
Rigging Nearly Acyclic Tournaments
Is Fixed-Parameter Tractable

M. S. Ramanujan and Stefan Szeider
Algorithms and Complexity Group, TU Wien, Vienna, Austria

[ramanujan,sz]@ac.tuwien.ac.at

Abstract

Single-elimination tournaments (or knockout tournaments)
are a popular format in sports competitions that is also widely
used for decision making and elections. In this paper we study
the algorithmic problem of manipulating the outcome of a
tournament. More specifically, we study the problem of find-
ing a seeding of the players such that a certain player wins the
resulting tournament. The problem is known to be NP-hard in
general. In this paper we present an algorithm for this problem
that exploits structural restrictions on the tournament. More
specifically, we establish that the problem is fixed-parameter
tractable when parameterized by the size of a smallest feed-
back arc set of the tournament (interpreting the tournament as
an oriented complete graph). This is a natural parameter be-
cause most problems on tournaments (including this one) are
either trivial or easily solvable on acyclic tournaments, leading
to the question—what about nearly acyclic tournaments or
tournaments with a small feedback arc set? Our result signifi-
cantly improves upon a recent algorithm by Aziz et al. (2014)
whose running time is bounded by an exponential function
where the size of a smallest feedback arc set appears in the
exponent and the base is the number of players.

Introduction
Single-elimination tournaments, also known as knockout
tournaments, are a popular format in sports competitions. It
is used, for instance, at the Wimbledon tennis tournament
and is widely applied in decision making and elections. As
a result, the study of manipulating the results of knockout
tournaments in various ways has received a lot of attention.

In the TOURNAMENT FIXING PROBLEM (TFP), we are
given the results of a round-robin tournament in the form
of a tournament graph on n vertices, and a special player.
The objective is to decide whether there is a seeding of the n
players such that the special player is the winner of the result-
ing knockout tournament, given the same match outcomes
between each pair of players.

Aziz et al. (2014) showed that this problem is NP-hard in
general while there are several results (Vassilevska Williams
2010; Stanton and Vassilevska Williams 2011; Kim and
Vassilevska Williams 2015; Kim, Suksompong, and Vas-
silevska Williams 2016) identifying certain structural proper-
ties of the input tournament which guarantee that the required

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

seeding exists. We take the search for tractable instances of
this problem in a different direction by studying the parame-
terized complexity of this problem.

A parameterized problem P is a problem whose instances
are tuples (I, k), where k ∈ N is called the parameter. The
central notion of tractability in parameterized complexity
is that of fixed parameter tractability. We say that a pa-
rameterized problem is fixed parameter tractable (FPT in
short) if it can be solved by an algorithm which runs in time
f(k) · |I|O(1) for some computable function f ; algorithms
with running time of this form are called FPT algorithms. We
refer the reader to other sources (Downey and Fellows 2013;
Flum and Grohe 2006; Cygan et al. 2015) for an in-depth
introduction into parameterized complexity.

Numerous graph problems, when studied in the parame-
terized complexity setting with parameter k, turn out to be
easily solvable in time nf(k) for some function f and the
main goal in these situations is to achieve an FPT running
time. However, this is not true in the case of ‘graph layout’
problems where the goal is to compute a permutation of the
vertex set which optimizes an objective function. Even on
tournaments, an algorithm with running time nf(k) for some
of these problems is very non-trivial and highly technical
(see, e.g., Fradkin and Seymour 2013).

The TFP problem is yet another graph layout problem
where it is not at all obvious how one would go about design-
ing even an algorithm that runs in time nf(k) where k is the
size of the smallest feedback arc set in the tournament. Re-
cently, Aziz et al. (2014) gave a clever dynamic programming
algorithm with this running time, which relies on the bounded
index of a certain equivalence relation induced by the feed-
back arc set on the set of players. In this paper, we show
that the TFP problem is in fact fixed-parameter tractable
parameterized by the size of the smallest feedback arc set by
proving the following theorem.

Theorem 1. The TOURNAMENT FIXING PROBLEM can be
solved in time 2O(k2 log k)nO(1) on tournaments of size n with
a feedback arc set of size k.

This theorem implies that when the given tournament has
a feedback arc set of size k, where k2 log k = O(log n) then
it can be decided in polynomial time whether the tournament
can be fixed to make a given player win. Our algorithm re-
lies on a combination of certain new structural properties of

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3929

knockout tournaments with a small feedback arc set and an
appropriate decomposition of arborescences. We believe that
the structural results proved in this paper will have applica-
tions in further fixed-parameter algorithms for this problem.

