
The Opacity of Backbones

Lane A. Hemaspaandra
Department of Computer Science

University of Rochester
Rochester, NY 14627, USA

David E. Narváez
College of Computing and Information Sciences

Rochester Institute of Technology
Rochester, NY 14623, USA

Abstract

A backbone of a boolean formula F is a collection S of
its variables for which there is a unique partial assignment
aS such that F [aS] is satisfiable (Monasson et al. 1999;
Willams, Gomes, and Selman 2003). This paper studies
the nontransparency of backbones. We show that, under the
widely believed assumption that integer factoring is hard,
there exist sets of boolean formulas that have obvious, non-
trivial backbones yet finding the values, aS , of those back-
bones is intractable. We also show that, under the same as-
sumption, there exist sets of boolean formulas that obviously
have large backbones yet producing such a backbone S is in-
tractable. Further, we show that if integer factoring is not
merely worst-case hard but is frequently hard, as is widely
believed, then the frequency of hardness in our two results is
not too much less than that frequency.

1 Introduction

An important concept in the study of the SAT problem is the
notion of backbones. The term was first used by Monasson
et al. (1999), and the following formal definition was pro-
vided by Williams, Gomes, and Selman (2003).

Definition 1. Let F be a boolean formula. A collection S
of the variables of F is said to be a backbone if there is a
unique partial assignment aS such that F [aS] is satisfiable.

In that definition, aS assigns a value (true or false) to each
variable in S, and F [aS] is a shorthand meaning F except
with each variable in S assigned the value specified for it in
aS . A backbone S is nontrivial if S �= ∅. The size of a back-
bone S is the number of variables in S. For a backbone S
(for formula F), we say that aS is the value of the backbone
S.

For example, every satisfiable formula has the trivial
backbone S = ∅. The formula x1 ∧ x2 has four backbones,
∅, {x1}, {x2}, and {x1, x2}, with respectively the values
(listing values as bit-vectors giving the assignments in the
lexicographical order of the names of the variables in S) ε,
1, 0, and 10. The formula x1 ∨ x2 has no nontrivial back-
bones. (Every formula that has a backbone will have a max-
imum backbone—a backbone that every other backbone is a

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

subset of. Backbone variables have been called “frozen vari-
ables,” because each of them is the same over all satisfying
assignments.)

As Williams, Gomes, and Selman (2003) note, “backbone
variables are useful in studying the properties of the solution
space of a... problem.”1

And that surely is so. But it is natural to hope to go be-
yond that and suspect that if formulas have backbones, we
can use those to help SAT solvers. After all, if one is seek-
ing to get one’s hands on a satisfying assignment of an F
that has a backbone, one need but substitute in the value
of the backbone to have put all its variables to bed as to
one’s search, and thus to “only” have all the other variables
to worry about.

The goal of the present paper is to understand, at least in a
theoretical sense, the difficulty of—the potential obstacles to
doing—what we just suggested. We will argue that even for
cases when one can quickly (i.e., in polynomial time) rec-
ognize that a formula has at least one nontrivial backbone,
it can be intractable to find one such backbone. And we
will argue that even for cases when one can quickly (i.e., in
polynomial time) find a large, nontrivial backbone, it can be
intractable to find the value of that backbone. In particular,
we will show that if integer factoring is hard, then both the
just-made claims hold. Integer factoring is widely believed
to be hard; indeed, if it were in polynomial time, RSA (the
Rivest-Shamir-Adleman cryptosystem) itself would fall.

In fact, integer factoring is even believed to be hard on
average. And we will be inspired by that to go beyond the
strength of the results mentioned above. Regarding our re-
sults mentioned above, one might worry that the “intractabil-
ity” might be very infrequent, i.e., merely a rare, worst-case
behavior. But we will argue that if integer factoring—or in-
deed any problem in NP ∩ coNP—is frequently hard, then
the bad behavior types we mention above happen “almost”
as often: If the frequency of hardness of integer factoring

1We mention in passing that backbones also are very interest-
ing for problems even harder than SAT, such as model counting
(see Gomes, Sabharwal, and Selman, 2009)—i.e., #SAT (Valiant
1979): counting the number of satisfying assignments of a propo-
sitional boolean formula—especially given the currently huge run-
time differences between SAT-solvers and model counters. After
all, a backbone for a formula helpfully pinpoints into a particular
subspace all the solutions that one is seeking to count.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3900

is d(n) for strings up to length n, then for some ε > 0 the
frequency of hardness of our problems is d(nε).

None of this means that backbones are not an excellent,
important concept. Rather, this is saying—proving, in fact,
assuming that integer factoring is as hard as is generally
believed—that although the definition of backbone is merely
about a backbone existing, one needs to be aware that going
from a backbone existing to finding a backbone, and going
from having a backbone to knowing its value, can be com-
putationally expensive challenges.

