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Abstract

We study algorithms for fragments of first order logic ex-
tended with counting quantifiers, which are known to be
highly complex in general. We propose a fragment over unary
predicates that is NP-complete and for which there is a nor-
mal form where Counting Quantification sentences have a
single Unary predicate, thus call it the CQU fragment. We
provide an algebraic formulation of the CQU satisfiability
problem in terms of Integer Linear Programming based on
which two algorithms are proposed, a direct reduction to
SAT instances and an Integer Linear Programming version
extended with a column generation mechanism. The latter is
shown to lead to a viable implementation and experiments
shows this algorithm presents a phase transition behavior.

1 Introduction

The need to combine deductive reasoning with counting and
cardinality capabilities in a principled way has been recog-
nized since the beginning of automated reasoning. However,
the complexity of the resulting systems has perhaps pre-
cluded a wider presence of deductive systems that provide
those counting capabilities.

The basic approach for adding counting capabilities ex-
tends first-order logic with some Lindström-type general-
ized quantifiers (Lindström 1966) that could express at least
the counting notions of “there are at least/most n elements
with property P ”. The satisfiability of a logic with that ex-
pressivity, but limited to fragments with at most binary pred-
icates was first shown to be decidable (Grädel and Otto
1999) and was later shown in NEXPTIME (Pratt-Hartmann
2005) with an EXPTIME-hard lower bound (Baader, Buch-
heit, and Hollander 1996); related studies are found in (Mar-
tin, Madelaine, and Stacho 2015; Bulatov and Hedayaty
2015).

If the attention is reduced to counting quantifiers over
unary predicates, the decision problem was shown to be
“only” NP-complete, even when restricted only to a frag-
ment called Syllogistic Logic (Pratt-Hartmann 2008). How-
ever, the algorithm presented for that complexity proof was
intrinsically non-deterministic, with no clear reduction to
known feasible algorithms.
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This paper aims at presenting an expressive fragment of
first-order logic with counting quantifiers over unary predi-
cates called CQU, developing decision algorithms for it and
providing an effective implementation using open-source
software. This fragment is more expressive than Syllogistic
Logic and bears considerable similarity in format to that of
Probabilistic Satisfiability (PSAT) problems (Nilsson 1986),
an NP-complete problem (Georgakopoulos, Kavvadias, and
Papadimitriou 1988) for which there has been considerable
algorithmic development in the literature (Hansen and Jau-
mard 2000; Finger and De Bona 2011; 2015). The algo-
rithms rely on an Integer Linear Programming presentation
of CQU satisfiability; a viable implementation is obtained
with a SAT-based column generation strategy.

We start by describing an example of reasoning on the
CQU fragment.
Example 1 Consider the following statements about peo-
ple’s hobbies

(i) At most 15 people are astronomers, ball players, choir
singers or dancers

(ii) At least 12 astronomers are not dancers
(iii) At least 10 astronomers play ball or sing
(iv) All ball players dance
(v) At least 7 astronomers sing in a choir

(vi) At most 6 astronomers sing in a choir
We would like to reason that (i)–(iv) are satisfiable and that
from them one can infer (v) or, equivalently, as (vi) is the
negation of (v), that (i)–(iv) and (vi) are unsatisfiable. �

An implementation of a CQU decision procedure should
allow us to solve problems like the one in Example 1 and,
furthermore, it should also allows us to empirically investi-
gate if a phase-transition phenomenon occurs for CQU de-
cision problems. Cheeseman et al. (Cheeseman, Kanefsky,
and Taylor 1991) conjectured that a phase-transition phe-
nomenon is a property of all NP-complete problems. Hard
and easy instances of SAT distributions problems were de-
scribed by (Mitchell, Selman, and Levesque 1992). Gent and
Walsh (Gent and Walsh 1994) described a phase transition
for SAT problems dependent on the rate m/n, where m
is the number of clauses in a 3-SAT instance and n is the
number of variables, describing that the hardest instances
concentrate around the phase transition point, at which the
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number of expected satisfiable instances is 50%, which for
3-SAT occurs at m/n ≈ 4.3.

