
Soft and Cost MDD Propagators

Guillaume Perez and Jean-Charles Régin
Université Nice Sophia Antipolis, CNRS, I3S, France
guillaume.perez06@gmail.com, jcregin@gmail.com

Abstract

Recent developments of efficient propagators, operations and
creation methods for MDDs allow us to directly build effi-
cient MDD-based models, without the need for intermediate
data structures. In this paper, we take another step in this
direction by improving the propagators of cost MDDs. In ad-
dition, we introduce a soft MDD propagator in order to deal
with unsatisfiable problems. This directly offers cost and soft
versions for table constraints and any constraints which can
be represented by an MDD (regular, slide, knapsack...).

Introduction
Multi-valued decision diagrams (MDDs) are efficient data
structures for representing discrete functions. They are
implemented in almost all constraint programming solvers
and are more and more used to build models (Perez and
Régin 2015a; Andersen et al. 2007; Hadzic et al. 2008;
Hoda, van Hoeve, and Hooker 2010; Bergman, van Hoeve,
and Hooker 2011; Gange, Stuckey, and Szymanek 2011).
They can be constructed in several ways, from tables, au-
tomata, dynamic programming, etc...; or defined by combin-
ing two or more MDDs thanks to operators like intersection,
union, or difference.

The MDD associated with a constraint C is an MDD
which models the set of tuples satisfying C. An MDD prop-
agator of C is an algorithm which removes some inconsis-
tent values of X(C), the variables on which C is defined. In
this paper, we consider soft and cost MDD propagators, that
are propagators for soft constraints represented by MDDs
and cost MDDs.

The cost version of an MDD is an MDD whose arcs have
an additional information: the cost of the arc. In a cost-
MDD, each path from the top layer to the bottom layer has
a cost, and a cost-MDD propagator aims at bounding this
cost. Cost-MDDs are useful to model optimization prob-
lems (Bergman and Cire 2016; Bergman, van Hoeve, and
Hooker 2011). Several cost-MDD propagators already ex-
ist (Demassey, Pesant, and Rousseau 2006; Gange, Stuckey,
and Van Hentenryck 2013). Recently, MDD4R (Perez and
Régin 2014) a new propagator for MDDs has been proposed.
For some industrial instances, MDD4R improves on previ-
ous propagators by a speed factor of up to 100. Hence, we

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

propose an adaptation of the propagator MDD4R to process
cost-MDDs and we will show that such speed up are also
observed for cost-MDD4R compared to existing methods.

We also consider propagators of soft constraints, which
will allow the violation of some arcs, with respect to a cer-
tain amount of violation. We give three original propagators,
one dedicated, one based on the cost-MDD propagator and
one obtained by intersecting the initial MDD with an MDD
expressing a sum constraint.

The paper is organized as follows. The next section
presents the motivation for this work. Then, we recall some
basics about MDDs, cost-MDDs, and propagators for both
of them. Next, we present cost-MDD4R, our cost-MDD
propagator which is an adaptation of the MDD4R propaga-
tor. The section about soft constraints presents three prop-
agators. In the experimental section, we give some results
for the complex text generation problem that motivated our
work. We also show by using several random instances that
our methods improve the previous results. Finally, we con-
clude.

Motivation

The main motivation of this work is the generation of text
and music from a corpus while avoiding plagiarism (Pa-
padopoulos, Roy, and Pachet 2014; Perez and Régin 2015a).

The goal of this problem, named maxOrder, is to gen-
erate sequences of words, where for example, each subse-
quence of size two belongs to the corpus (Markovian tran-
sition) and no subsequence of size 4 belongs to the corpus.
Here 4 denotes the maximum plagiarism size.

To handle this problem, we define two types of MDDs
(Figure 1). First, we extract the Markov transition matrix
from the corpus, then we build the MDD representing the
Markov transition constraint named MDDM .

Second we build MDDNP , the MDD representing all the
sequences of size 4 not belonging to the corpus. To do so, we
build the MDD of all the sequences of size 4 which belong
to the corpus, then we apply the negation operator (Perez
and Régin 2015b). An important remark is that the negation
of an MDD is linear in its size.