2 Results

Section 2.1 will formulate our results without focusing on
density. Then in Section 2.2 we will discuss how the fre-
quency of hardness of sets of the type we have discussed is
related to that of the sets in NP ∩ coNP having the highest
frequencies of hardness.

The present section focuses only on presenting the results
and what they mean. We will provide proofs in Section 3.

2.1 Basic Results

We first look at whether there can be simple sets of formulas
for which one can easily compute/obtain a nontrivial back-
bone, yet one cannot easily find the value of that backbone.

Our basic result on this is stated below as Theorem 1. In
this and most of our results, we state as our hypothesis not
that “integer factoring cannot be done in polynomial time,”
but rather that “P �= NP ∩ coNP.” This in fact makes our
claims stronger ones than if they had as their hypotheses “in-
teger factoring cannot be done in polynomial time,” since it
is well-known (because the decision version of integer fac-
torization is itself in NP∩coNP) that “integer factoring can-
not be done in polynomial time” implies “P �= NP∩coNP.”
SAT will, as usual, denote the set of satisfiable (proposi-
tional) boolean formulas. (We do not assume that SAT by
definition is restricted to CNF formulas.)

Theorem 1. If P �= NP ∩ coNP, then there exists a set
A ∈ P, A ⊆ SAT, of boolean formulas such that:

1. There is a polynomial-time computable function f such
that (∀F ∈ A)[f(F) outputs a nontrivial backbone of F].

2. There does not exist any polynomial-time computable
function g such that g(F) computes the value of backbone
f(F).

Theorem 1 remains true even if one restricts the back-
bones found by f to be of size 1. We state that, in a slightly
more general form, as follows.

Theorem 2. Let k ∈ {1, 2, 3, . . .}. If P �= NP∩ coNP, then
there exists a set A ∈ P, A ⊆ SAT, of boolean formulas
such that:

1. There is a polynomial-time computable function f such
that (∀F ∈ A)[f(F) outputs a size-k backbone of F].

2. There does not exist any polynomial-time computable
function g such that g(F) computes the value of backbone
f(F).

Now let us turn to the question of whether, when it is ob-
vious that there is at least one nontrivial backbone, it can be

hard to efficiently produce a nontrivial backbone. The fol-
lowing theorem shows that, if integer factoring is hard, the
answer is yes.

Theorem 3. If P �= NP ∩ coNP, then there exists a set
A ∈ P, A ⊆ SAT, of boolean formulas (each having at
least one variable) such that:

1. Each formula F ∈ A has a backbone whose size is at
least 49% of F ’s total number of variables.

2. There does not exist any polynomial-time computable
function g such that, on each F ∈ A, g(F) outputs a back-
bone whose size is at least 49%—or even at least 2%—of
F ’s variables.

The 49% and 2% above are not at all magic, but are just
for concreteness. It is easy to see that our proof that estab-
lishes the above theorem is in fact tacitly establishing the
following more general claim (note: the smaller the ε the
stronger the claim, and so the fact that below we speak only
of ε ≤ 1 is not a weakness). The above theorem is the ε = 1
case.

Theorem 4. For each fixed ε, 0 < ε ≤ 1, the following claim
holds. If P �= NP ∩ coNP, then there exists a set A ∈ P,
A ⊆ SAT, of boolean formulas (each having at least one
variable) such that:

1. Each formula F ∈ A has a backbone whose size is at
least (50− ε)% of F ’s total number of variables.

2. There does not exist any polynomial-time computable
function g such that, on each F ∈ A, g(F) outputs a
backbone whose size is at least (2ε)% of F ’s variables.

2.2 Frequency of Hardness

A practical person might worry about results of the previ-
ous section in the following way. (Here, |F | will denote the
number of bits in the representation of F .) “Just because
something is hard, doesn’t mean it is hard often. For exam-
ple, consider Theorem 3. Perhaps there is a polynomial-time
function g′ that, though it on infinitely many F ∈ A fails to
compute the value of the backbone f(F), has the property
that for each F ∈ A for which it fails it then is correct on

the (in lexicographical order) next 22
22

|F |
elements of A. In

this case, the theorem is indeed true, but it is a worst-case
extreme that doesn’t recognize that in reality the errors may
be few and far—very, very far—between.”

In this section, we address that reasonable worry. We
show that if even one problem in NP ∩ coNP is frequently
hard, then the sets in our previous sections can be made “al-
most” as frequently hard, in a sense of “almost” that we will
make formal and specific. Since it is generally believed—for
example due to the generally believed typical-case hardness
of integer factoring—that there are sets in NP ∩ coNP that

are quite frequently hard, it follows that the 22
22

|F |
behavior

our practical skeptic was speculating about cannot happen.
Or at least, if that behavior did happen, then that would im-
ply that every single problem in NP∩coNP has polynomial-
time heuristic algorithms that make extraordinarily few er-
rors.