To the best of our knowledge, no phase transition has
been described for counting quantifiers so far. We implement
a CQU-SAT solver using open-source software, which we
plan to make publicly available, on which phase-transition
detection experiments can be done.

The rest of this paper is organized as follows. The CQU
fragment is defined in Section 2, formalizing the satisfiabil-
ity problem and presenting an algebraic formulation for it.
Two algorithms are presented in 3.1 and their basic prop-
erties are studied. The implementation, experiments and re-
sults are described in 4. We terminate with conclusion and
suggestions for further works.

2 Counting Quantifiers over Unary

Predicates
We deal with a function-free first-order fragment over a sig-
nature containing only unary predicates and constants, ex-
tended with explicit counting quantifiers ∃≤n (atmost n) and
∃≥n (at least n), where n ∈ N is a non-negative integer.

We consider two forms of sentences. A counting sentence
has the form ∃≤nxϕ(x) or ∃≥nxϕ(x); ϕ(x) is a Boolean
combination of unary atomic formulas p(x), q(x), etc. A
universal sentence has the form ∀xϕ(x), where ϕ(x) is re-
stricted as in counting sentence. A formula ϕ of the frag-
ment of counting quantifiers over unary predicates (CQU),
is a conjunction of any finite number of counting sentences
Q and universal sentences U , ϕ = 〈Q,U〉 .

The semantics is the usual one, briefly presented here. Let
V be a countable set of variables, let D be a non-empty set
(domain). Let a term denote a constant or a variable. Con-
sider an interpretation I such that for every term t, I(t) ∈ D
and for every unary predicate symbol p, I(p) ⊆ D; we
write I|x for an interpretation that agrees with I for any term
t 	= x. Let ϕ be a CQU-formula; we write D, I |= ϕ to in-
dicate that ϕ is satisfiable over domain D and interpretation
I, defined as

D, I |= p(t) iff I(t) ∈ I(p)
D, I |= ¬ϕ iff D, I 	|= ϕ
D, I |= ϕ ∧ ψ iff D, I |= ϕ and D, I |= ψ
D, I |= ∃≤nxϕ iff |{I|x(x) ∈ D|D, I|x |= ϕ}| ≤ n
D, I |= ∃≥nxϕ iff |{I|x(x) ∈ D|D, I|x |= ϕ}| ≥ n

A formula ϕ is satisfiable if there are D and I such that
D, I |= ϕ; otherwise it is unsatisfiable. A formula ϕ entails
ψ (ϕ |= ψ) iff ϕ ∧ ¬ψ is unsatisfiable. ϕ is logically equiv-
alent to ψ (ϕ ≡ ψ) iff ϕ |= ψ and ψ |= ϕ. The problem of
determining whether a given formula is satisfiable is called
CQU-SAT.

Other Boolean connectives are defined in the usual way.
The semantics above shows that the negation of count-
ing quantifiers is such that ¬∃≤nxϕ ≡ ∃≥n+1xϕ and
¬∃≥n+1xϕ ≡ ∃≤nxϕ. If we define the usual existen-
tial quantifier as ∃xϕ ≡ ∃≥1xϕ it follows that ∀xϕ ≡
∃≤0x¬ϕ. The exact counting quantifier is defined as
∃=nxϕ ≡ ∃≤nxϕ ∧ ∃≥nxϕ.

The fragment which allows for the free application of
syntactic rules without the separation between universal

and quantified sentences is called C1 and was investigated
in (Pratt-Hartmann 2008). The difference between C1 and
CQU lies in the fact that the former allows for disjunc-
tions between quantified formulas, such as ∃≥7xϕ∨∃≤9y ψ,
which is not allowed in CQU. The following result follows
from the study of C1.