Then, for each sequence of 2 variables we define an MDD
propagator on MDDM and for each sequence of 4 variables
we define one MDD propagator on MDDNP (Figure 2).

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3922

Figure 1: MaxOrder model: Main MDDs

Figure 2: MaxOrder model: Sequences of MDDs

This model gives excellent results in practice and is com-
petitive with an ad-hoc solution.

Only instances with a lot of solutions have been consid-
ered. However, when the corpus is too small, or too complex
(too many different words compared to the total number of
words), there is no solution. In this case, we would like
to provide solutions with respect to an amount of violation.
Thus, we need to be able to soften either the Markovian tran-
sition constraint, or the plagiarism constraint (Figure 3).

The soft MDD propagator can be used in two distinct
ways. The first one is for MDDM , the Markov MDD. If
a soft MDD propagator is applied to it, then it means that
we allow the generation algorithm to create new word tran-
sitions (transitions not belonging to the corpus). The second
one is for MDDNP , the plagiarism MDD. If a soft MDD
propagator is applied to it, then this allows the generation
algorithm to create sequences containing some plagiarisms.
The goal of the solver is then to limit this plagiarism.

Preliminaries

Multi-valued decision diagram

A multi-valued decision diagram (MDD) is a data-structure
representing discrete functions. It is a multiple-valued ex-
tension of BDDs (Bryant 1986). An MDD, as used in
CP (Cheng and Yap 2010; Perez and Régin 2014; An-
dersen et al. 2007; Hadzic et al. 2008; Hoda, van Hoeve,
and Hooker 2010; Bergman, van Hoeve, and Hooker 2011;
Gange, Stuckey, and Szymanek 2011), is a rooted directed
acyclic graph (DAG) used to represent some multi-valued

Figure 3: MaxOrder: soft version

function f : {0...d−1}r → {true, false}, based on a given
integer d. Given the r input variables, the DAG representa-
tion is designed to contain r layers of nodes, such that each
variable is represented at a specific layer of the graph. Each
node on a given layer has at most d outgoing arcs to nodes
in the next layer of the graph. Each arc is labeled by its cor-
responding integer. The arc (u, v, a) is from node u to node
v and labeled by a. The final layer is represented by the true
terminal node (the false terminal node is typically omitted).
There is an equivalence between f(v1, ..., vr) = true and
the existence of a path from the root node to the true termi-
nal node whose arcs are labeled v1, ..., vr. Nodes without
any outgoing arc or without any incoming arc are removed.

MDD of a constraint. Let C be a constraint defined on
X(C). The MDD associated with C, denoted by MDD(C),
is an MDD which models the set of tuples satisfying C.
More precisely, MDD(C) is defined on X(C), such that the
labels of arcs of the layer of the variable x correspond to
values of x, and a path of MDD(C) where ai is the label of
layer i corresponds to a tuple (a1, ..., an) on X(C).

Consistency with MDD(C). A value a of the variable x
is valid iff a ∈ D(x). An arc (u, v, a) at layer i is valid iff
a ∈ D(xi). A path is valid iff all its arcs are valid.
Let pathr

tt(MDD(C)) be the set of paths from root r to tt in
MDD(C). The value a ∈ D(xi) is consistent with MDD(C)
iff there is a valid path in pathr

tt(MDD(C)) which contains
an arc at layer i labeled by a.

MDD propagator. An MDD propagator associated with
a constraint C is an algorithm which removes some incon-
sistent values of X(C). The MDD propagator establishes
arc consistency of C if and only if it removes all inconsis-
tent values with MDD(C). This means that it ensures that
there is a valid path from the root to the true terminal node in
MDD(C) if and only if the corresponding tuple is allowed
by C and valid.

MDD4 is a MDD propagator which maintains the whole
MDD during the search and the following invariants:

For each node u ∈MDD, ω+(u) contains the valid arcs
outgoing from u, and ω−(u) the valid arcs incoming in u.
∀xi ∈ X, ∀a ∈ D(xi), S(xi, a) contains all the valid arcs

e at layer i s.t. e = (u, v, a).
When a modification occurs in the domain of a variable,

MDD4 deletes all arcs in the S lists of the deleted values,

3923

then it deletes the nodes and arcs which do not belong to a
valid path of pathr

tt(M). To do so, MDD4 performs two
BFS, layer by layer, one from the layer of the modified vari-
able to the top, and the other one from the modified variable
to the bottom.