3901

Note that no one currently knows for sure how frequently-
hard problems in NP ∩ coNP can be. But our results are
showing that, whatever that frequency is, sets of the sort
we’ve been constructing are hard “almost” as frequently.
This can at first seem a bit of a strange notion to get one’s
head around, especially as complexity theory often doesn’t
pay much attention to frequency-of-hardness issues (though
such issues in complexity theory can be traced back at least
as far as the work of Schöning, 1986). But this actually is
analogous to something every computer science researcher
knows well, namely, NP-completeness. No one today knows
for sure whether any NP problems are not in P. But despite
that the longstanding NP-completeness framework lets one
right now, today, prove clearly for specific problems that if
any NP problem is not in P then that specific problem is not
in P. The results of this section are about an analogous type
of argument, except regarding frequency of hardness.

We now give our frequency-of-hardness version of
Theorem 1. A claim is said to hold for almost every n if
there exists an n0 beyond which the claims always holds,
i.e., the claim fails at most at a finite number of values of n.
(In the theorems of this section, n’s universe is the natural
numbers, {0, 1, 2, . . .}.)
Theorem 5. If h is any nondecreasing function and for some
B ∈ NP ∩ coNP it holds that each polynomial-time al-
gorithm, viewed as a heuristic algorithm for testing mem-
bership in B, for almost every n (respectively, for infinitely
many n) errs on at least h(n) of the strings whose length
is at most n, then there exist an ε > 0 and a set A ∈ P,
A ⊆ SAT, of boolean formulas such that:
1. There is a polynomial-time computable function f such

that (∀F ∈ A)[f(F) outputs a nontrivial backbone of F].
2. Each polynomial-time computable function g will err (i.e.,

will fail to compute the value of backbone f(F)), for al-
most every n (respectively, for infinitely many n), on at
least h(nε) of the strings in A of length at most n.
The precisely analogous result holds for Theorem 2. The

analogous result also holds for Theorem 3, and we state that
as the following theorem.
Theorem 6. If h is any nondecreasing function and for some
B ∈ NP ∩ coNP it holds that each polynomial-time al-
gorithm, viewed as a heuristic algorithm for testing mem-
bership in B, for almost every n (respectively, for infinitely
many n) errs on at least h(n) of the strings whose length
is at most n, then there exist an ε > 0 and a set A ∈ P,
A ⊆ SAT, of boolean formulas such that:
1. Each formula F ∈ A has a backbone whose size is at

least 49% of F ’s total number of variables.
2. Each polynomial-time computable function g will err (i.e.,

will fail to compute a set of size at least 2% of F ’s vari-
ables that is a backbone of F), for almost every n (re-
spectively, for infinitely many n), on at least h(nε) of the
strings in A of length at most n.
What the above theorems say, looking at the contraposi-

tives to the above results, is that if any of our above cases
have polynomial-time heuristic algorithms that don’t make
errors too frequently, then every single set in NP ∩ coNP

(even those related to integer factoring) has polynomial-time
heuristic algorithms that don’t make errors too frequently.

To make the meaning of the above results clearer, and to
be completely open with our readers, it is important to have
a frank discussion about the effect of the “ε” in the above
results. Let us do this in two steps. First, we give as concrete
examples two central types of growth rates that fall between
polynomial and exponential. And second, we discuss how
innocuous or noninnocuous the “ε” above is.

As to our examples, suppose that for some fixed c > 0 a
particular function h(n) satisfies h(n) = 2Ω((logn)c). Note
that for each fixed ε > 0, it hold that the function h′(n)
defined as h(nε) itself satisfies the same bound, h′(n) =
2Ω((logn)c). (Of course, the constant implicit in the “Ω” po-
tentially has become smaller in the latter case.) Similarly,
suppose that for some fixed c > 0 a particular function h(n)
satisfies h(n) ≥ 2n

c

. Then for each fixed ε > 0 it will
hold that there is a value c′ > 0, namely, c′ = εc, such that
h(nε) ≥ 2n

c′
.

The above at a casual glance might suggest that the weak-
ening of the frequency claims between the most frequently
hard problems in NP ∩ coNP and our problems is a “mere”
changing of a constant. In some sense it is, but constants that
are standing on the shoulders of exponents have more of a
kick than constants sitting on the ground floor. And so as a
practical matter, the difference in the actual numbers when
one substitutes in for them can be large. On the other hand,
polynomial-time reductions sit at the heart of computer sci-
ence’s formalization of its problems, and density distortions
from n to nε based on the stretching of reductions are simply
inherent in the standard approaches of theory, since those
are the distortions one gets due to polynomial-time reduc-
tions being able to stretch their inputs to length n1/ε, i.e.,
polynomially. For example, it is well known that if B is
an NP-complete set, then for every ε > 0 it hold that B is
polynomial-time isomorphic (which is theoretical computer
science’s strongest standard notion of them being “essen-
tially the same problem”) to some set B′ that contains at
most 2n