Proposition 1 (Pratt-Hartmann 2008) The CQU fragment
has the finite model property. Moreover, the satisfiability
problem for it is strongly NP-complete. �

Strong NP-completeness means that NP-completeness
holds even when n in ∃≤n, ∃≥n is given in unary notation.
The proof of Proposition 1 is based on non-deterministic
manipulations of the formula and does not provide an effec-
tive (non-exponential) algorithm. We note that the fragment
described above contains Syllogistic Logic (Pratt-Hartmann
2008), which contains counting quantifiers over only a con-
junction of two literals over unary predicates. In the search
for feasible algorithms we propose a normal form for formu-
las in the CQU fragment.

Definition 1 A CQU formula ϕ = {Q,U} is in normal
form if the quantified sentences in Q are restricted to atomic
unary predicates, that is, quantified formulas are of the form
∃≤nx p(x) or ∃≥nx p(x), where p is an atomic unary predi-
cate. �

In the following we will write �� to refer to ≤ or ≥, so
the CQU normal form is characterized by counting quan-
tifier sentences of the form ∃��nx p(x). By adding a small
number of extra variables, any CQU formula can be brought
to normal form.

Lemma 1 For every CQU formula ϕ there exists a normal
form formula ϕ′ such that ϕ is a satisfiable iff ϕ′ is; the
atomic instance ϕ′ can be built from ϕ in polynomial time.�

PROOF Consider ϕ = 〈Q,U〉. We build ϕ′ = 〈Q′,U ′〉
starting with Q′ = ∅ and U ′ = U . Then, for every quan-
tified formula ∃��nxψ, if ψ is an atomic predicate, just add
∃��nxψ to Q′; otherwise, create a new unary predicate pnew
and add ∀x(pnew(x) ↔ ψ) to U ′ and ∃��nx pnew(x) to Q′;
at every step ϕ′ is in normal form, and at its end, by contruc-
tion, ϕ′ is satisfiable iff ϕ is. �

Example 2 Consider Example 1, which can be formalized
as follows:

(i) ∃≤15x (a(x) ∨ b(x) ∨ c(x) ∨ d(x))

(ii) ∃≥12x (a(x) ∧ ¬d(x))
(iii) ∃≥10x (a(x) ∧ (b(x) ∨ c(x))

(iv) ∀x(b(x) → d(x))

(v) ∃≥7x (a(x) ∧ c(x))

(vi) ∃≤6x (a(x) ∧ c(x))

Clearly, (vi) is the negation of (v); we use only the latter.
To place counting formulas in normal form, we introduce
4 new predicates, p1, p2, p3, p4. Let U = {∀x(p1(x) ↔
(a(x) ∨ b(x) ∨ c(x) ∨ d(x))), ∀x(p2(x) ↔ a(x) ∧
¬d(x)), ∀x(p3(x) ↔ (a(x) ∧ (b(x) ∨ c(x))), ∀x(b(x) →
d(x)), ∀x(p4(x) ↔ (a(x) ∧ c(x)))} so that we can have
counting quantification over unary predicates only; let Q =
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{∃≤15x p1(x), ∃≥12x p2(x), ∃≥10x p3(x)}, such that we ex-
pect 〈Q,U〉 to be satisfiable and 〈Q ∪ {∃≤6x p4(x)},U〉 to
be unsatisfiable. �

For the rest of this work we always assume that formulas
are in normal form, which allow for a convenient presenta-
tion of CQU satisfiability in terms of integer linear algebra.

2.1 Algebraic Formulation of CQU-SAT

Consider a normal form CQU formula ϕ = 〈Q,U〉 whose
satisfiability we want to determine. Consider the k = |Q|
unary predicates that are quantified in Q, p1(x), . . . , pk(x),
where the order is fixed; then there are 2k elementary terms
of the form e(x) = λ1(x) ∧ . . . ∧ λk(x), where each λi(x)
is either pi(x) or ¬pi(x); an elementary term e(x) is called
coherent if it is consistent with the universal sentences, that
is, the set {∃xe(x)} ∪ U has a model.

Semantically, each elementary term is interpreted as a
subset E of the domain D, E = L1 ∩ . . . ∩ Lk, where each
Li is either the interpretation of pi or its complement with
respect to the domain D. In any interpretation that satisfies
ϕ = 〈Q,U〉, only coherent elementary terms may be in-
terpreted as non-empty subsets, otherwise the interpretation
would contradict U .

