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Abstract

Causal graphs, such as directed acyclic graphs (DAGs) and
partial ancestral graphs (PAGs), represent causal relation-
ships among variables in a model. Methods exist for learn-
ing DAGs and PAGs from data and for converting DAGs to
PAGs. However, these methods only output a single causal
graph consistent with the independencies/dependencies (the
Markov equivalence class M ) estimated from the data. How-
ever, many distinct graphs may be consistent with M , and a
data modeler may wish to select among these using domain
knowledge. In this paper, we present a method that makes
this possible. We introduce PAG2ADMG, the first method for
enumerating all causal graphs consistent with M , under cer-
tain assumptions. PAG2ADMG converts a given PAG into a
set of acyclic directed mixed graphs (ADMGs). We prove the
correctness of the approach and demonstrate its efficiency rel-
ative to brute-force enumeration.

Introduction

Capturing causal relationships is essential for a comprehen-
sive model of a domain. However, it is difficult to identify
causal relationships from observational data because many
distinct causal models may correspond to the same associa-
tive relationships discovered from data. In such a situation,
a data modeler or domain expert may wish to enumerate
all the causal graphs consistent with the probabilistic inde-
pendencies and dependencies present among variables of a
dataset, in order to (for example) leverage domain knowl-
edge to choose one graph from the consistent set.

Consider a physician in a major hospital who has ob-
served symptom X among many of her patients. Based
on their logs, patients developing symptom X had a much
higher likelihood of mortality. To understand the underly-
ing causes of symptom X, the physician aims to learn a
causal model from her data. We consider causal models
that are graphs, where nodes represent random variables
and edges denote probabilistic relationships between vari-
ables. Methods exist to learn models such as directed acyclic
graphs (DAGs) and partial ancestral graphs (PAGs) from
data (Spirtes, Glymour, and Scheines 2000). Using these
methods, the physician can learn one model that describes
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a set of independence relationships between variables of in-
terest (a Markov equivalence class), including symptom X.

Although DAGs and PAGs describe causal relationships,
these models fail to capture the full set of causal models
in a specific Markov equivalence class (Richardson 2003).
Acyclic Directed Mixed Graphs (ADMGs), on the other
hand, provide richer representations: the full set of ADMGs
in a specific Markov equivalence class provides an explicit
enumeration of the entire causal space.

In this paper, we present a method that enumerates, for a
given PAG (or DAG converted into a PAG), the full set of
ADMGs in the PAG’s Markov equivalence class. Equipped
with the complete set of ADMGs, the physician could use
domain knowledge to eliminate structures that have causal
fallacies, use model-averaging to build better classifiers, or
simply choose a single preferred model from the set. Thus,
our method provides a data modeler novel and potentially
valuable model selection choices.

Partial Ancestral Graphs

A PAG P is a causal graph that uniquely represents one
Markov equivalence class M of maximal ancestral graphs
(MAGs), a strict subset of ADMGs. MAGs are a special case
of mixed graphs that must satisfy the ancestral and maximal
properties. Only one of four different edges can exist be-
tween a pair of nodes in P: tail-arrow (directed, →), arrow-
arrow (bi-directed, ↔), circle-arrow (o→), and circle-circle
(o–o) (Zhang 2008). A tail or arrow mark appears at a node
X in P if and only if every MAG in M contains this mark at
X . A circle mark denotes a node at which two MAGs in M
have differing marks. M-separation is a property of causal
mixed graphs that helps to determine independence relation-
ships between nodes. Due to space constraints, we refer to
(Zhang 2008) for more details on MAGs and m-separation.

