Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

Learning to Avoid Dominated Action Sequences in
Planning for Black-Box Domains (Extended Abstract)

Yuu Jinnai, Alex Fukunaga
Graduate School of Arts and Sciences
The University of Tokyo

Abstract

Black-box domains where the successor states generated by
applying an action are generated by a completely opaque sim-
ulator pose a challenge for domain-independent planning. The
main computational bottleneck in search-based planning for
such domains is the number of calls to the black-box simu-
lation. We propose a method for significantly reducing the
number of calls to the simulator by the search algorithm by de-
tecting and pruning sequences of actions which are dominated
by others. We apply our pruning method to Iterated Width and
breadth-first search in domain-independent black-box plan-
ning for Atari 2600 games, adding our pruning method signifi-
cantly improves upon the baseline algorithms.

1 Introduction

Recently, planning in black-box domains with much more
opaque domain models has attracted attention, spurred by
interest in developing a game-independent Al playing algo-
rithm for video games (Bellemare et al. 2013). In black-
box planning, a state vector and a set of actions are avail-
able, as well as an objective function for evaluating states.
However, the only way to compute the successor state s’
resulting from applying an action a to state s is to execute
s’ = Simulate(s,a), a black-box simulation function for
which the internal dynamics are inaccessible.

Such black-box domains present a challenge for search-
based planning, because the pruning techniques which en-
abled effective search in domains with transparent domain
models are not applicable, leaving us only with brute-force
methods such as breadth-first search. However, it was re-
cently shown that Iterative Width (IW) (Lipovetzky and
Geffner 2012), a search strategy which prunes the search
space by focusing only on states which are “novel” compared
to previously expanded nodes, can be used as the basis for
a successful, search-based planner for black-box planning
(Lipovetzky, Ramirez, and Geffner 2015).

In this paper, we investigate duplicate avoidance in on-line
planning settings for black-box domains, as exemplified by
the on-line planning for the ALE (Bellemare et al. 2013),
where an agent plays video games by repeating the loop:
(1) solving a planning problem with a very limited resource

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

4943

budget, and (2) execute an action. Because this setting poses
a series of related planning episodes, there is an opportunity
to improve planner performance over time by learning a
duplicate avoidance strategy.

Specifically, we seek to eliminate actions (and sequences
of actions) which are dominated by others (and lead to dupli-
cate states). For example, in the ALE, 18 actions are always
available (the joystick has 9 states — up/down/left/right/4 di-
agonals/“neutral”, and the “fire” button has 2 states, 9x2=18).
Previous work in search-based planning for the ALE treats all
18 actions as applicable at every state (Lipovetzky, Ramirez,
and Geffner 2015; Shleyfman, Tuisov, and Domshlak 2016).
However, in any particular game, many of these 18 actions
are dominated (“useless”): First, some actions are trivially
dominated because they are completely ignored, or the pro-
gram always treats them as being equivalent to other actions
(e.g., in some games, the state of the “fire” button is irrel-
evant). Second, some actions are conditionally dominated
because, in a given context, the action results in the same
state as another action (e.g., in a maze-based game, if the
agent is stuck against a wall to the left, then the “left” action
is useless because (in some games) it results in the same state
as “no action”). More generally, sequences of actions can
be useless. For example, some actions can have cooldown
periods, i.e, after action a is used, executing a again has no
effect for the next ¢ seconds (e.g. firing missiles in shooting
games).

In this paper, we propose two methods to detect dominated
action sequences and reduce the amount of applying such se-
quences. Unlike the standard method proposed by Taylor and
Korf (1993), our method is applicable to black-box planning.

2 Dominated Action Sequence Pruning
(DASP)

To improve the performance of planning episodes (Step 3)
of the online black-box planning, we propose Dominated
Action Sequence Pruning (DASP), a method to eliminate
dominated action sequences in black-box planning.

DASP finds a set of action sequences A” using Algorithm
1, based on the search tree explored in previous planning
episodes.
Algorithm 1. [Find minimal action sequence set]
1. Initialize AL . to the set of all action sequences which

min

generate one or more non-duplicate nodes.
Let G = (V, E) be a hypergraph where v; € V repre-
sents an action sequence a; with no non-duplicate search
nodes, and hyperedge e(vo, v1, .., v,) € E if there exist
one or more duplicate search nodes generated by all of
ap,ay, ..., a, but not by any other actions sequences.
3. Add the minimal vertex cover of G to A% . .
DASP only uses A” for the rest of the planning episodes,
except for the first node expansion in each episode. That
is, when expanding a state s, which is reached by a tra-
jectory (ag, a1, ..., an), an action a is applied only if all of
(a), (an,a),(an_1,an,a),... are in AL, For the first node
expansion in each episode, we apply all the available actions
including dominated action sequences. If a pruned action
sequence generates a non-duplicate node, then the action
sequence will be put in A” for the next planning episode by
Algorithm 1. See (Jinnai and Fukunaga 2017) for details.