ε

strings at each length n.
Simply put, the “almost” in our “almost as frequent”

claims is the natural, strong claim, judged by the amounts
of slack that in theoretical computer are considered innocu-
ous. And the results do give insight into how much the
density does or does not change, e.g., the first above ex-
ample shows that quasi-polynomial lower bounds on error
frequency remain quasi-polynomial lower bounds on error
frequency. However, on the other hand, there is a weaken-
ing, and even though it is in a “constant,” that constant is in
an exponent and so can alter the numerical frequency quite
a bit.2

2In reality, how nastily small will the “ε” be? From looking in-
side the proofs of the results and thinking hard about the lengths of
the formulas involved in the proofs (and resulting from the “Galil”
version of Cook-Karp-Levin’s Theorem that we will be discussing
in the next section), one can see that ε’s value is primarily con-
trolled by the running time of the NP machines for the NP sets B
and B from the theorems of this section. If those machines run in
time around nk, then ε will vary, viewed as a function of k, roughly

3902

3 Proofs

We now provide the proofs or proof sketches for our results.
We aim more for communication than for extremely detailed
rigor. However, readers not interested in proofs may wish to
skip this section.

3.1 Proofs for Section 2.1

We will prove all three of the theorems of Section 2.1 hand-
in-hand, in a rather narrative fashion, as they share a frame-
work. Each of that section’s theorems starts with the as-
sumption that P �= NP ∩ coNP. So let B be some set in-
stantiating that, i.e., B ∈ (NP ∩ coNP) − P. As all stu-
dents learn when learning that SAT is NP-complete, we can
efficiently transform the question of whether a machine ac-
cepts a particular string into a question about whether a cer-
tain boolean formula is satisfiable (Cook 1971; Karp 1972;
Levin 1975). The original work that did that did not require
(and did not need to require) that the thus-created boolean
formula transparently revealed what machine and input had
been the input to the transformation. But it was soon noted
that one can ensure that the formula mapped to transpar-
ently reveals the machine and input that were the input to
the transformation; see Galil (1974).

Galil’s insight can be summarized in the following
strengthened version of the standard claim regarding the so-
called Cook-Karp-Levin Reduction. Let N1, N2, . . . be
a fixed, standard enumeration of clocked, polynomial-time
Turing machines, and w.l.o.g. assume that Ni runs within
time ni+ i on inputs of length n, and that Ni and i are poly-
nomially related in size and easily obtained from each other.
There is a function rGalil-Cook (for conciseness, we are writ-
ing Galil-Cook rather than Galil-Cook/Karp/Levin, although
this version is closer to the setting of Karp and Levin than to
that of Cook, since Cook used Turing reductions rather than
many-one reductions) such that

1. For each Ni and x: x ∈ L(Ni) if and only if
rGalil-Cook(Ni, x) ∈ SAT .

2. There is a polynomial p such that rGalil-Cook(Ni, x) runs
within time polynomial (in particular, with p being the
polynomial) in |Ni| and |x|i + i.

3. There is a polynomial-time function s such that for each
Ni and x, s(rGalil-Cook(Ni, x)) outputs the pair (Ni, x).

We will be using two separate applications of the r func-
tion in our construction. But we need those two applica-
tions to be variable-disjoint. We will need this as otherwise
we’d have interference with some of our claims about sizes
of backbones and which variables are fixed and how many
variables we have. These are requirements not present in
any previous work that used the r function of Galil-Cook.
We also will want to be able to have some literal names (in
particular, “z”-using literal names of the form z�, z′� z�, or
z′�, for all �) available to us that we know are not part of the
output of any application of the Galil-Cook r function; we
need them as our construction involves not just two applica-
tions of the r function but also some additional variables. We

as (some constant times) the inverse of k.

can accomplish all the special requirements just mentioned
as follows. We will, w.l.o.g., assume that in the output of
the Galil-Cook function rGalil-Cook(Ni, x), every variable is
of the form xj (the x there is not a generic example of a let-
ter, but really means the letter “x” just a “z” earlier really
means the letter “z”), where j itself, when viewed as a pair
of integers via the standard fixed correspondence between
Z+ and Z+×Z+, has Ni as its first component or actually,
to be completely precise, the natural number corresponding
to Ni in the standard fixed correspondence between posi-
tive integers and strings. Though not all implementations
of the Galil-Cook r function need have this property (and
in fact, none has previously satisfied it as far as we know),
we claim that one can implement a legal Galil-Cook r func-
tion in such a way that it has this property yet still has the
property that this r function will have a polynomial-time in-
version function s satisfying the behavior for s mentioned
above. (For those wanting more information on how such
a function rGalil-Cook(Ni, x) can be implemented that has all
the properties claimed above, and indeed seeing such an im-
plementation is important to best understanding what is go-
ing on here, we have made available a detailed construc-
tion we have built that accomplishes this, in the full tech-
nical report version of this paper, which is available online
as Hemaspaandra and Narváez, 2016; the construction in-
volves exploiting encoding headroom that one can in some
sense piggyback on top of an arbitrary implementation of
the Cook-Karp-Levin Reduction.)