MDD4R is an improved version of MDD4 based on the
idea of the reset (Perez and Régin 2014). A reset is the
operation which consists in clearing and rebuilding a data
structure when it needs less operation than updating it. For
example, if for a layer we have to remove 90% of the arcs,
we should consider rebuilding the layer from the remain-
ing 10% arcs. By maintaining the number of arcs of each
layer, we can know exactly if we should remove the incon-
sistent arcs, or rebuild the layer using the remaining arcs.
This idea is the main advantage of MDD4R and leads to or-
ders of magnitude in performance gain.

Note that a regular constraint (Beldiceanu, Carlsson, and
Petit 2004; Pesant 2004) can be converted into an MDD by
first unfolding the automaton on the variables, which gives
an MDD whose nodes are associated to a state from the
automaton, and then reducing this MDD (Perez and Régin
2015a). MDD4R is more efficient in practice than Regular
propagators.

Cost-MDD propagator
Cost-MDD A cost-MDD is an MDD whose arcs have an
additional information: the cost c of the arc. That is, an arc
is a 4-tuplet e = (u, v, a, c), where u is the emanating node,
v the terminating node, a the label and c the cost. Let M be
a cost-MDD and p be a path of M . The cost of p is denoted
by γ(p) and is equal to the sum of the costs of the arcs it
contains. A shortest path of M is a path of M whose cost is
minimum. A shortest path of an arc e is pmin(e), a path such
that there is no path of M containing e having a smaller cost.

Cost-MDD of a constraint. Let C be a constraint and fC
be a function associating a cost with each value of each vari-
able of X(C). The cost-MDD of C and fC is denoted by
cost-MDD(C, fC) and is MDD(C) whose the cost of an arc
labeled by a at layer i is fC(xi, a).

Cost-MDD propagator. A cost-MDD propagator associ-
ated with C, fC , a value H , and a symbol ≺ (which can
be ≤ or ≥) is an MDD propagator on MDD(C) which en-
sures that for each path p of cost-MDD(C, fC) we have
γ(p) ≺ H . A cost-MDD propagator establishes arc con-
sistency of C iff each arc of cost-MDD(C) belongs to p a
valid path of pathr

tt(cost-MDD(C)) with γ(p) ≺ H . For
the sake of clarity, we will consider only the case ≤ in this
paper. The other case is equivalent.

Existing propagators (Demassey, Pesant, and Rousseau
2006; Gange, Stuckey, and Van Hentenryck 2013) for this
constraint are based on the idea of processing and maintain-
ing up[u], the shortest path cost between the root node
and every node u, and then dn[u], the shortest path cost
between each node u and the tt node. An arc e = (u, v, a, c)
is deleted when up[u] + dn[v] + c > H .

These algorithms use a modified version of their own
MDD propagator to handle this new deletion and propaga-
tion on the cost-MDD. Basically, when a variable of X is

modified, the arcs labeled by the deleted values have to be
removed, and, if a node lost all its incoming or outgoing
arcs, it has to be removed. When a node is removed, all its
remaining arcs have to be removed. If a value up[u] or
dn[u] of a node u is modified, then the new value has to
be propagated.

We propose Cost-MDD4R a modified version of the effi-
cient MDD4R algorithm for establishing the arc consistency
of a constraint C represented by cost-MDD(C).

In order to deal with costs, cost-MDD4R adds and main-
tains for each node u, the value up[u] and dn[u] as pre-
viously defined. While a propagator dealing with an MDD
only has to manage the variables modifications, a propagator
dealing with cost-MDD also needs to handle cost modifica-
tions. We detail these operations:

Variable Modification. When the domain of a variable is
modified, cost-MDD4R performs the same work as MDD4R
and maintains for each node u the values up[u] and
dn[u]. To do so, it marks the modified nodes and, between
the work made layer by layer, it updates the cost of the mod-
ified nodes, and deletes the arcs that just became invalid.
Then, it continues this cost propagation, layer by layer, even
if no more arcs have to be deleted by MDD4R.