3 Dominated Action Sequence Avoidance
(DASA)

DASP classifies action sequences either effective all the time
or not at any time. However, in many domains, most of the
actions are conditionally effective, an action has a unique
outcome for some states, but not for all states in the domain.
We propose Dominate Action Sequence Avoidance (DASA),
which learns conditional action sequence sets which are de-
pendent on the current context of the plan.

Let p(a, t) be the fraction of new nodes generated by action
sequence a in the ¢-th planning episode. We define p*(a, t +
1) as:

pr(at+1) = (p(at) + ap(a, b)) /(1 +a), (1)

where « is a discount factor. p*(a,t + 1) is an estimate
for the ratio of new nodes by action sequence a on ¢ + 1-th
planning episode based on the experience of previous ¢ plan-
ning episodes. If the number of nodes generated (including
new/old nodes) by action sequence a in the ¢-th planning
episode is 0, then p*(a,t + 1) = p*(a,t). p*(a,0) = 1.

DASA applies actions with higher p value more frequently,
and action with lower p value less frequently. The trajectory
to reach state s is given as T' = (aq, a1, ..., a,). For each
node expansion, action a is applied and s’ = succ(a,t) is
generated with a probability:

P(a,t) = (1 —¢€)s(p*(a,1))s(p*((an-1,a),t))
8P ((an—ty ey an,a),t)) + e, 2)

where s(z) is a sigmoid function, € is a parameter for the
minimal probability for applying an action, and [is the length
of the longest dominated action sequences to detect.

As the definition of new/old depends on the ordering of
actions, the action sequences should properly be ordered.
DASA finds an action sequence set A" using Algorithm 1.
DASA orders the action sequences preferring sequences in
AL and breaking ties in favor of higher p value.

The additional overhead on the runtime due to
DASP/DASA should be negligible when node expansion
is slow enough, which is likely in many blackbox domains.

4944

Table 1: Comparison of the number of games scored the best.
#Best includes ties, but excludes when all 5 algorithms have
the same score. p-IW(1) (2000) is limited to 2000 simulation
frames, while all others are limited to 10000 frames. DASA2:
2-step DASA (L = 2), DASAIL: 1-step DASA (L = 1),
DASP1: 1-step DASP (L = 1), default: use all available
action set, restricted: use (hand-coded) restricted action set.

search method | DASA2 DASA1 DASP1 default restrict
p-IW(1) 22 10 4 6 10
p-IW(1) (2000) 24 14 6 5 7
W(1) 22 9 7 7 8
BrFS 18 11 11 6 11

4 Experimental Evaluation

We evaluated proposed methods on p-IW(1) (Shleyfman,
Tuisov, and Domshlak 2016), IW(1)(Lipovetzky and Geffner
2012), and Breadth-first search (BrFS) algorithms.

For DASP we use all available actions until 12 planning
frames (5x12=60 in-game frames). As the minimal vertex
cover is NP-hard (Karp 1972), We calculate the optimal
vertex cover if there are < 5 nodes, and otherwise use a
greedy algorithm which adds a vertex with the highest num-
ber of uncovered edges one by one. For DASA, we used a
sigmoid function s(x) = He—oilw—w)’ minimal chance of
applying action sequence ¢ = 0.04, discount factor for p
value o = 0.95. The other parameters follow (Lipovetzky,
Ramirez, and Geffner 2015). To reduce the variance, each
game was played 5 times, with the reported results averaged
across these runs. Overall, DASA (L = 2) outperformed
other algorithms (Table 1).

5 Conclusion

We proposed DASP, a method to learn a static minimal ac-
tion set which is valid throughout the course of a game, and
DASA, a method to learn conditional minimal action sets
which are dependent on the current context of the game. We
evaluated DASP and DASA on 53 games in the ALE ar-
cade game environment, and showed that DASD significantly
improves the performance of black-box planning in these
domains compared to baseline algorithms without DASD.

References
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M. 2013.
The arcade learning environment: An evaluation platform for gen-
eral agents. Journal of Artificial Intelligence Research 47:253-279.
Jinnai, Y., and Fukunaga, A. 2017. Learning to prune dominated
action sequences in online black-box domain. In Proc. AAAIL
Karp, R. M. 1972. Reducibility among combinatorial problems. In
Complexity of computer computations. Springer. 85-103.
Lipovetzky, N., and Geffner, H. 2012. Width and serialization of
classical planning problems. In Proc. ECAI, 540-545.
Lipovetzky, N.; Ramirez, M.; and Geffner, H. 2015. Classical
planning with simulators: Results on the Atari video games. In
Proc. IJCAI, 1610-1616.
Shleyfman, A.; Tuisov, A.; and Domshlak, C. 2016. Blind search
for Atari-like online planning revisited. In Proc. IJCAI, 3251-3257.
Taylor, L. A., and Korf, R. E. 1993. Pruning duplicate nodes in
depth-first search. In Proc. AAAI, 756-761.