We now can specify the sets A needed by the theorems
of Section 2.1. Recall we have (thanks to the assump-
tions of the theorems) fixed a set B ∈ (NP ∩ coNP) −
P. B ∈ NP so let i be a positive integer such that
Ni is a machine from the abovementioned standard enu-
meration such that L(Ni) = B. B ∈ NP so let j
be a positive integer such that Nj is a machine from the
abovementioned standard enumeration, such that L(Nj) =

B. Fix any positive integer k. Then for the case of
that fixed value k, the set A of Theorem 2 is as fol-
lows: A3,k = {(z1 ∧ z2 ∧ · · · ∧ zk ∧ (rGalil-Cook(Ni, x))) ∨
(z1 ∧ z2 ∧ · · · ∧ zk ∧ (rGalil-Cook(Nj , x))) | x ∈ Σ∗}.
One must keep in mind in what follows that, as per the
previous paragraph, rGalil-Cook never outputs literals with
names involving subscripted zs or z′s and the outputs
of rGalil-Cook(Ni, x) and rGalil-Cook(Nj , x) share no variable
names (since i �= j).

Let us argue that A3,k indeed satisfies the requirements of
the A for the “k” case of Theorem 2.
A ∈ P: Given a string y whose membership in A we

are testing, we make sure y syntactically matches the form
of the elements of A (i.e., elements of A3,k). If it does, we
then check that its k matches our k, and we use s to get
decoded pairs (i′, x′) and (j′′, x′′) from the places in our
parsing of y where we have formulas—call them Fleft and
Fright—that we are hoping are the outputs of the r function.
That is, if our input parses as (z1 ∧ z2 ∧ · · · ∧ zk ∧ (Fleft))∨
(z1 ∧ z2 ∧ · · · ∧ zk ∧ (Fright)), then if s(Fleft) gives (Ni′ , x

′)
our decoded pair is (i′, x′), and Fright is handled analogously.
We also check to make sure that x′ = x′′, i = i′, and j = j′′.
If anything mentioned so far fails, then y �∈ A. Otherwise,

3903

we check to make sure that rGalil-Cook(Ni, x
′) = Fleft and

rGalil-Cook(Nj , x
′) = Fleft, and reject if either equality fails

to hold. (Those checks are not superfluous. s by definition
has to correctly invert on strings that are the true outputs
of rGalil-Cook, but we did not assume that s might not out-
put sneaky garbage when given other input values, and since
Fleft and Fright are coming from our arbitrary input y, they
could be anything. However, the check we just made de-
fangs the danger just mentioned.) If we have reached this
point, we indeed have determined that y ∈ A, and for each
y ∈ A we will successfully reach this point.
A ⊆ SAT: For each x, either x ∈ B or x �∈ B. In the

former case (x ∈ B), rGalil-Cook(Ni, x) ∈ SAT and so the
left disjunct of (z1 ∧ z2 ∧ · · · ∧ zk ∧ (rGalil-Cook(Ni, x))) ∨
(z1 ∧ z2 ∧ · · · ∧ zk ∧ (rGalil-Cook(Nj , x))) can be made true
using that satisfying assignment and setting each z� to true.
On the other hand, if x �∈ B, then rGalil-Cook(Nj , x) ∈ SAT
and so the whole formula can be made true using that satis-
fying assignment and setting each z� to false.

There is a polynomial-time computable function f
such that (∀F ∈ A)[f(F) outputs a nontrivial back-
bone of F]: On input F ∈ A, f will simply output
{z1, z2, . . . , zk}, which is a nontrivial backbone of F . Why
is it a nontrivial backbone? If the x embedded in F satisfies
x ∈ B, then not only does rGalil-Cook(Ni, x) ∈ SAT hold, but
also rGalil-Cook(Nj , x) �∈ SAT must hold (since otherwise we
would have x �∈ B ∧ x ∈ B, an impossibility). So if the
x embedded in F satisfies x ∈ B, then there are satisfying
assignments of (z1 ∧ z2 ∧ · · · ∧ zk ∧ (rGalil-Cook(Ni, x))) ∨
(z1 ∧ z2 ∧ · · · ∧ zk ∧ (rGalil-Cook(Nj , x))), and every one of
them has each z� set to true. Similarly, if the x embedded
in F satisfies x �∈ B, then our long formula has satisfying
assignments, and every one of them has each z� set to false.
Thus {z1, z2, . . . , zk} indeed is a size-k backbone.

