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Introduction

Existing approaches to the multi-armed bandit (MAB) pri-
marily rely on perfect recall of past actions to generate esti-
mates for arm payoff probabilities; it is further assumed that
the decision maker knows whether arm payoff probabilities
can change. To capture the computational limitations many
decision making systems face, we explore performance un-
der bounded resources in the form of imperfect recall of past
information. We present a finite memory automaton (FMA)
designed to solve static and dynamic MAB problems. The
FMA demonstrates that an agent can learn a low regret strat-
egy without knowing whether arm payoff probabilities are
static or dynamic and without having perfect recall of past
actions. Roughly speaking, the automaton works by main-
taining a relative ranking of arms rather than estimating pre-
cise payoff probabilities.

Two-Armed Bernoulli Bandits

For simplicity, we restrict our analysis of the FMA’s perfor-
mance to the class of two-armed Bernoulli bandit (TABB)
problems, where there are exactly two arms with probabilis-
tic win-loss payoffs of {0, 1} following Bernoulli distribu-
tions. We consider static environments where the true pay-
off probabilities remain constant as well as dynamic envi-
ronments with either small frequent changes to payoff prob-
abilities or unbounded infrequent changes to payoff prob-
abilities. Static TABB (Granmo 2008) and dynamic TABB
with small frequent changes (Gupta, Granmo, and Agrawala
2011) have been studied previously. We include TABB with
unbounded changes because these capture a distinct feature
of real world decision problems.

Motivation

Many approaches to solving bandit problems work by esti-
mating payoff probabilities of the arms; ε-greedy strategies
sample all arms to get a rough estimate for each arm, upper
confidence bound (UCB) strategies estimate a range that the
payoff probabilities are likely to lie within (Mayo-Wilson,
Zollman, and Danks 2012), and the Bayesian learning au-
tomaton (BLA) uses a beta distribution to estimate payoff
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probabilities (Granmo 2008). However, the MAB is not fun-
damentally an estimation problem; the MAB is a ranking
problem. The FMA bypasses probability estimation to di-
rectly produce a relative ranking of the arms.

Further, most existing approaches to MAB rely on the full
history of received signals for perfect Bayesian updating of
beliefs about the arm payoff probabilities. There have been
a number of techniques using finite automata (Wilson 2014)
and Turing machines (Halpern and Pass 2015) to represent
computationally limited agents for other problems within
game and decision theory. The FMA borrows constructs for
bounded decision making from automata theory while lever-
aging a payoff probability tracking mechanism similar to
that presented in the BLA. By encoding beliefs about the
relative ranking of the arms within a finite state space, the
FMA is essentially restricted to a finite set of possible be-
liefs. Moreover, the fact that the FMA maintains rankings
rather than point-estimates makes it a flexible enough frame-
work to perform well in both static and dynamic environ-
ments.

Finite Memory Automaton

We model a decision maker (DM) as a stochastic finite state
automaton where each state encodes discrete beliefs about
the payoff probabilities of the arms in the decision problem.

Formally, a DM for the TABB is a tuple DM =
(Ω, ω0, a, t) where

• Ω = {1, ...,m}2 is the state space;

• ω0 ∈ Ω is the starting state;

• a : Ω → Δ({1, 2}) where a(ω) specifies probabilistically
which arm the decision maker should play at state ω;

• t : Ω × {1, 2} × {0, 1} → Δ(Ω) where t(ω, i, s) deter-
mines the decision maker’s new state as updated by the
last signal s from arm i.

State Space Each state ω = (r1, r2) encodes beliefs about
the rankings of the two arms. ri represents the current rank
of arm i and is constrained by 1 ≤ ri ≤ m.

Starting State Prior beliefs the decision maker may have
can be captured in the initial rankings as the starting state.
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Action For each state, the action function a assigns a prob-
ability for selecting the next arm. A balance of exploration
and exploitation can be achieved when a DM’s tendency
to explore is inversely proportional to its confidence in the
arms’ relative rankings. 1

Transition A probabilistic transition between states is de-
termined by the previous arm selected and its correspond-
ing output signal. Since the DM has a finite state space and
can only retain a sliding window of past signals, the DM
becomes more sensitive to recent signals. The notion of in-
ertia is developed to mitigate this recency bias. Each edge in
the state space is assigned a temporal score tracking the fre-
quency of traversal, where higher traversal scores translate
to lower inertia along that edge.

Experiments

To show that the FMA framework performs well in multiple
TABB environments, each DM is run with the same settings
against other algorithms specialized for that environment. 2

We take random arm selection as the baseline strategy. Fig-
ure 1 compares performance in the standard static environ-
ment. This experiment consists of 5000 randomly generated
arm pairs for horizons of 500. Figure 2 compares perfor-
mance in a mixed environment where arm payoff probabili-
ties exhibit randomized stages of static and dynamic behav-
ior. This experiment contains 5000 sequences with horizons
of 10000.

Figure 1: Regret over time in a static environment.

Figure 2: Regret over time in a mixed environment.

Discussion

From our experimental results across TABB conditions, we
make the following observations about the FMA framework.

1A special case is when an arm has the highest ranking, m. It is
advantageous to eliminate exploration in these states and play only
that highest ranking arm. If that arm has perfect payoff, the DM
can take full advantage and exploit that arm in all future stages.

2For ε-greedy, we take ε=0.3. Specifications for the BLA
are taken from Granmo (2008), specifications for the BLA with
Thompson samping are taken from Gupta, Granmo, and Agrawala
(2011), and specifications for the FMA are in Additional Results.

Relative Ranking Unlike high performing algorithms
which focus on the precision of arm payoff probability es-
timation, the FMA is concerned with the accuracy of the
ranking of arm payoff probability. From experimental results
on static TABB, we see that such a ranking is sufficient for
learning a strategy with low regret for horizons of over ten
thousand stages and without relying on perfect recall of past
signals. When we further consider dynamic TABB, we see
that a ranking is more suitable for recognizing and respond-
ing to changes in arm payoff probability.

Fast Learning By sampling measures of regret over time,
we can examine how well each algorithm learns its strategy.
This learning behavior is especially valuable in applied sys-
tems where there is not an expectation of infinite data points
and fast learning of a high performance strategy has an im-
pact.

Flexible Framework An assumption that most algorithms
for TABB make is that the agent knows what type of behav-
ior is expected of the bandit arms, such as whether arm pay-
off probabilities are static or dynamic. However, an agent
may not know this information a priori, so this assumption
is not always appropriate. An even more compelling reason
to relax this assumption is that many applications of bandit
arms exhibit all three types of behavior at various stages in
the decision problem and it may not be clear to the agent
which type of behavior an arm is currently exhibiting. We
evaluate the FMA with a single fixed setting and show that
the FMA can perform well in each environment without re-
quiring specialized tuning or additional mechanisms.

Additional Results An extended discussion of the experi-
mental setup and results can be found at https://raoariel.github.
io/finite-memory-automaton/ .
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