Related Work The computational problem of manipula-
tion knockout tournaments was first stated by Vu, Alt-
man, and Shoham (2009) and has received a lot of atten-
tion (Kim, Suksompong, and Vassilevska Williams 2016;
Kim and Vassilevska Williams 2015; Aziz et al. 2014; Stan-
ton and Vassilevska Williams 2011; Vassilevska Williams
2010). Over recent years, the framework of fixed-parameter
algorithms and parameterized complexity has been shown
adequate and suitable for problems in computational social
choice which includes questions related to tournaments and
manipulations (Betzler et al. 2012; Lindner and Rothe 2008).
Fixed-parameter tractability results for voting manipulations
have recently been given by Hemaspaandra, Lavaee, and
Menton (2016). Somewhat related is the computational
problem of controlling candidates in elections, whose pa-
rameterzed complexity was recently studied in the AI con-
text (Chen et al. 2015). Several other recent parameterized
complexity results on manipulations of elections and rank-
ings include (Yang 2014; Dey, Misra, and Narahari 2015;
Bevern et al. 2016).

Preliminaries

We begin by recalling the definition of seedings of a tour-
nament. Let D be a round robin tournament on n players.
That is, for every pair of players, exactly one is picked to be
the winner of the match between them (depicted in D by an
arc from the winner to the loser). A knockout tournament
of D is defined by a binary tree T with n leaves L(T) and
a bijective function S : V (D) → L(T) called the seeding,
mapping the n players to the n leaves. Then the winner of
the knockout tournament corresponding to this seeding is
determined recursively: the winner at a leaf l is the player j
with l = S(j), and the winner of the subtree rooted at a node
v is the winner of the match between the winners of the two
subtournaments rooted at the children of v.
Binomial arborescences. An arborescence is a rooted di-
rected tree such that all arcs are directed away from the root.
Definition 1 (see also Vassilevska Williams 2010). Let D
be a tournament. A binomial arborescence T rooted at
a ∈ V (D) is defined as follows.
• a single node a is a binomial arborescence rooted at a,
• if |V (T)| = 2i for some i > 0, then T is a binomial

arborescence if a has a child b such that if Tb is the subar-
borescence of T rooted at b and Ta = T \ Tb, then Ta and
Tb are 2i−1-node binomial arborescences rooted at a and
b respectively.

If V (T) = V (D), then we say that T is a spanning binomial
arborescence of D.

In the rest of the paper, we will refer to a spanning binomial
arborescence simply as an s.b.a. The relevance of binomial
arborescences comes from the following statement.
Proposition 1 (Vassilevska Williams 2010). Let D be a tour-
nament with a special vertex v� ∈ V (D). Then, there is a

seeding of the vertices in D such that the resulting knockout
tournament is won by v� if and only if D has an s.b.a rooted
at v�.

Let T be a (not necessarily binomial) arborescence. For a
vertex u ∈ V (T), we denote by ChildT (u) the set of children
of u in T , by DescT (u) the set of descendants of u in T
and by AnscT (u) the set of ancestors of u in T . Note that
u ∈ DescT (u) ∩ AnscT (u). Observe that if T is an s.b.a
of D, then for every v ∈ V (T), |Desc(v)| = 2i for some
i ∈ [log n] ∪ {0} and v is the winner of a subtournament
played by the players in Desc(v). For an arborescence T ,
we say that another arborescence T ′ is a leaf-subtree of T
if T ′ is the subtree of T induced on the set Desc(v) for
some v ∈ V (T). We will use the terms vertex and player
interchangeably.
ILP-feasibility. We will use as a subroutine the well-known
FPT algorithm for the ILP-FEASIBILITY problem. The ILP-
FEASIBILITY problem is defined as follows. The input is a
pair of matrices A ∈ Z

m×p and b ∈ Z
m×1 and the objective

is to check whether there exists a vector x̄ ∈ Z
p×1 satisfying

the m inequalities, that is, A · x̄ ≤ b.

Proposition 2 (Lenstra and Jr. 1983, Kannan 1987, Frank
and Tardos 1987). ILP-FEASIBILITY can be solved using
O(p2.5p+o(p)·L) arithmetic operations and space polynomial
in L, where L is the number of bits in the input and p is the
number of variables.

Lemma 1. For every k, n ∈ N where k ≤ n, (log n)k ≤
(4k log k)k + n2.

The FPT algorithm for TFP

Definition 2. Let D be a tournament with a special player v�.
Let F ⊆ A(D) be a smallest feedback arc set of D and let
π : [n] → V (D) be the linear ordering of the players in
decreasing order of strength obtained by flipping the arcs
in F . In this ordering, player u appears before player v if
and only if (u, v) is an arc. Then, we say that π witnesses F .
We call the vertices in {v�} ∪ V (F), affected vertices and
denote this set by AF .

We now define the notion of a permutation γ of X ⊆ V (D)
‘respecting’ the permutation π witnessing F . Essentially, we
say that γ respects π if the vertices of X appear in the same
order (relative to each other) in γ as they do in π. The formal
definition follows.

Definition 3. Let D be a tournament and X ⊆ V (D). Let
π : [n] → V (D) be a linear ordering of V (D). Let γ :
[|X|] → X be an ordering of the vertices in X such that for
every 1 ≤ i < j ≤ |X|, π−1(γ(i)) < π−1(γ(j)). Then, we
say that γ is an ordering of X that respects π.