An integer linear algebraic presentation of CQU-SAT fol-
lows from encoding elementary terms as a {0, 1}-vector e of
size k, in which ei = 1 if in the term e(x) λi is pi and ei = 0
otherwise. We consider only the set of coherent elementary
terms so let km ≤ 2k be the number of coherent elementary
terms. Let A be a k × km {0, 1}-matrix, where each col-
umn encodes a coherent elementary term; note that the ith
line corresponds to the i counting quantifier expression in
Q. Let the ith element in Q be ∃��inix pi(x), ��i∈ {≤,≥};
let b be k × 1 integer vector, such that bi = ni, and let x be
a km × 1 vector of integer variables. Then the (potentially
exponentially large) integer linear system that corresponds
the CQU-SAT problem ϕ = 〈Q,U〉 is:

Ax �� b

x ≥ 0 (1)
xj integer

Lemma 2 A normal form ϕ = 〈Q,U〉 is CQU satisfiable iff
its corresponding system given by (1) has a solution. �

PROOF (⇒) If ϕ has an interpretation, we instantiate xj

with the number of elements in the subset corresponding
to the jth coherent elementary term; clearly xj is a non-
negative integer. As all elements in Q are satisfied, all in-
equalities in Ax �� b must be satisfied.

(⇐) If system (1) has a solution, we construct a finite
interpretation by inserting xj elements in each subset corre-
sponding to a coherent elementary term. From that point we
can compute an interpretation for all predicates in Q, and as
all inequalities in (1) are satisfied, so is Q; furthermore, as
only coherent elementary terms have non-zero elements, U
is also satisfied. �

To determine if an elementary term is coherent, we trans-
form the set U into a propositional formula, by deleting the
external ∀x quantifiers and considering each unary predicate

p(x) as a propositional symbol p. Then we can generate all
satisfying Boolean assignments using any SAT solver (Biere
2014; Eén and Sörensson 2003), and consider the part of
each assignment corresponding to the predicates in Q, as il-
lustrated in the following example.
Example 3 Consider the normal form formula ϕ = 〈Q,U〉
presented in Example 2. The linear algebraic rendering of
the problem shows it is CQU satisfiable:

p1

p2

p3

a
b
c
d

[
1 1 1
1 1 0
1 0 0

]
·

1 1 0
0 0 0
1 0 1
0 0 0

[
10
2
0

] ≤ 15
≥ 12
≥ 10

Each line corresponds to a predicate, indicated on the left.
The first 3 lines correspond to the quantified restrictions
in Q, and the product of the matrix by the vector satisfies
the corresponding inequalities. Each of the first 3 {0, 1}-
columns of size 7 correspond to a U -satisfying valuation of
all predicates. Thus this solution shows that the first four
conditions of Examples 1 and 2 are satisfiable.

However, if we want to show that adding the last condition
makes the example inconsistent, we would have to consider
the 24 valuations over the predicates p1, . . . , p4 and show
that no combination is capable of satisfying 4 inequalities, a
clearly exponential problem. �

The example shows that there is the potential of an expo-
nentially sized search for solutions for CQU-SAT. In the
search for effective algorithms, we need a guarantee that
all satisfiable CQU formulas have polynomial-sized mod-
els. In the case of Probabilistic Satisfiability (PSAT), this
existence of small models is guaranteed via Caratheodory’s
Theorem (Eckhoff 1993). In the discrete case, we have the
following anologue.
Proposition 2 Let E be system of the form (1) that has a so-
lution. Then E has a solution over N with at most 5

2k log k+1
non-zero entries. �

This result is proven by (Pratt-Hartmann 2008) adapting
a result by (Eisenbrand and Shmonin 2006). It gives us a
polynomial-sized bound for models of satisfiable CQU-SAT
instances, as follows.