To avoid unnecessary work, we can only mark nodes
whose value is equal to the value brought by the deleted
arc. For example, if we remove the arc e = (u, v, a, c), we
mark u only if dn[u] = c+ dn[v] and we mark v only if
up[v] = c+ up[u].

If a reset is performed (i.e. fewer valid arcs than in-
valid arcs), then the values up and dn are recalculated while
putting back the arcs.

Modification of the cost value. Let e = (u, v, a, c) be
an arc, the Minimal Path Cost of e denoted by MPC(e) is
MPC(e) = c+ up[u]+ dn[v] = γ(pmin(e)).

Proposition 1 Let C be an arc consistent constraint with a
cost value H = k+i. If H is reduced to k, then removing all
arcs of cost-MDD (C) such that MPC(e) > k is sufficient
for C to be arc consistent.

Proof: Any arc ε with MPC(ε) > k is not consistent by
definition, and so can be safely deleted. Let e be any arc
with MPC(e) ≤ k. Then, for every arc e′ ∈ pmin(e) there
is p′ a path such that γ(p′) ≤ γ(pmin(e)) = MPC(e),
so MPC(e′) ≤ MPC(e) ≤ k. Thus, no arc of pmin(e)

has been deleted and pmin(e) is a valid path of pathr
tt(M) .

Hence, e is consistent with C.
So, when the value H is reduced from k + i to k, cost-

MDD4R establishes arc consistency by performing a BFS,
and for each layer, it simply removes the arcs such that
MPC > k. This can be efficiently done by maintaining
the arcs sorted by their MPC.

Here again, we can use the reset idea. When there are
less arcs with MPC ≤ k than arcs with MPC > k, then
cost-MDD4R will choose to clear the data structures and put
back the arcs with MPC ≤ k. This is an important part of
the algorithm because the bound propagation can be costly.
This idea avoids deleting almost all the MDD when only few
arcs are still valid.

3924

Figure 4: Soft MDD and scMDD

Soft-MDD propagator

A soft constraint is a constraint which allows some viola-
tions.

In this paper, we consider only the variable based viola-
tion cost (Petit, Régin, and Bessière 2001). Precisely, for
a given assignment A of valid values of a constraint C, the
cost of the violation of C by A is defined as the minimal
number of values of A that should be changed in order to
satisfy C. In other words, it corresponds to the minimum of
the Hamming distance between A and any tuple of C. We
denote by Hamming(A,C) this distance. So, we consider
that a value a ∈ D(x) is consistent with a soft constraint
C associated with an integer H if and only if there exists
A, an assignment of valid values involving (x, a), such that
Hamming(A,C) ≤ H .

A soft-MDD propagator of a soft constraint C associated
with an integer H is an algorithm which removes some val-
ues inconsistent with C and H .

MDD propagators (Cheng and Yap 2010; Perez and Régin
2014) fail when no solution exists. For example, consider
the top left MDD of Figure 4. If all the arcs of any path
are valid, then the constraint is not violated. But if values a
and b are deleted from the domain of the first variable (i.e.
the variable of the first layer) then the propagation of this
deletion will remove all the nodes and arcs of the MDD.
This shows the need for new propagators in order to deal
with the amount of violation.

We introduce three methods to propagate a soft constraint
C represented by MDD(C). The first one is a simple propa-
gator, which does not modify MDD(C) and uses some prop-
erties on the shortest path to establish arc consistency of C.
The second one transforms MDD(C) into a cost-MDD and
uses a cost-MDD propagator on it. The last one builds an
MDD explicitly dealing with the violation cost variable and
intersects it with MDD(C) and apply on the resulting MDD
an MDD propagator.

Dedicated Propagator

The first propagator does not modify MDD(C) and is easy
to implement.

Consider μ(p) the function which counts the number of
arcs of the path p that are not valid.