We will now define a ‘type’ function that partitions the
vertices in V (D)\AF into at most |AF |+1 partitions using
the vertices in AF as ‘breakpoints’. We first define the set
Types = [|AF |+ 1] ∪ {AF }.

Definition 4. Let D be a tournament with a special player v�.
Let F ⊆ A(D) be a smallest feedback arc set of D and let
π : [n] → V (D) be the linear ordering witnessing F . Let
γ : [|AF |] → AF be the ordering of AF that respects

3930

τ−1(2) τ−1(3) τ−1(4) τ−1(5) τ−1(6)

Figure 1: An illustration of the partition of the vertices of D
induced by the vertices in AF .

π. We define the type function τπγ : V (D) → Types as
follows. For every v ∈ AF , τπγ (v) = v. For every v ∈
V (D) \ AF , τπγ (v) = i where i is the smallest index in
[|AF |] such that π(v) < π(γ(i)). If there is no such index,
that is, π(v) > π(γ(|AF |)), then we set τπγ (v) = |AF |+ 1.
For each i ∈ Types, we denote by Pi(τ

π
γ) the set of vertices

in the pre-image of i under τπγ .
For an example of the way the type function τπγ partitions

V (D) \AF , see Figure 1. When the permutations π and γ
are clear from the context, we will simply refer to τπγ as τ .
When τ is clear from the context, we say that a vertex v
has type τ(v) without explicitly referring to τ . Note that for
some i ∈ [|AF | + 1], the set τ−1(i) could be empty (see
Figure 1). We now observe that vertices in the same type
have essentially the same behaviour with respect to every
vertex of a different type in the graph.
Lemma 2. Let τ be the type function as described earlier.
For all i ∈ Types, and distinct vertices u, v ∈ τ−1(i), for
any vertex w ∈ V (D) such that τ(u) �= τ(w), w beats u if
and only if w beats v.

Motivated by the above lemma, for every u ∈ V (D), we
define the set Types≥(u) as the set τ(u) ∪ {i ∈ Types \
AF |∀v ∈ τ−1(i), (u, v) ∈ A(D)}. That is Types≥(u) is
τ(u) plus the set of those types in Types \AF whose ‘pre-
image-elements’ are all beaten by u which by the above
lemma also means precisely those types in Types\AF which
have at least one element which appears after u in the order-
ing π. We denote by Types<(u) the set Types \Types≥(u).
For a set Z ⊆ V (D), we say that a vertex v ∈ Z is the
strongest vertex of type τ(v) in Z if v beats every other ver-
tex w ∈ Z such that τ(w) = τ(v). Similarly, we say that a
vertex v ∈ Z is the weakest vertex of type τ(v) in Z if v is
beaten by every other vertex w ∈ Z such that τ(w) = τ(v).
If there is no u, v ∈ Z such that (u, v) ∈ F , then the subtour-
nament D[Z] induced on D is acyclic and we have a natural
notion of the strongest vertex in Z. This is simply the vertex
of Z which beats every other vertex in Z.

Let Z ′ ⊆ Z be a set of size � such that τ(u) = τ(v) = i
for every u, v ∈ Z ′. We say that Z ′ is the set of the strongest
� vertices of type τ(u) in Z if there is no vertex w ∈ Z \ Z ′
such that τ(w) = i and w beats a vertex in Z ′. Similarly, we
say that Z ′ is the set of the weakest � vertices of type τ(u) in
Z if there is no vertex w ∈ Z \ Z ′ such that τ(w) = i and w
is beaten by a vertex in Z ′.

We now show that the fact that the types themselves have
a natural linear ordering is of great consequence.

Lemma 3. Let D be a tournament with a special player v�,
F ⊆ A(D) a smallest feedback arc set of D and let π, γ, τ
be as defined earlier. Then, the following statements hold.

• For any u ∈ V (D) and Z ⊆
⋃

i∈Types≥(u) τ
−1(i) such

that |Z| = 2j for some j ∈ [log n], let v be the strongest
vertex of type τ(u) in Z. Then, there is a binomial arbores-
cence rooted at v and spanning the set Z.

• Let Z0, Z1, . . . , Z� be disjoint non-empty sets of vertices
such that

∑�
j=0 |Zj | = 2p for some p ∈ [log n]. Let

T1, . . . , T� be binomial arborescences such that for each
j ∈ [�], Tj is rooted at rj and spans Zj . Suppose that there
is no (u, v) ∈ F such that u, v ∈ Z0 and the strongest
vertex q in Z0 beats rj for every j ∈ [�]. Then, any bino-
mial arborescence spanning the set Z and containing the
binomial arborescences T1, . . . , T� as leaf-subtrees, must
be rooted at q.

Proof. For the first statement, observe that by the definition
of π,AF , γ and hence τ , along with the set Types≥(u), the
vertex v beats every other vertex in the set Z. Hence, v wins
every tournament played on the vertices in Z, implying that
there is a binomial arborescence rooted at v and spanning the
set Z (Proposition 1).