There does not exist any polynomial-time computable
function g such that g(F) computes the value of back-
bone f(F): Suppose by way of contradiction that such a
polynomial-time computable function g does exist. Then
we would have that B ∈ P, by the following algorithm.
Let f be the function constructed in the previous paragraph,
i.e., the one that outputs {z1, z2, . . . , zk} when F ∈ A.
Given x, in polynomial time—g and f are polynomial-time
computable, and although r in general is not since its run-
ning time’s polynomial degree varies with its first argu-
ment and so is not uniformly polynomial, r here is used
only for the first-component values Ni and Nj and under
that restriction it indeed is polynomial-time computable—
compute g(f((z1 ∧ z2 ∧ · · · ∧ zk ∧ (rGalil-Cook(Ni, x))) ∨
(z1 ∧ z2 ∧ · · · ∧ zk ∧ (rGalil-Cook(Nj , x))))). This must ei-
ther tell us that the z�s are true in all satisfying assignments,
which tells us that it is the left disjunct that is satisfiable and
thus x ∈ B, or it will tell us that the z�s are false in all sat-
isfying assignments, from which we similarly can correctly
conclude that x �∈ B. So B ∈ P, yet we chose B so as to
satisfy B ∈ (NP ∩ coNP) − P. Thus our assumption that
such a g exists is contradicted.

That ends our proof of Theorem 2—and so implicitly also
of Theorem 1, since Theorem 1 follows immediately from
Theorem 2.

Having seen the above proof, the reader will not need a
detailed treatment of the proof of Theorem 3. Rather, we
describe how to convert the above construction into one that
proves Theorem 3. Recall that for the “k” case of Theorem 2
our set A was {(z1 ∧ z2 ∧ · · · ∧ zk ∧ (rGalil-Cook(Ni, x))) ∨
(z1 ∧ z2 ∧ · · · ∧ zk ∧ (rGalil-Cook(Nj , x))) | x ∈ Σ∗}.

For Theorem 3, let us use almost the same set.
Except we will make two types of changes. First,
in the above, replace the two occurrences of k
each with the smallest positive integer m′ satisfying

m′
numvars(rGalil-Cook(Ni,x))+numvars(rGalil-Cook(Nj ,x))+2m′ ≥
49
100 , where numvars counts the number of variables in a
formula, e.g., numvars(x1 ∧ x2 ∧ x2) = 2, due to the
variables x1 and x2. Let m henceforward denote that value,
i.e., the smallest (positive integer) m′ that satisfies the above
equation. Second, in the right disjunct, change each z� to
z′�.

Note that if x ∈ B, then {z1, z2, · · · , zm} is a backbone
whose value is the assignment of true to each variable, and
that contains at least 49% of the variables in the formula that
x put into A. Similarly, if x �∈ B, then {z′1, z′2, · · · , z′m} is
a backbone whose value is the assignment of false to each
variable, and that contains at least 49% of the variables in
the formula that x put into A. It also is straightforward to
see that our thus-created set A belong to P and satisfies A ⊆
SAT.

So the only condition of Theorem 3 that we still need to
show holds is the claim that, for the just-described A, there
does not exist any polynomial-time computable function g
such that, on each F ∈ A, g(F) outputs a backbone whose
size is at least 2% of F ’s variables. Suppose by way of
contradiction that such a function g does exist. We claim
that would yield a polynomial-time algorithm for B, con-
tradicting the assumption that B �∈ P. Let us give such a
polynomial-time algorithm. To test whether x ∈ B, in poly-
nomial time we create the formula in A that is put there by
x, and we run our postulated polynomial-time g on that for-
mula, and thus we get a backbone, call it S, that contains
at least 2% of F ’s variables. Note that we ourselves do not
get to choose which large backbone g outputs, so we must
be careful as to what we assume about the output backbone.
We in particular certainly cannot assume that g happens to
always output either {z1, z2, · · · , zm} or {z′1, z′2, · · · , z′m}.
But we don’t need it to. Note that the two backbones just
mentioned are variable-disjoint, and each contains 49% of
F ’s variables.

Now, there are two cases. One case is that S contains at
least one variable of the form z� or z′�. In that case we are
done. If it contains at least one variable of the form z� then
x ∈ B. Why? If x ∈ B, then the left-hand disjunct of
the formula x puts into A is satisfiable and the right-hand
disjunct is not. From the form of the formula, it is clear that
each z� is always true in each satisfying assignment in this
case, yet that for each z′� there are satisfying assignments
where z′� is true and there are satisfying assignments where
z′� is false. So if x ∈ B, no z′� can belong to any backbone.

By analogous reasoning, if S contains at least one vari-
able of the form z′� then x �∈ B. (It follows from this and

3904

the above that S cannot possibly contain at least one vari-
able that is a subscripted z and at least one variable that is
a subscripted z′, since then x would have to simultaneously
belong and not belong to B.)