While filtering, only assignments involving values in the
domains of the variables are considered, so the Hamming
distance between any assignment and a tuple of the MDD
corresponding to the path p is at least μ(p). Let e be an arc
of the MDD. If e is not involved in a path p of pathr

tt(M)
with μ(p) ≤ H then it means that no path containing e may
support a value, so e can be safely deleted. Let p be a path
of pathr

tt(M). If μ(p) = H then it means that p supports
any value of a variable corresponding to the layer of a non
valid arc of p, because in an assignment each value belongs
to the domain of its variable. If μ(p) < H then it means that
p supports any value of any variable, because we can have
one more change in the tuple of the path to correspond to the
assignment.

We can design a propagator. First, we search for the short-
est path of the MDD according to Function μ. If this path
has a cost strictly lower than the maximum cost, then all the
values are supported. Otherwise, we delete all arcs e with
MPC(e)) > H . The resulting MDD can now be handled
by any MDD propagator. Using two BFS, we can determine
the shortest path cost of all arcs and remove all impossible
paths. This method establishes arc consistency of the soft
constraint.

Note that a classical cost-MDD cannot handle this con-
straint by considering μ as cost function because the cost of
an arc depends on the domain of the variables.

This dedicated propagator can be expensive. This is why
we propose some other propagators.

Transformation into a cost-MDD

The conversion of MDD(C) into a cost-MDD uses a method
initially created for the regular constraint (Van Hoeve, Pe-
sant, and Rousseau 2006).

The idea is to add, for each two nodes which have at least
one arc between them, an additional arc labeled by *, with
a cost of 1. The cost of all the other arcs is set to 0. An arc
labeled by * is an arc which supports any value of the vari-
able. We call *-arcs such arcs and we denote by scMDD the
resulting cost-MDD and fSC the cost function we have de-
fined. Then, we define a cost-MDD propagator on scMDD
with fSC , H + 1 and <.

For instance, in Figure 4 the *-arcs (in red) are created
only between connected nodes. Nodes 2 and 3 are connected
by an arc labeled by b, so we create the *-arc, but 1 and 4 are
not connected, so we do not create the *-arc between them.
Now, assume that the values a and b are deleted from the
domain of the variable x1. The resulting MDD is the MDD
in Figure 5. We can see that only 2 arcs have been deleted,
and, unlike in MDD(C), the nodes are not deleted, thanks to
the *-arcs. It is easy to see that the shortest path cost in this
MDD is 1 because all paths contain at least one *-arc.

Intersection of MDDs

The recent development of efficient operators between
MDDs (Perez and Régin 2015a; 2016) allows us to perform
several operations between MDDs. In general these opera-
tions aim at combining MDDs according to the label of their

3925

Figure 5: Soft MDD propagation

Figure 6: MDDΣ{0,1} on 3 variables

arcs. In this section, we use these operations in another way.
Instead of applying operators on the label of the arcs, we
apply them on their cost.

Let MDDΣ{0,1} (Figure 6) be the MDD representing the
sum of n variables with the set {0, 1} as a domain. The last
variable represents the possible values of this sum. As seen
in the previous section, a soft constraint can be expressed as
scMDD, a cost-MDD in which the cost of the arcs are ei-
ther 0 or 1. If we perform the intersection between scMDD
and MDDΣ{0,1}, then we obtain an MDD whose last layer
corresponds to the violation cost. Then, the constraint rep-
resented by this MDD is similar to the soft constraint. Thus,
any MDD constraint propagator can be used.

For example, if we take the right MDD from Figure 4,
and we intersect it with the one from Figure 6, then we ob-
tain the MDD of Figure 7. In the resulting MDD, the node
(1 S=0) represents the copy of the node 1 from the first
MDD having an incoming cost of 0. We can observe that the
outgoing arcs of node (1 S=X) are still directed to a node
labeled by (3 S=X).

We can compute the size of the newly created MDD.
Let M be any MDD, we denote by |M.layer(i)| the num-

Figure 7: MDD resulting from the intersection of the right
MDD of Figure 4 and the one from Figure 6

Figure 8: MDDΣ{0,1} on 4 variables

ber of nodes at the layer i and by |M | the total num-
ber of nodes of M . The maximum number of nodes at a
layer i of the intersection of scMDD and MDDΣ{0,1} is
bounded by |scMDD.layer(i)| ∗ |MDDΣ{0,1}.layer(i)|.
The sum of all the layers is bounded by |scMDD| ∗
maxi(|MDDΣ{0,1}.layer(i)|). In our case, the maximum
for a layer of MDDΣ{0,1} is the number of variables plus
one, that is n + 1. So the resulting MDD has a maximum
size of (n+ 1)|scMDD|

Note that we can reduce the size of |MDDΣ{0,1}|, by
modeling

∑
i xi = S, the sum constraint, in a different way.