For the second statement, suppose that there is such a bi-
nomial arborescence T ′ which is not rooted at q. Let u ∈ Z
be such that (u, q) ∈ A(T ′). It cannot be the case that
q ∈ V (Tj) \ {rj} for any j ∈ [�] since by our assumption,
Tj is required to be a leaf-subtree of T ′. Hence, the only
remaining vertices of Z are the vertices in Z0 and the vertices
r1, . . . , r�, all of which are beaten by q, a contradiction to our
assumption that q is not the root of T ′. It is straightforward
to see that there is at least one binomial arborescence span-
ning the set Z and containing the binomial arborescences
T1, . . . , T� as leaf-subtrees. Such a binomial arborescence
(rather the corresponding tournament) can be constructed
by starting with the tournaments corresponding to the trees
T1, . . . , T� and arbitrarily adding matches between surviving
players until we construct a knockout tournament on Z. This
completes the proof of the lemma.

LCA closure. For an arborescence T and vertex set M
in V (T) the least common ancestor-closure (LCA-closure)
LCA(M) is obtained by the following process. Initially, set
M ′ = M and as long as there are vertices x and y in M ′
whose least common ancestor w is not in M ′ , add w to M ′.
When the process terminates, output M ′ as the LCA-closure
of M . See Figure 2 for an illustration of the LCA-closure.
We will require the following simple fact regarding the LCA-
closure.

Observation 1. Let T be an arborescence and M ⊆ V (T).
Then, |LCA(M)| ≤ 2|M |.

We now define a set BT
F which depends on AF and T

which is an s.b.a rooted at v�.

Definition 5. We first set BT
F = LCA(AF). For every pair of

vertices u, v ∈ AF such that (a) u ∈ DescT (v) \ ChildT (v)
and (b) there is no other vertex w ∈ LCA(AF) such that
w ∈ DescT (v) ∩ AnscT (w), we pick an arbitrary vertex

3931

Figure 2: An illustration of the LCA-closure on a binomial
arborescence on 16 vertices. The circled vertices in the first
figure depict the set M and those in the second figure de-
pict LCA(M). Observe that in the second figure, the least
common ancestor of any pair of circled nodes is also circled.

z ∈ DescT (v) ∩ AnscT (u) and add it to BT
F . That is, we

pick an arbitrary vertex on the u-v path in T and add it to
BT

F . Finally, we set BT
F := LCA(BT

F).

When T is clear from the context, we simply refer to the
set BT

F as BF .

Definition 6. Let T be an s.b.a rooted at v� and let X ⊆
V (T) such that v� ∈ X and LCA(X) = X . Let T ′ be a tree
constructed as follows. We begin with T and delete all nodes
which do not lie on a v�-u path in T for any u ∈ X . We then
repeatedly short-circuit each node of degree 2 which is not
in X . That is, we repeat the following step until we cannot
do it anymore. Pick a vertex u ∈ V (T) \X with exactly one
in-neighbor u− and one out-neighbor u+. Delete the vertex
u and add the arc (u−, u+). Let T ′ be the tree that remains
when the above step can no longer be performed. We call T ′
the topology of X in T .

Since LCA(X) = X , it follows that V (T ′) is in fact equal
to X . Also, when we talk about a vertex u ∈ V (T ′), we can
also talk about the same vertex u in T since V (T ′) ⊆ V (T).
Clearly, the topology of the set X in T must be one of at most
|X| · ρ(|X|) trees where ρ(p) denotes the number of labeled
trees on p vertices. We will make use of the following well
known theorem of Cayley.

Proposition 3 (Cayley 1889). ρ(p) = pp−2.

The algorithm. Our algorithm has 4 main phases. We will
give a brief description of each phase and give formal proof
of correctness at the end. We let π denote the ordering wit-
nessing F and γ the ordering of BF that respects π. For the
rest of the description, we fix a hypothetical s.b.a T rooted
at v� and let HF

T denote the topology of BF in T .When F
and T are clear from the context, we simply call it H .

Phase I: By definition, V (H) = BF and due to Observa-
tion 1 we know that |V (H)| ≤ 16k+8. Hence, in this phase
we ‘guess’ H by iterating over all topologies derived from a
set of kO(k) rooted labeled trees on at most 16k + 8 vertices.
Note that although we know the set AF , we do not know the

set BF . However, we do not need to know this set at this
point and will deal with this fact in the next step. We now
state the following observation regarding H which is a direct
consequence of the definition of the set BF and is crucial for
the correctness of our algorithm.
Observation 2. For every u ∈ V (H) and v ∈ ChildH(u) \
ChildT (u), either u /∈ AF or v /∈ AF . Consequently,
(u, v) ∈ A(D) \ F .
Phase II: In the second phase, we compute the images of
the vertices of V (H) under τ . Note that computing this
immediately gives us a (injective) mapping from the vertices
in AF to the vertices of H . Formally speaking, we will
guess the following function (Definition 7) by going over all
functions from V (H) to Types.
Definition 7. Let ψF

H : V (H) → Types be the function that
maps vertices of AF in V (H) to themselves and maps the
vertices of V (H) \ AF , to their image under τπγ . That is,
ψF
H(v) = v if v ∈ AF and ψF

H(v) = τπγ (v) otherwise.