A universal formula over unary predicates ∀xψ(x) can be
seen as a propositional formula ψ′, obtained by deleting ∀x
and replacing each unary predicate p(x) by a corresponding
propositional atom p′. Let U be seen as a set of propositional
formulas, {0, 1}-matrix A be as in (1); A’s jth column Aj

is U -satisfying if there is a valuation satisfying U that, when
applied to Q’s predicates seen as propositions, produces Aj .
Lemma 2 and Proposition 2 yield the following.
Lemma 3 Consider a normal form CQU-SAT instance ϕ =
〈Q,U〉, where Q = {∃��ibix pi(x)|1 ≤ i ≤ k}, and U is
seen as a set of propositional restrictions. Then ϕ is satisfi-
able iff there exists a solvable system of inequalities of the
form

Ak×km
· xkm×1 �� bk×1 (2)

3880



where km =
⌈
5
2 (k log k + 1)

⌉
, A is a {0, 1}-matrix whose

columns are U -satisfying. �
This serves as a basis for effective algorithms for CQU-

SAT.

3 Algorithms

We present two algorithms for deciding the satisfiability of
normal form CQU-SAT instances based on Lemma 3.

3.1 Canonical Reduction to SAT

The polynomial-size format of solutions given by Lemma 3
provides a way to reduce an instance of CQU-SAT. In this
approach, each instance ϕ = 〈Q,U〉 of a CQU-SAT decision
problem is polynomially translated to an instance of SAT by
encoding the set of inequalities in (2). In the following, U is
seen as a set of classical propositional restrictions.

Consider the set of inequalities in Q, represented in (2)
by �� b, where b is a vector of size k containing the up-
per and lower limits defined by the k-sized vector of in-
equality symbols ��. We search for a {0, 1}-matrix Ak×km

whose columns, according to Lemma 3, are U -satisfying val-
uations. Similarly, we encode x as a vector of size km and b
as a vector of size k of positions consisting of a fixed number
in binary positional system with yb bits, as in (3).

xj = xj,1 · · · xj,yb

(3)
bi = bi,1 · · · bi,yb

Linear programming guarantees that, if there is a solution
to (2), then there is a solution x in which xj ≤ max(bi)
for all j; so we fix yb = �log2(max bi + 1)� as the num-
ber of bits that encode the largest element of b. According
to (Warners 1998), each linear inequality can be brought to
a conjunction of conjunctive normal form formulas in lin-
ear time in km × yb. Thus, this enconding is polynomial in
k and in the number of bits needed to represent b. We have
thus generated a CQU-SAT-to-SAT encoding.
Lemma 4 The formula obtained by the CQU-SAT-to-SAT
encoding is satisfiable iff the the input CQU-SAT formula
ϕ = 〈Q,U〉 is. �

PROOF Just notice that the CQU-SAT-to-SAT formula en-
codes a direct solution to (2), and by Lemma 3 this solution
exists iff ϕ is CQU satisfiable. �

However, as discussed in (Finger and De Bona 2011), the
number of variables in the CQUSAT to SAT enconding is
O(yb ·k2 · log k), in analogy to the reduction of probabilistic
satisfiability to SAT. As a result, experiments with parame-
ters as low as the number of inequalities k = 6 and the num-
ber of variables in U n = 40 are almost impractical around
the critical points. This is why we turn to other algorithms
for CQU-SAT solving.

3.2 CQU-SAT via Integer Linear Programming

The formulation of CQU-SAT for the decision of ϕ =
〈Q,U〉 given by (1) is apparently suited for solving via Inte-
ger Linear Programming (ILP), as it deals with the existence

Algorithm 3.1 CQUBranchAndBound(ϕ)

Input: A normal form CQU formula ϕ = 〈Q,U〉.
Output: A solution satisfying (2); or “No”, if unsatisfiable.
1: CQUSet = {ϕ}
2: SAT = false
3: while not SAT and CQUSet is not empty do
4: CQUProblem = RemoveHeuristically(CQUSet)

5: solution = SolveRelaxedViaColGen(CQUProblem)

6: if no solution then
7: continue
8: else if integral solution then
9: SAT = true

10: else
11: var = choseBranchVar(solution)
12: newCQUs = boundedProblems(CQUProblem, var)
13: CQUSet = CQUSet ∪ newCQUs
14: end if
15: end while
16: if SAT then
17: return solution
18: else
19: return “No”
20: end if

of a solution of a set of inequalities of the form Ax �� b,
where xj ∈ N. However, there are two peculiarities in (1)
that have to be addressed, namely

• We do not produce A explicitly.

