and ψ′′r (1/2) < 0.
Figure 2c shows how r controls the shape of the function

ψr(α). As r increases, ψ′′r (1/2) becomes positive and ψr(α)
will no longer attain a local maximum in that region. The key
step in proving Lemma 7 is rearranging ψr(1/2) > ψr(α)
and simplify calculations by using approximations for the
logarithmic terms that appear.

Our bound on r compares the average of w over {−1, 1}k
with the correlations between w and the Fourier basis func-
tions. If w has strong correlations with the other Fourier ba-
sis functions, two assignments which are equal at αn vari-
ables will likely either be both satisfying or both not satisfy-
ing as α approaches 1. This increases E[X2] but not E[X]2

and makes Lemma 2 provide a trivial bound if r is too large.
Thus, if w has strong correlations with the Fourier basis
functions, we must choose smaller r as reflected by (14).

To get the tightest bounds, we wish to maximize the ex-
pression in (14). Although we prove our lemma for general
w requiring only (13), we also need w(u) = 0 whenever
f(u) = 0 to apply our lemma to satisfiability. Recalling our
definition of X in (5), this condition ensures that Cf (n, rn)
has a solution whenever X �= 0. Thus,

w(u) = λ(u)f(u) (15)

for some λ : {−1, 1}k → R. If we disregard (13), choosing
λ(u) = 1 would maximize the bound on r in (14). The addi-
tional requirement of (13) for the second moment method to
succeed can be viewed as a “symmetrization penalty” on r.
In the companion technical report, we discuss how to choose
w to optimize our bound on r while satisfying (13) and (15).

4.2 Proving the Main Theorem

We will combine our lemmas to prove Theorem 1.

Proof of Theorem 1. We wish to apply the second moment
method on X defined in (5), where w is a function we
use to weigh assignments to individual constraints. We
choose w as described in the full version of the paper,
which satisfies both (13) and (15). Since w satisfies (15),
Pr[Cf (n, rn) is satisfiable] ≥ Pr[X �= 0] ≥ E[X]2/E[X2]
by Lemma 2. Now we will use Lemma 7 to show that the
conditions for Lemma 5 are satisfied for φr = gw(α)

r and
r satisfying (14). For our choice of w, it follows from the
derivations in the full technical report that the RHS of (14)
becomes

r < rf,low =
1

2

c

1− c
where c = f̂(∅)− 1TA+A1

2k

where A is defined in Section 3. There is a slight technical-
ity in directly applying Lemma 5 because φr might not be
nonnegative for α < 1/2; we discuss this in the compan-
ion technical report. Now using (11) and (12), and applying
Lemma 5, we can conclude that there exists C > 0 such that

Pr[Cf (n, rn) is satisfiable] ≥ E[X]2/E[X2] ≥ C

for sufficiently large n and all r < rf,low.

There remains a question of what rf,low we can hope
achieve using a second moment method proof where X is
defined as in (5). The following lemma provides some intu-
ition for this:
Lemma 8. In order for the conditions of Lemma 5 to hold
at αmax = 1/2 for X in the form of (5) and any choice of w
satisfying (15), we require

r < log 2/ log
1

f̂(∅)− 1TA+A1
2k

≤ rf,up =
log 2

log 1
f̂(∅)

(16)

The difference of 1TA+A1/2k in the lower logarithm
compared to rf,up can be viewed as a “symmetrization
penalty” necessary for our proof to work. While Lemma
8 does not preclude applications of the second moment
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(a) a = 2, b = 4 (b) a = 2, b = 5

Figure 3: Proportion of CSPs satisfiable out of 50 trials vs. r for tribes functions. We show our bounds for reference.

method that do not rely on Lemma 5, consider what happens
for r that do not satisfy (16). For these r, the function ψr(α)
must obtain a maximum at some α∗ ∈ [0, 1], α∗ �= 1/2. If it
also happens that φr(α) is nonnegative and twice differen-
tiable on [0, 1], and ψ′′r (α

∗) < 0, then conditions of Lemma
5 hold, and applying it to αmax = α∗ along with (10), (11),
and (12) will actually imply that

E[X]2

E[X2]
≤ 1

B

(
ψr(1/2)

ψr(α∗)

)n

for some constant B > 0, which gives us an exponentially
decreasing, and therefore trivial lower bound for the second
moment method. Therefore, we believe that (16) is near the
best lower bound on rf,unsat that we can achieve by applying
the second moment method on X in the form of (5).

5 Experimental Verification of Bounds

We empirically test our bounds with the goal of examin-
ing their tightness. For our constraint functions, we will use
tribes functions. The tribes function takes the disjunction of
b groups of a variables and evaluates to 1 or 0 based on
whether the following formula is true:

TRIBESa,b(x1, . . . , xab) = ∨b−1
i=0

(∧a
j=1xia+j

)
where +1 denotes true and −1 denotes false. For our ex-
periments, we randomly generate CSP formulas based on
TRIBESa,b. We use the Dimetheus1 random CSP solver to
solve these formulas, or report if no solution exists. We show
our results in Figure 3. As expected, our values for lower
bounds rf,low are looser than the upper bounds rf,up.

6 Conclusion

Using Fourier analysis and the second moment method, we
have shown general bounds on m/n, the ratio of constraints
to variables; for m/n below these bounds, there is constant
probability that a random CSP is satisfiable. We demonstrate
that our bounds are easily instantiated and can be applied

1https://www.gableske.net/dimetheus

to obtain novel estimates of the satisfiability threshold for
many classes of CSPs. Our bounds depend on how easy it
is to symmetrize solutions to the constraint function. We
provide a heuristic argument to approximate the best pos-
sible lower bounds that our application of the second mo-
ment method can achieve; these bounds differ from upper
bounds on the satisfiability threshold by a “symmetrization
penalty.” Thus, an interesting direction of future research is
to determine whether we can provide tighter upper bounds
that account for symmetrization, or whether symmetrization
terms are an artificial product of the second moment method.
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