The final case to consider is the one in which S does
not contain at least one variable of the form z� or z′�.
We argue that this case cannot happen. If this were to
happen, then every variable of F other than the vari-
ables {z1, z2, · · · , zm, z′1, z

′
2, · · · , z′m} must be part of the

backbone, since S must involve 2% of the variables and
{z1, z2, · · · , zm, z′1, z

′
2, · · · , z′m} comprise 98% of the vari-

ables. But that is impossible. We know that the variables
used in rGalil-Cook(Ni, x) and rGalil-Cook(Nj , x) are disjoint.
So the variables in the one of those two that is not the one
that is satisfiable can and do take on any value in some
satisfying assignment, and so cannot be part of any back-
bone. (The only remaining worry is the case where one of
rGalil-Cook(Ni, x) or rGalil-Cook(Nj , x) contains no variables.
However, the empty formula is by convention considered il-
legal, in cases such as here where the formulas are not con-
sidered to be trapped into DNF or CNF. There is a special
convention regarding empty DNF and CNF formulas, but
that is not relevant here.)

We have thus concluded the proof of Theorem 3.

3.2 Proof Sketches for Section 2.2

We will treat this section briefly and informally, as we will
argue that its claims can be seen as following from the pre-
vious section’s proofs.

The crucial thing to note is that the mapping from strings
x (as to whether they belong to B) into the string that x puts
into A is (a) polynomial-time computable (and so the one
string that x puts into A is at most polynomially longer than
x), and (b) one-to-one.

So, any collection of m instances up to a given length
n that fool a particular polynomial-time algorithm for B are
associated with at least m distinct instances in A all of length
at most nq (where the polynomial bound on the length of
the formula that x puts into A is that it is of length at most
nq3). So if one had an algorithm for the “A” set such that the
algorithm had at most m′ errors on the strings up to length
nq , it would certainly imply an algorithm for B that up to
length n1/q made at most m′ errors. Namely, one’s heuristic
of that form for B would be to take x, map it to the string it
put into A, and then run the heuristic for A on that string.

The above discussion establishes what the results in Sec-
tion 2.2 are asserting.

3We have for simplicity in this brief analysis left out any lower-
order terms and the leading-term constant, but that is legal except at
n ∈ {0, 1}—since starting with n = 2 we can boost q if needed—
and no finite set of values, such as {0, 1} can cause problems
to our theorem, as it is about the “infinitely-often” and “almost-
everywhere” cases. However, such boosting does potentially inter-
fere with the inverse-of-k relation mentioned in Footnote 2, and so
if we wanted to maintain that, we would in this argument instead
use a lowest-degree-possible monotonic polynomial bounding the
growth rate.

4 Related Work

Our results can be viewed as part of a line of work that is
so underpopulated as to barely merit being called a line of
work, at least regarding its connections to AI. The true inspi-
ration for this work was a paper of Alan Demers and Allan
Borodin (1976) from the 1970s that never appeared in any
form other than as a technical report. Though quite tech-
nical, that paper in effect showed sufficient conditions for
creating simple sets of satisfiable formulas such that it was
unclear why they were satisfiable.

Even in the theoretical computer science world, where
Borodin and Demers’s work is set, the work has been very
rarely used. In particular, it has been used to get characteri-
zations regarding unambiguous computation (Hartmanis and
Hemachandra 1988), and Rothe and his collaborators have
used it in various contexts to study the complexity of cer-
tificates (Hemaspaandra, Rothe, and Wechsung 1997; Rothe
1999), see also Fenner et al. (2003) and Valiant (1976).

There has been just one paper that previously has sought
to bring the focus of this line to a topic of interest in
AI. Although it appeared in a theoretical computer sci-
ence venue, the work of Hemaspaandra, Hemaspaandra, and
Menton (2013) shows that some problems from computa-
tional social choice theory, a subarea of multiagent systems,
have the property that if P �= NP ∩ coNP then their search
versions are not polynomial-time Turing reducible to their
decision problems—a rare behavior among the most famil-
iar seemingly hard sets in computer science, since so-called
self-reducibility (Meyer and Paterson 1979) is known to pre-
clude that possibility for most standard NP-complete prob-
lems. The key issue that 2013 paper left open is whether
the type of techniques it used, descended from Borodin and
Demers (1976), might be relevant anywhere else in AI, or
whether its results were a one-shot oddity. The present pa-
per in effect is arguing that the former is the case. Backbones
are a topic important in AI and relevant to SAT solvers, and
this paper shows that the inspiration of the line of work initi-
ated by Borodin and Demers (1976) can be used to establish
the opacity of backbones.