• If we construct it, it may be exponentially large.

In fact, A’s columns consists of U -satisfying valuations,
which are costly to compute and there may be exponentially
many, e.g. when U = ∅. To avoid these problems, we pro-
pose to solve the ILP problem via a simplified version of the
branch-and-bound algorithm (Schrijver 1986), which solves
relaxed (continuous) linear programs. For the latter, we gen-
erate A’s column as needed, in a process known as column
generation (Jaumard, Hansen, and Poggi de Aragão 1991).
For an ILP of the form (1), it is not necessary to search for an
optimal integer solution, one only needs to find one feasible
integer solution or show none exists.

The top level of the CQUBranchAndBound method is
shown in Algorithm 3.1. It starts with a unary set of prob-
lems containing the input CQU formula, and it loops until
either a feasible integer solution to the corresponding lin-
ear algebraic problem given by (2) is found or the set of
problems becomes empty, in which case unsatisfiability was
determined. In the main loop (lines 3–15), we first heuristi-
cally remove one problem from the set of problems (line 4,
and solve its relaxed version, that is, the problem without
the restriction of solutions being integral. The heuristic im-
plemented looks for the problem whose current solution has
the least number of non-integral components.

If the relaxed problem has no solution, the problem is just
removed from the set and the next iteration starts. If there
is a solution that is integral, the problem is satisfiable and
the loop ends. Otherwise, a solution with at least one non-
integral variable exists. A second heuristic is used to find
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Algorithm 3.2 SolveRelaxedViaColGen(ϕ)

Input: A normal form CQU formula ϕ = 〈Q,U〉.
Output: A relaxed solution, if it exists; or “No”, if unsatis-
fiable.
1: A(0) = I; compute cost vector c(0); x(0) = b

2: for s = 0; c(s)′ · x(s) > 0; s++ do

3: z(s) = DualSolution(A(s), �� b, c(s))

4: y(s) = GenerateColumn(z,U)
5: return “No” if column generation failed
6: A(s+1)=merge(A(s), y

(s))

7: c(s+1) = append(c(s), 0)
8: end for
9: return A(s), x(s) such that A(s)x

(s) �� b

a variable xi with a non-integral solution zi on which to
branch (line 11). This heuristic chooses xi∗ for which the
non-integral zi∗ is closer to either �zi∗� or �zi∗�.

Usually, two new bounded problems ϕ′ = 〈Q′,U ′〉,
ϕ′′ = 〈Q′′,U ′′〉 are generated (line 12), with the creation
of a new unary predicate pnew. We make U ′ = U ′′ =
U ∪ {∀x(pnew(x) ↔ ei∗(x))}, where ei∗(x) is the ele-
mentary term corresponding to column i∗ and Q′ = Q ∪
{∃≤�zi∗�x pnew(x)} and Q′′ = Q ∪ {∃≥�zi∗	x pnew(x)}.
These new formulas ϕ′ and ϕ′′ are then dealt with as inte-
ger linear problems of a larger number of rows and columns.
However, if the size of the generated node exceeds that given
by Lemma 3, the problem is pruned and not inserted.