Observe that there are only kO(k) functions from V (H) to
Types and hence we can ‘guess’ ψF

H by simply iterating over
all these functions.

Phase III: In this phase, we guess the number of descendants
rooted at each vertex in V (H), in T . This number is the size
of the largest subtournament of the tournament given by T
which is won by this vertex. We remark that even though
at first glance, the number of guesses required here seems
too big (nO(k)), it can in fact be bounded by the running
time stated in Theorem 1. This is a crucial part of our FPT
algorithm.

Let szFH : V (H) → [n] denote the function where
szFH(v) = |DescT (v)| for every v ∈ V (H). That is, this
function gives the size of the largest subtournament (in T)
won by each vertex of V (H). Since we are by definition
only interested in balanced knockout tournaments, it fol-
lows that the range of szFH is the set {2i|i ∈ [log n] ∪ {0}}.
Hence, we can represent the function sz using a function
χF
H : V (H) → [log n] ∪ {0}. This function is formally

defined as follows.
Definition 8. For every u ∈ V (H), the number of descen-
dants of u in the s.b.a T is 2χ

F
H(u).

Hence we have (log n)O(k) choices for the function χF
H ,

which is (k log k)O(k)nO(1) due to Lemma 1. This completes
the description of this phase.

Before we move to the description of the final phase, we
define the notion of X-decompositions of an arborescence T
for some set X ⊆ V (T). We believe that a good understand-
ing of this notion will the give the reader a better intuitive
understanding of the final phase.
Definition 9. Let T be an arborescence and let X ⊆ V (T)
such that it contains the root and let |X| = �. We say a set
T = {T1, . . . , T�} of subtrees of T is the X-decomposition
of T if these are precisely the subtrees of T that we obtain by
deleting all arcs (u, v) ∈ A(T) where v ∈ X .

We have the following straightforward consequence of the
above definition.

3932

r5 r4

r3 r2

r1

Figure 3: An illustration of the X-decomposition of the
arborescence T . The vertices of X are green and represented
as concentric circles.

Observation 3. Let T be an arborescence and let X ⊆
V (T) such that it contains the root and let |X| = �. Let
T = {T1, . . . , T�} be the X-decomposition of T . Then, the
vertex sets V (T1), . . . , V (T�) form a partition of V (T), and
for all i ∈ [�] there is a vertex ri ∈ X such that Ti is an
arborescence rooted at ri .

Let T = {T1, . . . , T�} denote the BF -decomposition of T ,
where � = |BF |. Recall that the trees in T are pairwise
vertex disjoint and each tree is rooted at a vertex of BF .
Furthermore, since each tree contains exactly one vertex of
BF (which is the root of the subtree), it follows that no arc
from the set F occurs inside any of these subtrees. We now
have the following useful lemma describing the structure of
each subtree. Recall that ri is the root of the subtree Ti.
Lemma 4. For each i ∈ [�], V (Ti) ⊆

⋃
i∈Types≥(ri)

τ−1(i).

Proof. In order to prove the lemma, it suffices to show that
if ri ∈ AF , then τ(u) > γ(ri) for every u ∈ V (Ti) \ {ri}
and if ri /∈ AF , then τ(u) ≥ τ(ri) for every u ∈ V (Ti).

For the first statement, suppose that for some u ∈ V (Ti) \
{ri}, τ(u) ≤ γ(ri). That is, u beats ri and so π(u) < π(ri).
However, since Ti is an arborescence rooted at ri and u ∈
V (Ti), it follows that ri has a path to u in Ti and hence it
must be the case that there is an arc (x, y) along this path
‘violating’ the ordering π (that is, π(x) > π(y)), implying
that the arc (x, y) is in the set F , a contradiction to the fact
that no Ti contains an arc in F . The argument for the second
statement is analogous. This completes the proof of the
lemma.

Intuitively, the structure guaranteed by the previous lemma
implies that we no longer need to concern ourselves with the
actual vertices inside each subtree but simply the types of
the vertices and the number of vertices of each type. This
allows us to phrase the remaining problem as a knapsack-type
problem and write an ILP-FEASIBILITY instance with few
variables.

Phase IV: In the final phase, we will construct an instance
of ILP-FEASIBILITY corresponding to the guesses made so
far, solve it using Proposition 2 and return YES if and only

if the answer to this query is YES. We will show that the
given instance of TFP is a YES instance if and only if at least
one of the constructed ILP-FEASIBILITY instances is a YES
instance.
Definition 10. We say that a tuple (L, ψ, χ) is valid if L is
an arborescence rooted at v�, V (L) ⊇ AF , ψ : V (L) →
Types such that ψ(u) = u for every u ∈ AF , ψ(u) ∈
Types \ AF for every u ∈ V (L) \ AF and χ : V (L) →
[log n] ∪ {0}.