Arrows on edges represent the direction of causal influ-
ence. The presence of an edge in P between nodes X and
Y indicates that there exists no set of nodes Z, including
the empty set, that m-separates X and Y (Richardson and
Spirtes 2002). X → Y , indicates that X is a causal ancestor
of Y and Y is not an ancestor of X . X ↔ Y , indicates that
X is not an ancestor of Y and Y is not an ancestor of X . X
o→ Y , indicates that X is not an ancestor of Y .
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Acyclic Directed Mixed Graphs
ADMGs are a specific type of mixed graph that contain only
directed and bi-directed edges and have no directed cycles
in the absence of selection variables. ADMGs do not have to
satisfy ancestral or maximal conditions and thus are a much
less restrictive super-set of MAGs. They are also trivially
a strict super-set of DAGs. Furthermore, between any pair
of nodes, both a directed and bi-directed edge can occur,
granting additional expressive power (Richardson 2003).

Theorems
Theorem 1 Every ADMG A in the Markov equivalence
class M has the same skeleton of PAG P describing M .
Theorem 2 Let A be an ADMG for M and let PAG P de-
scribe M . Then for every pair of nodes X and Y :
1. if X → Y ∈ P , then X → Y ∈ A and X ↔ Y /∈ A
2. if X ↔ Y ∈ P , then X → Y /∈ A and Y → X /∈ A
3. if X o→ Y ∈ P , then Y → X /∈ A
4. X → Y and X ↔ Y ∈ A if and only if there exist

two ADMGs, A1 and A2 for M , with exactly the same
structure as A apart from this edge such that X → Y ∈
A1 and X ↔ Y ∈ A2.

Corollary 2.1 X → Y and X ↔ Y ∈ A if and only if X o–o
Y ∈ P or X o→ Y ∈ P . (Follows from Theorem 2.4)
We believe the results to be novel in this work.

PAG2ADMG
The PAG2ADMG method transforms a PAG P , which de-
scribes a Markov equivalence class M , into the full set of
ADMGs S for M . This method assumes that there are no se-
lection variables and contains a set of generation steps (1-3)
and two pruning steps (4-5).

Input: A PAG P over a set of variables V that de-
scribes a Markov equivalence class M
Output: The set of all ADMGs G over the same set
of variables V in M

1. Every edge E ∈ P between each pair of nodes
X,Y ∈ V is converted into the set of all possi-
ble edges E* between X,Y any ADMG A ∈ M
could have. (Uses Theorems 1-2 & Corollary 2.1)

2. All possible graphs G are generated using all
combinations of edge possibilities E* between
each pair X,Y ∈ V.

3. All graphs with directed cycles are removed (only
acyclic graphs remain).

4. Each ADMG A ∗ is converted to a DAG D∗ by
replacing each bi-directed edge with a latent vari-
able confounder.

5. Each DAG D∗ is then converted to a PAG P∗ us-
ing a method from (Richardson and Spirtes 2002).
If P∗ �≡ P , then G \ A ∗.

Example

The PAGs in Fig. 1 and Fig. 3 represent different Markov
equivalence classes. The circle-arrow edges in Fig. 1 and
Fig. 3 result in the possibility of of a directed edge, bi-
directed edge, or both edges being present in a Markov
equivalent ADMG. For these two examples, each combina-
tion of those three types of edges for both occurrences of
the circle-arrow edge defines a unique Markov equivalent
ADMG. Thus each PAG is described by 9 different distinct
ADMGs, examples of which are shown in Fig. 2 and Fig. 4
respectively. PAG2ADMG reduces the number of generated
ADMGs from 6(

4
2) = 46656 using a brute-force method to

32 and 16 when converting Fig. 1 and Fig. 3 respectively.
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Figure 1: PAG Over 4
nodes (Richardson 2003)
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Figure 2: 1 of 9 Markov
Equivalent ADMGs
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Figure 3: Y-PAG Over 4
Nodes
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Figure 4: 1 of 9 Markov
Equivalent ADMGs

Conclusion

This work1 makes the following contributions:
1. Provides an algorithm to transform a PAG to its Markov

equivalent set of ADMGs over those same variables.
2. Provides proof of correctness for the method.2

3. Provides code & documentation to run PAG2ADMG. 2
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