The largest part of the processing in the CQUBranchAnd-
Bound algorithms occurs in the calls to the relaxed solver
(line 5), SolveRelaxedViaColGen(ϕ), in which column gen-
eration takes part. This process takes as input a CQU for-
mula, eventually expanded by the bounding operation and
is described in Algorithm 3.2. Its output may contain some
non-integral values, but the objective function, which min-
imizes the cost of the solution, has to be 0 for success to
be achieved. Thus the SolveRelaxedViaColGen(ϕ) aims at
solving the following linear program (Bertsimas and Tsit-
siklis 1997):

minimize c′ · x
subject to A · x �� b and x ≥ 0

(4)

In the linear program (4), {0, 1}-matrix A’s columns con-
sist of all possible valuations and it has 2k columns, and cost
vector c and solution vector x also have size 2k. So neither
is represented explicitly. Instead, Algorithm 3.2 starts with a
square matrix and iterates by generating the columns of A in
such a way as to decrease the objective function (lines 2–8).

At step 0, we start A with a k × k-identity matrix I; the
initial cost function c is such that cj = 1 iff A’s jth column
is not U -satisfying; otherwise cj = 0, 1 ≤ j ≤ k. As all
generated columns at the following steps are U -satisfying,
all added elements of the cost vector c are 0.

At each step s, we start by solving the linear program
A(s) · x(s) �� b (line 3); so we suppose there is a linear pro-
gramming solver available. We require that the solution gen-

erated contains the primal solution x(s) as well as the dual
solution z(s) (Bertsimas and Tsitsiklis 1997); but note that
the method for solving the linear program is not fixed. These
are used in the column generation process (line 4) described
below. If column generation fails, than the process cannot
decrease current cost and Algorithm 3.2 is terminated with a
negative decision. Otherwise a new column is generated, and
A and c are updated. At the end, when the objective function
has reached 0, the final values of A and x are returned.

We now describe the column generation process.

3.3 SAT-Based Column Generation

The idea of the SAT-based column generation is to map a
linear inequality over a set of {0, 1}-variables into a SAT-
formula, in exactly the same way as a set of inequalities was
mapped into a SAT-formula in Section 3.1 by using the O(n)
method described in (Warners 1998).

The inequality is obtained from the condition for choos-
ing a column in the Simplex Method for solving linear pro-
grams (Bertsimas and Tsitsiklis 1997; Papadimitriou and
Steiglitz 1998). The basic idea, given a linear program of
the form (4), the reduced cost c̄y of inserting a column y
from A in a simplex basis is

c̄y = cy − z′ · y (5)

where cy is the cost associated with column y and z is the
dual solution of the system A · x �� b of size k. As the
generated column y is always U -satisfying, cy = 0, so to
ensure a non-increasing value in the objective function we
need a non-positive reduced cost, c̄y ≤ 0, which leads us to

z′ · y ≥ 0 (6)

As y is a {0, 1}-vector, inequality (6) can be transformed
into a SAT-formula; that formula is added with the elements
of U , and an appropriate renaming of variables so as to force
the resulting SAT-formula χ to represent the fact that the
solution to (6) is U -satisfying. We can then send the formula
χ to a SAT-solver. If it is unsatisfiable, this means that there
is no way to reduce the cost of the linear program’s objective
function. If it is satisfiable, we obtain an instance of the y
variables that consists of a column that, when added to the
basis of a simplex solution of linear program (4), is expected
decrease the value of the objective function. It may maintain
it with the same value, in which case the simplex process has
reached a plateau; but it will never increase the objective’s
value.

Thus, we have shown how to construct a SAT-based col-
umn generation function GenerateColumn(solution,U),
provided we are given a (dual) solution for the correspond-
ing linear program.

Theorem 1 Algorithms 3.1, 3.2 and GenerateColumn pro-
vide a decision procedure for the CQU-SAT problem. �

PROOF (SKETCH) The proof is a simplification of the cor-
rectness of the branch-and-bound method for ILP (Schrijver
1986), due to the fact that CQU-SAT requires only a single
feasible integer solution instead of searching for optimality
in the lattice of feasible integer solutions. Details omitted.�
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4 Experiments and Results

We have implemented the CQU-SAT via ILP method, that
is, a CQU-SAT solver using Integer Logic Programming im-
plementing Algorithms 3.1, 3.2 and GenerateColumn pre-
viously described. The implementation was developed in
C++ 1 using the following open source software:

• Column generation implemented using MINISAT 2.22

• we implemented the SolveRelaxedViaColGen method us-
ing the linear solver Clp of the COIN-OR Project3.