It is important to acknowledge that our proofs regard-
ing Section 2.1 are drawing on elements of the insights of
Borodin and Demers (1976), although in ways unanticipated
by that paper. And the addition of density transfer arguments
to the world of Borodin-Demers arguments is due to Hema-
spaandra, Hemaspaandra, and Menton (2013), and we are
benefiting from that argument.

5 Conclusions

We argued, under assumptions widely believed to be true
such as the hardness of integer factoring, that knowing a
large backbone exists doesn’t mean one can efficiently find
a large backbone, and finding a nontrivial backbone doesn’t
mean one can efficiently find its value. Further, we showed
that one can ensure that these effects are not very infrequent,
but rather that they can be made to happen with “almost” the
same density of occurrence as the error rates of the most
densely hard sets in NP ∩ coNP.

Most of our results relied on the assumption that P �=

3905

NP ∩ coNP, which as noted above is likely true, since if it
is false then integer factoring is in P and the RSA encryp-
tion scheme falls. It would be interesting, however, to see
whether one can get any (likely weaker) backbone-opacity
results under the weaker assumption that P �= NP. We in
fact have done so, but we consider those results unsatisfying,
and they in effect rely on a particular feature of the Williams,
Gomes, and Selman (2003) definition of backbones, namely,
that unsatisfiable formulas have no backbones. That feature
has no effect on the results of this paper, since in all our
theorems we produced sets A whose elements all are satisfi-
able formulas.

Acknowledgments

We are deeply grateful to the anonymous AAAI-17 review-
ers for very helpful comments and suggestions.

References

Borodin, A., and Demers, A. 1976. Some comments on
functional self-reducibility and the NP hierarchy. Technical
Report TR 76-284, Department of Computer Science, Cor-
nell University, Ithaca, NY.
Cook, S. 1971. The complexity of theorem-proving proce-
dures. In Proceedings of the 3rd ACM Symposium on Theory
of Computing, 151–158. ACM Press.
Fenner, S.; Fortnow, L.; Naik, A.; and Rogers, J. 2003.
Inverting onto functions. Information and Computation
186(1):90–103.
Galil, Z. 1974. On some direct encodings of nondetermin-
istic Turing machines operating in polynomial time into P-
complete problems. SIGACT News 6(1):19–24.
Gomes, C.; Sabharwal, A.; and Selman, B. 2009. Model
counting. In Biere, A.; Heule, M.; van Maaren, H.; and
Walsh, T., eds., Handbook of Satisfiability. IOS Press. 633–
654.
Hartmanis, J., and Hemachandra, L. 1988. Complexity
classes without machines: On complete languages for UP.
Theoretical Computer Science 58(1–3):129–142.
Hemaspaandra, L., and Narváez, D. 2016. The opacity of
backbones. Technical Report arXiv:1606.03634v2 [cs.AI],
Computing Research Repository, arXiv.org/corr/.
Hemaspaandra, E.; Hemaspaandra, L.; and Menton, C.
2013. Search versus decision for election manipulation
problems. In Proceedings of the 30th Annual Symposium on
Theoretical Aspects of Computer Science, 377–388. Leibniz
International Proceedings in Informatics (LIPIcs).
Hemaspaandra, L.; Rothe, J.; and Wechsung, G. 1997.
Easy sets and hard certificate schemes. Acta Informatica
34(11):859–879.
Karp, R. 1972. Reducibilities among combinatorial prob-
lems. In Miller, R., and Thatcher, J., eds., Complexity of
Computer Computations, 85–103.
Levin, L. 1975. Universal sequential search problems. Prob-
lems of Information Transmission 9(3):265–266. March
1975 translation into English of Russian article originally
published in 1973.

Meyer, A., and Paterson, M. 1979. With what frequency are
apparently intractable problems difficult? Technical Report
MIT/LCS/TM-126, Laboratory for Computer Science, MIT,
Cambridge, MA.
Monasson, R.; Zecchina, R.; Kirkpatrick, S.; Selman, B.;
and Troyansky, L. 1999. Determining computational
complexity from characteristic ‘phase transitions’. Nature
400:133–137.
Rothe, J. 1999. Complexity of certificates, heuristics, and
counting types, with applications to cryptography and circuit
theory. Habilitation thesis, Friedrich-Schiller-Universität
Jena, Institut für Informatik, Jena, Germany.
Schöning, U. 1986. Complete sets and closeness to com-
plexity classes. Mathematical Systems Theory 19(1):29–42.
Valiant, L. 1976. The relative complexity of checking and
evaluating. Information Processing Letters 5(1):20–23.
Valiant, L. 1979. The complexity of computing the perma-
nent. Theoretical Computer Science 8(2):189–201.
Willams, R.; Gomes, C.; and Selman, B. 2003. Backdoors
to typical case complexity. In Proceedings of the 18th Inter-
national Joint Conference on Artificial Intelligence, 1173–
1178. Morgan Kaufmann.

3906