Instead of ordering the variables from x1 to xn and to S the
final sum variable,we can order the variable from x1 to xn

2

then S and then from xn
2 +1 to xn. This leads to an MDD

having half as many nodes for its largest layer (Figure 8).

3926

Algo Markov Plagiarism
size 18 20 22 18 20 22
inter 5,5 104,8 111,7 4,7 8,1 9,3
cost-MDD4R 5,3 86,5 94,9 23,7 44,6 67,9
ev-mdd 11,1 361,9 355,5 26,2 58,5 78,0

Table 1: Times needed to build the sequences with minimum
of violations (Time out 1800s).

Discussion

The intersection based method could also be applied to any
constraint represented by a cost-MDD. However, in general
the sum is not bounded by a small number. In the best repre-
sentation of MDDΣ[0,k], the number of nodes of the middle
layer is the number of different values reachable by sum-
ming the numbers between 0 and k, which is nk/2. The in-
tersection of an MDD M with MDDΣ[0,k] leads to an MDD
having at most nk|M |/2 nodes. Note that this number is an
upper bound, because the number of time a node is dupli-
cated in the intersection is equal to the number of different
values of the sums reaching this node. If this number is not
too large, then applying this transformation is a good idea
because MDD propagators are faster than cost-MDD propa-
gators.

Experiments

We compare cost-MDD4R with ev-mdd, the incremental al-
gorithm presented in (Gange, Stuckey, and Van Hentenryck
2013) and with inter, the intersection method we proposed.

Sequence generation

We consider the problem detailed in Section Motivation.
We have tested both ways of softening the constraint
and they both gives pertinent results. For the experi-
mentation, we used "The fables of Jean de La
Fontaine" because they contain several sentences, not
too many words and often produce funny results.

An important remark is that, if the corpus size grows, then
the maxOrder constraint becomes satisfiable. If it grows
again, then it becomes useless to apply a maxOrder con-
straint because it becomes exponentially improbable to build
a sequence containing plagiarism. That’s why we focus on
corpus like fables and short texts.

Table 1 gives the time results (in seconds) and Table 2
gives the size of the MDDs. Note that the model also
contains an alldifferent constraint. Markov means that
we apply the soft constraint on the Markovian transition,
Plagiarism is for the plagiarism part. The creation time
is similar for both MDDs, and insignificant compared to the
search time. These tables show that both methods are use-
ful, and that our algorithms clearly outperform the existing
methods. The MDD representing the Markov is smaller than
the MDD of the Plagiarism. We can see that both MDDs are
at least twice as big after the intersection.

Random instances

We test the propagators on several random instances, in or-
der to detect the location of the best performances of each

Markov Plagiarism
#nodes #arcs #nodes #arcs

original 73 168 261 21.5k
arc * 73 380 261 22.1k
intersection 147 590 783 54.6k

Table 2: Size of the MDDs. 60 different words.

propagator. We select randomly a certain number of tuples
and build an MDD from this tuple set. We associate each
arc with a random cost between 0 and 10. This implies the
use of MDDΣ[0,10] instead of MDDΣ{0,1} for the inter-
section method. We have a constraint of arity 18 and an
allDifferent constraint. Table 3 shows that the intersection
method can be very efficient in practice. Intuitively, the in-
tersection method “precomputes” some operations, that are
recomputed each time by the cost-MDD propagator. How-
ever, when the MDD grows up to reach our memory limit
(around 1.7GB), then cost-MDD4R become faster than the
intersection method. This comes from memory swaps.

#tuples cost-MDD4R ev-mdd inter
50 35,89 59,23 2,55
150 19,15 33,98 1,97
500 19,61 35,38 2,77
1k 19,97 37,37 4,15
2k 32,04 66,22 8,23
5k 32,27 71,43 14,22
10k 44,26 83,58 19,12
25k 101,57 189,30 49,84
50k 201,94 378,533 150,316
100k 478,296 755,570 1668,508

Table 3: search for the best solution (construction time is
included, arity 18, domain size 18).