The CQU-SAT decision method CQUBranchAndBound was
implemented using those modules. The heuristics employed
for choosing a node to solve (Algorithm 3.1, line 4) con-
sists on finding a solutions that is “closer to integral”, that
is, a solution with the least number of non-integral solu-
tion; in case of a draw, we choose the node with the largest
number of lines, that is, with the largest number of bound-
ing refinement; if the draw persists, one node is chosen ran-
domly. A second heuristic is needed for choosing the vari-
able on which to branch (Algorithm 3.1, line 11), for which
we chose, among the variables with non-integer values, the
one whose value is closer to an integer. Values are consid-
ered integer up to precision ε = 10−8.

For the experiments, we created a normal form cqu for-
mat as a variant of the DIMACS cnf format4. We gener-
ate uniformly distributed random CQU-SAT instances in
normal form with k = |Q| counting quantifier inequali-
ties, and the set of universal restrictions U was generated
in propositional CNF format with n variables and m 3-SAT
clauses. Counting quantifier sentences of the form ∃���pi(x),
1 ≤ i ≤ k, were generated by ��=≤ or ��=≥ with uni-
form distribution, and 	 uniformly distributed in the interval
[1, . . . , L].

For the first experiment, we fixed L = 100, k = 10 and
n = 250 and varied the rate m

n from 0.5 to 8 in steps of 0.05.
At each step, we generated randomly 100 cqu-instances and
computed the percentage of satisfiable instances (%SAT, left
axis) and the average time of computation in seconds (right
axis). We then obtained the graphic illustrated in Figure 1.

Figure 1: CQU-SAT Phase Transition, for k = 10, n = 250

1Available at http://cqu.sourceforge.net
2http://minisat.se/
3http://www.coin-or.org/
4http://www.satlib.org

Figure 1 clearly illustrates a phase transition behaviour,
with the transition point around m

n = 4.1. We know that
when k = 0, CQU-SAT becomes SAT, with phase transition
point around 4.3 (Gent and Walsh 1994). As the rate of satis-
fiable formulas decreases when k increases, due to the extra
constraints, it is expected that the rate of satisfiable formulas
decreases for a given rate m

n , so the phase transition point is
supposed to dislocate to the left, as observed.

It is obvious that the larger the value of n, the higher the
time curve. However, we hypothesized that for a fixed value
of k

n the shapes of the curves of percentage of CQU-SAT
formulas is about the same. To test this hypothesis, a second
experiment was performed, as shown in Figure 2.

Figure 2: Percentage of CQU-SAT formulas, for fixed k
n =

1
15 , k = 5, 10, 15 and n = 75, 150, 225, respectively

In that experiment, we fixed k
n = 1

15 and we drew three
curves for k = 5, 10, 15 and n = 75, 150, 225, respectively,
generating 100 formulas for each value of m

n , set from 2.5
to 5.0 in 0.1 steps; the percentage of CQU satisfiable for-
mulas at each step was measured. The result is shown in
Figure 2, which is consistent with the hypothesis, display-
ing three similar curves with similar phase-transition points;
experiments with a larger number of points at shorter inter-
vals should lead to a better agreement among the curves of
CQU-SAT percentage.

5 Conclusion
We have proposed an expressive fragment of counting quan-
tifiers over unary predicates, CQU, for which the satisfia-
bility problem is NP-complete and an integer linear alge-
braic formulation is possible. We have proposed a CQU-SAT
solving method by direct reduction to SAT problems, which
proved unfeasible, and a branch-and-bound method which
employs SAT-based column generation, which appears to be
feasible and allows us to show a phase transition behaviour
for the CQU-SAT problem. The phase-transition shows there
is predominance of feasible CQU-SAT instances.

Future research aims at extending the counting quantifier
fragment with possible applications to feasible Description
Logic handling of counting; we also plan to study inference
from CQU consistent and inconsistent sets of formulas.
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