For each valid tuple (L, ψ, χ), we define an instance IL,ψ,χ

of ILP-FEASIBILITY over a set of O(k2) variables as follows.
For each i ∈ Types and u ∈ V (L), we have a variable
xu
i . We now describe the constraints. We have four sets of

constraints, which we denote by C1,C2,C3 and C4.

• The constraints in C1 are defined as follows. Recall that
for each i ∈ Types, Pi(τ) is the set of vertices whose
image under τ is i. For each i ∈ Types, let Pi denote
the size of the set Pi(τ). For each i ∈ Types, we have a
constraint

∑

u∈V (H)

xu
i = Pi.

• The constraints in C2 are defined as follows. For every
u ∈ V (L) \AF , we have the constraint xu

ψ(u) ≥ 1.

• The constraints in C3 are defined as follows. For each
u ∈ V (L), we have a constraint

∑

i∈Types≥(u)

xu
i = 2χ(u) −

∑

x∈ChildH(u)

2χ(x).

• The constraints in C4 are defined as follows. For each
u ∈ V (L) and i ∈ Types<(u), we have a constraint
xu
i = 0.

This completes the description of the instance IL,ψ,χ of
ILP-FEASIBILITY. The meaning of the variables and con-
straints is as follows. Suppose that L = H , ψ = ψF

H and
χ = χF

H . For each u ∈ BF , let Qu denote the subtree of
T rooted at u and contained in the BF -decomposition of T .
The value of xu

i will be the number of those vertices in the
subtree Qu whose image under τ is i.

The constraints essentially require us to ‘pack’ vertices of
each type into the subtrees {Qu|u ∈ BF } subject to the type
and size restrictions imposed by the functions ψ, χ and λ.
• The set C1 says that vertices in each τ−1(i) are partitioned

across the subtrees {Qu|u ∈ BF }.
• The set C2 says that for every subtree Qu rooted at a vertex

u ∈ BF , there is at least one vertex of type τ(u) which is
contained in Qu, which we know from earlier is the root.

• To understand the set C3, observe that for every u ∈ BF ,
the set of vertices in Qu are precisely those vertices which
are descendants of u in T but not descendants of v for
any v ∈ ChildL(u). Hence, the total number of vertices
in Qu is given by the function χ and this is precisely
2χ(u) −

∑
x∈ChildH(u) 2

χ(x). Furthermore, by Lemma 2,
we know that the vertices in Qu only come from those

3933

types in Types≥(u). Hence the constraints in the set C3

ask to assign vertices from only those types in Types≥(u)
so that the number adds up to the size of Qu.

• The set C4 merely complements the set C3 by ensuring
that we do not assign any vertex of type Types<(u) =
Types \ Types≥(u) to the tree Qu.

Lemma 5. The given instance of TFP is a YES instance
if and only if for some valid tuple (H , ψ, χ), the instance
IH,ψ,χ is a YES instance of ILP-FEASIBILITY.

Proof. We first consider the forward direction. Suppose that
the given instance is a YES instance and let T be an s.b.a
rooted at v�. Let H be the topology of BF in T . Let ψ :
V (H) → Types be the function ψF

H (see Definition 7) and let
χ be the function χF

H (Definition 8). For each u ∈ BF , let Qu

denote the tree rooted at u in the BF -decomposition of T . We
now argue that the instance IH,ψ,χ is a YES instance. For this,
we define the assignment xu

i = |{q|τ(q) = i, q ∈ V (Qu)}|
for every i ∈ Types and u ∈ BF . That is, we assign to
variable xu

i the number of vertices in Qu whose image under
τ is i. The fact that this assignment satisfies all four sets
of constraints can be seen by a straightforward examination.
Indeed the explanation of the constraints given prior to this
lemma shows precisely this. This completes the forward
direction of the proof and we now argue the more involved
converse direction.

Let (H,ψ, χ) be a valid tuple such that IH,ψ,χ is a YES
instance. Let α� be the assignment of the variables which
satisfies the given instance and for each i, u, let αu

i denote the
value of xu

i given by a feasible solution to this instance. We
will argue that the given instance of TFP is a YES instance
by constructing an s.b.a T rooted at v�.

For each u ∈ V (H) and i ∈ Types, we assign a unique
subset of Pi(τ) to the pair (u, i). To formally capture this, we
define a function ζ : V (H)× Types → 2V (D) ∪ {⊥}. Now,
the mapping given by this function has to be defined carefully
by performing a bottom up processing of H . Initially, we
set ζ(u, i) = ⊥ for every u ∈ V (H) and i ∈ Types. We
also mark all vertices in V (D) as free. We then exhaustively
execute the following procedure and along the way we change
the marking of vertices of V (D) from free to taken whenever
we assign a set containing them to some u, i under ζ.