Conclusion

This paper makes another step in the direction of build-
ing advanced constraint programming models using deci-
sion diagrams. We have introduced soft and cost propaga-
tors. We have adapted the efficient MDD4R propagator to
handle costs and we have proposed two efficient ways of
dealing with a soft constraint represented by an MDD. We
have shown that our methods are efficient in practice and that
it can be worthwhile to intersect MDDs and use MDD4R on
the intersection instead of using a dedicated or a cost-MDD
propagator.

References

Andersen, H. R.; Hadzic, T.; Hooker, J. N.; and Tiedemann,
P. 2007. A constraint store based on multivalued decision
diagrams. In CP, 118–132.
Beldiceanu, N.; Carlsson, M.; and Petit, T. 2004. Deriv-
ing filtering algorithms from constraint checkers. In CP’04,
107–122.

3927

Bergman, D., and Cire, A. A. 2016. Decomposition based
on decision diagrams. In International Conference on AI and
OR Techniques in Constriant Programming for Combinato-
rial Optimization Problems, 45–54. Springer International
Publishing.
Bergman, D.; van Hoeve, W. J.; and Hooker, J. N. 2011.
Manipulating mdd relaxations for combinatorial optimiza-
tion. In CPAIOR, 20–35.
Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. Computers, IEEE Transactions on
100(8):677–691.
Cheng, K., and Yap, R. 2010. An mdd-based generalized arc
consistency algorithm for positive and negative table con-
straints and some global constraints. Constraints 15:265–
304.
Demassey, S.; Pesant, G.; and Rousseau, L. 2006. A cost-
regular based hybrid column generation approach. Con-
straints 11(4):315–333.
Gange, G.; Stuckey, P.; and Szymanek, R. 2011. Mdd prop-
agators with explanation. Constraints 16:407–429.
Gange, G.; Stuckey, P. J.; and Van Hentenryck, P. 2013. Ex-
plaining propagators for edge-valued decision diagrams. In
Principles and Practice of Constraint Programming, 340–
355. Springer.
Hadzic, T.; Hooker, J. N.; O’Sullivan, B.; and Tiedemann,
P. 2008. Approximate compilation of constraints into mul-
tivalued decision diagrams. In CP, 448–462.
Hoda, S.; van Hoeve, W. J.; and Hooker, J. N. 2010. A
systematic approach to mdd-based constraint programming.
In CP, 266–280.
Papadopoulos, A.; Roy, P.; and Pachet, F. 2014. Avoiding
plagiarism in markov sequence generation. In Proceeding of
the Twenty-Eight AAAI Conference on Artificial Intelligence,
2731–2737.
Perez, G., and Régin, J.-C. 2014. Improving GAC-4 for
table and MDD constraints. In Principles and Practice of
Constraint Programming - 20th International Conference,
CP 2014, Lyon, France, September 8-12, 2014. Proceed-
ings, 606–621.
Perez, G., and Régin, J.-C. 2015a. Efficient operations on
mdds for building constraint programming models. In Inter-
national Joint Conference on Artificial Intelligence, IJCAI-
15, 374–380.
Perez, G., and Régin, J.-C. 2015b. Efficient operations on
MDDs for building constraint programming models. Inter-
national Joint Conference on Artificial Intelligence, IJCAI-
15, Argentina.
Perez, G., and Régin, J.-C. 2016. Constructions and in-place
operations for MDDs based constraints. In Integration of AI
and OR Techniques in Constraint Programming. Springer
International Publishing. 279–293.
Pesant, G. 2004. A regular language membership constraint
for finite sequences of variables. In Proc. CP’04, 482–495.
Petit, T.; Régin, J.-C.; and Bessière, C. 2001. Specific filter-
ing algorithms for over-constrained problems. In Proceed-
ings CP’01, 451–465.

Van Hoeve, W.-J.; Pesant, G.; and Rousseau, L.-M. 2006.
On global warming: Flow-based soft global constraints.
Journal of Heuristics 12(4-5):347–373.

3928