If there is a vertex u ∈ V (H) and an element v ∈
ChildH(u) such that ζ(v, j) �= ⊥ for every j ∈ Types (if
u is a leaf of H then it vacuously satisfies this condition),
then for every i ∈ Types, we set ζ(u, i) to be the weakest
αi
u vertices in Pi(τ) among those which are free and mark

these vertices as taken. If αi
u = 0, then we set ζ(u, i) = ∅.

The fact that ζ exists follows from the fact that the set
of constraints in C1 are satisfied by the values {αu

i |u ∈
V (H), i ∈ Types}. For each u ∈ V (H), we define Ru to
be the set

⋃
i∈Types ζ(u, i) and we define Yu to be the set⋃

v∈DescH(u) Rv .
It follows from the definition of ζ that the vertex sets

{Ru|u ∈ V (H)} form a partition of V (D). Furthermore,
since the constraints in C2, C3 and C4 are satisfied by α�,
it follows that for every u ∈ V (H), Ru contains at most
one vertex of V (F), Ru contains at least one vertex w of

type ψ(u) (τ(w) = ψ(u)) and Ru ⊆
⋃

i∈Types≥(w) ζ(u, i),
implying that the strongest vertex in Ru has type ψ(u). Fur-
thermore, if u is a leaf of H , then Ru =

∑
i∈Types≥(u) x

u
i =

∑
i∈Types x

u
i = 2χ(u). We will define the s.b.a T by perform-

ing a bottom up parse of H . During this parse, for every
u ∈ V (H), we will define a binomial arborescence Tu which
spans Yu and is rooted at ru which is the strongest vertex
of type ψ(u) which is contained in Yu. To keep track of the
vertices of H which we have processed and those we have
not, we will use a boolean function Acc : V (H) → {T, F}.
Initially, Acc(u) = F for every u ∈ V (H).
Constructing T . For each u ∈ V (H) which is a leaf, we
invoke the first statement of Lemma 3 to conclude that there
is a binomial arborescence Tu spanning Ru and rooted at ru,
which is the strongest element of type ψ(u) in Ru. We then
set Acc(u) = T . We now exhaustively repeat the following
procedure for the rest of the vertices.

Pick a vertex u such that Acc(u) = F and Acc(v) = T
for every v ∈ ChildH(u). Let c1, . . . , c� denote the children
of u in H and let Tc1 , . . . , Tc� denote the already defined
arborescences where Tcj spans Ycj and is rooted at rcj which
is the strongest vertex of type ψ(cj) in Ycj .

Define the set Z0 = Ru and for each j ∈ [�], the set Zj as
V (Tcj). Define the trees T1, . . . , T� as Tj = Tcj and the root
rj of Tj as rj = rcj . Since the sets {Zj}0≤j≤�, the trees
{Tj}j∈[�] and vertices {rj}j∈[�] satisfy the premises of the
second statement of Lemma 2, we conclude that there is a
binomial arborescence Tu rooted at the strongest vertex of
Z0 = Ru and spanning the set Yu. Since we have already
argued that the strongest vertex of Ru is of type ψ(u), we
conclude that Tu is rooted at the strongest vertex of type ψ(u)
in Yu. We now set Acc(u) = T and continue. This procedure
terminates when u = v� and we will have demonstrated the
existence of an arborescence rooted at v� and spanning V (D).
This completes the proof of the lemma.

Theorem 1 follows from Lemma 5, the fact that there are
(k log k)O(k)nO(1) valid tuples, and Proposition 2 combined
with the fact that the number of variables in each constructed
instance of ILP-FEASIBILITY is O(k2).

Concluding remarks. Our fixed-parameter tractability re-
sult for the TOURNAMENT FIXING PROBLEM is but the first
step in the formal study of the parameterized complexity of
this problem. The challenge going forward is to chart the
parameterized complexity landscape of the TFP with respect
to stronger parameters for tournaments, e.g., feedback vertex
set, cutwidth and treewidth. A second direction would be
the study of the probabilistic version of the problem where
the input is a probability matrix giving the probability of any
player beating any other and the objective is to compute a
seeding such that the probability of a special player wining
the resulting knockout tournament exceeds a given threshold.

Acknowledgments. The authors wish to thank the anony-
mous reviewers for their helpful comments and acknowledge
support by the Austrian Science Fund (FWF, project P26696).

3934

References

Aziz, H.; Gaspers, S.; Mackenzie, S.; Mattei, N.; Stursberg,
P.; and Walsh, T. 2014. Fixing a balanced knockout tourna-
ment. In Brodley, C. E., and Stone, P., eds., Proceedings of
the Twenty-Eighth AAAI Conference on Artificial Intelligence,
July 27 -31, 2014, Québec City, Québec, Canada., 552–558.
AAAI Press.
Betzler, N.; Bredereck, R.; Chen, J.; and Niedermeier, R.
2012. Studies in computational aspects of voting - A pa-
rameterized complexity perspective. In Bodlaender, H. L.;
Downey, R.; Fomin, F. V.; and Marx, D., eds., The Multivari-
ate Algorithmic Revolution and Beyond - Essays Dedicated
to Michael R. Fellows on the Occasion of His 60th Birthday,
volume 7370 of Lecture Notes in Computer Science, 318–363.
Springer Verlag.
Bevern, R. v.; Komusiewicz, C.; Molter, H.; Niedermeier, R.;
Sorge, M.; and Walsh, T. 2016. h-index manipulation by
undoing merges. In Kaminka, G. A.; Fox, M.; Bouquet, P.;
Hüllermeier, E.; Dignum, V.; Dignum, F.; and van Harmelen,
F., eds., ECAI 2016 - 22nd European Conference on Artificial
Intelligence, 29 August-2 September 2016, The Hague, The
Netherlands - Including Prestigious Applications of Artifi-
cial Intelligence (PAIS 2016), volume 285 of Frontiers in
Artificial Intelligence and Applications, 895–903. IOS Press.
Cayley, A. 1889. A theorem on trees. Quart. J. Math.
23:376–378.
Chen, J.; Faliszewski, P.; Niedermeier, R.; and Talmon, N.
2015. Elections with few voters: Candidate control can be
easy. In Bonet, B., and Koenig, S., eds., Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA., 2045–2051. AAAI
Press.
Cygan, M.; Fomin, F. V.; Kowalik, L.; Lokshtanov, D.; Marx,
D.; Pilipczuk, M.; Pilipczuk, M.; and Saurabh, S. 2015.
Parameterized Algorithms. Springer.
Dey, P.; Misra, N.; and Narahari, Y. 2015. Kernelization
complexity of possible winner and coalitional manipulation
problems in voting. In Weiss, G.; Yolum, P.; Bordini, R. H.;
and Elkind, E., eds., Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2015, Istanbul, Turkey, May 4-8, 2015, 87–96. ACM.
Downey, R. G., and Fellows, M. R. 2013. Fundamentals
of Parameterized Complexity. Texts in Computer Science.
Springer.
Flum, J., and Grohe, M. 2006. Parameterized Complex-
ity Theory, volume XIV of Texts in Theoretical Computer
Science. An EATCS Series. Berlin: Springer Verlag.
Fradkin, A. O., and Seymour, P. D. 2013. Tournament
pathwidth and topological containment. J. Comb. Theory, Ser.
B 103(3):374–384.
Frank, A., and Tardos, É. 1987. An application of simultane-
ous diophantine approximation in combinatorial optimization.
Combinatorica 7(1):49–65.
Hemaspaandra, L. A.; Lavaee, R.; and Menton, C. 2016.
Schulze and ranked-pairs voting are fixed-parameter tractable

to bribe, manipulate, and control. Ann. Math. Artif. Intell.
77(3-4):191–223.
Kannan, R. 1987. Minkowski’s convex body theorem and
integer programming. Math. Oper. Res. 12(3):415–440.
Kim, M. P., and Vassilevska Williams, V. 2015. Fixing
tournaments for kings, chokers, and more. In Yang, Q., and
Wooldridge, M., eds., Proceedings of the Twenty-Fourth In-
ternational Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, July 25-31, 2015, 561–567.
AAAI Press.
Kim, M. P.; Suksompong, W.; and Vassilevska Williams,
V. 2016. Who can win a single-elimination tournament?
In Schuurmans, D., and Wellman, M. P., eds., Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA., 516–522.
AAAI Press.
Lenstra, H. W., and Jr. 1983. Integer programming with a
fixed number of variables. Math. Oper. Res. 8(4):538–548.
Lindner, C., and Rothe, J. 2008. Fixed-parameter tractability
and parameterized complexity, applied to problems from
computational social choice. In Mathematical Programming
Glossary. Informs Computing Society, 1–15.
Stanton, I., and Vassilevska Williams, V. 2011. Rigging
tournament brackets for weaker players. In Walsh, T., ed.,
IJCAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, Barcelona, Catalonia,
Spain, July 16-22, 2011, 357–364. IJCAI/AAAI.
Vassilevska Williams, V. 2010. Fixing a tournament. In Fox,
M., and Poole, D., eds., Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2010, At-
lanta, Georgia, USA, July 11-15, 2010. AAAI Press.
Vu, T.; Altman, A.; and Shoham, Y. 2009. On the complexity
of schedule control problems for knockout tournaments. In
Sierra, C.; Castelfranchi, C.; Decker, K. S.; and Sichman,
J. S., eds., 8th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Budapest,
Hungary, May 10-15, 2009, Volume 1, 225–232. IFAAMAS.
Yang, Y. 2014. Election attacks with few candidates. In
Schaub, T.; Friedrich, G.; and O’Sullivan, B., eds., ECAI
2014 - 21st European Conference on Artificial Intelligence,
18-22 August 2014, Prague, Czech Republic - Including Pres-
tigious Applications of Intelligent Systems (PAIS 2014), vol-
ume 263 of Frontiers in Artificial Intelligence and Applica-
tions, 1131–1132. IOS Press.

3935

