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Abstract

Multimodality has been recently exploited to overcome the
challenges of emotion recognition. In this paper, we present
a study of fusion of electroencephalogram (EEG) features
and musical features extracted from musical stimuli at de-
cision level in recognizing the time-varying binary classes of
arousal and valence. Our empirical results demonstrate that
EEG modality was suffered from the non-stability of EEG
signals, yet fusing with music modality could alleviate the
issue and enhance the performance of emotion recognition.

Electroencephalogram (EEG), a tool to capture brainwaves,
has been recently used tool to estimate human emotional
states but confronts with a variety of challenges. Recent
efforts to reinforce the emotion recognition model include
using EEG features in conjunction with other information
sources (D’mello and Kory 2015), such as facial expression,
and peripheral signals. One possible solution is to exploit in-
formation regarding the felt emotion in conjunction with the
expressed emotion in music to estimate emotional states. In
this paper, we propose a methodology to fuse dynamic in-
formation from physiological signals and musical contents
at decision level (or late integration) based on the assump-
tion that both modalities could play a complementary role
in music-emotion recognition model. We found that the per-
formance of continuously estimating emotional response in
music listening using both modalities outperformed that us-
ing only EEG unimodality.

Research Methodology

Experimental Protocol

Twelve healthy male volunteers (averaged age = 25.59 y, SD
= 1.69 y) were recruited to participate in our experiment.
Each subject was instructed to listen to the self-selected 16
MIDI songs. Simultaneously, EEG signals were acquired
from the 12 electrodes of Waveguard EEG cap placed in
accordance with the 10-20 international system. The posi-
tions of the selected electrodes were nearby the frontal lobe.
Throughout EEG recording, Cz electrode was used as a ref-
erence and the impedance of each electrode was kept below
20 kΩ. EEG signals were recorded at a 250 Hz sampling
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rate. A 0.5-60 Hz bandpass filter was also applied. Each
subject was also asked to keep his eyes close and minimize
body movement during EEG recording to reduce any effect
of unrelated artifacts. After music listening, each subject was
instructed to annotate his felt emotions in the previous ses-
sion by continuously clicking at a corresponding point in
the arousal-valence emotion space, a continuous space ac-
tively used to describe emotions (Russell 1980), shown on a
monitor screen using a mouse. Arousal describes emotional
intensity ranging from calm (-1) to activated (+1) emo-
tion whereas valence describes positivity of emotion ranging
from unpleasant (-1) to pleasant (+1).

EEG and Musical Features

To extract features from EEG signals, we applied the frac-
tal dimension (FD) approach. FD is a non-negative real
value that quantifies the complexity and irregularity of
data and can be used to reveal the complexity of a time-
varying EEG signal. We applied Higuchi algorithm (Higuchi
1988) to derive FD features from each particular window,
namely FDFp1, FDFp2, FDF3, FDF4, FDF7, FDF8,
FDC3, FDC4, FDT3, FDT4, FDFz , and FDPz named
in accordance with electrode name. Based on previous
study (Thammasan et al. 2016), asymmetry indexes, namely
FDFp1–FDFp2, FDF3–FDF4, FDF7–FDF8, FDC3–
FDC4, and FDT3–FDT4, were also added into our orig-
inal feature set.

To extract musical features from MIDI songs, we em-
ployed the MIRtoolbox (Lartillot and Toiviainen 2007). A
dynamic feature of a song was derived from the frame-
based root mean square of the amplitude. Rhythm is the
pattern of pulses/note of varying strength. We extracted
the frame-based tempo estimation and the attack times and
slopes of the onsets from songs. Timbre reflects the spectro-
temporal characteristics of sound. We extracted the spec-
tral roughness that measures the noisiness of the spectrum,
13 Mel-frequency cepstral coefficients and their derivatives
up to the 1st order. In addition, we extracted the frame-
decomposed zero-crossing rate, the low energy rate and the
frame-decomposed spectral flux from songs. To extract tonal
characteristics, we calculated the frame-decomposed key
clarity, mode, and the harmonic change detection function
from songs. Afterward, we calculated the means of features
in each window and retrieved 37 musical features in total.
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Multimodal Fusion of EEG and Musical Features

In decision-level fusion, classification of each modality is
processed independently and the output of classifiers are
later combined to yield final results. In this work, we first
classified EEG and music modalities individually and then
combined the classifier outputs in a linear fashion.

For binary classification, let pxEEG and pxmusic ∈ [0, 1]
denote the classifier outputs of EEG and music modality re-
spectively for class x ∈ {1, 2}. Then the output class proba-
bility, namely pxmultimodal, for class x is given by

pxmultimodal = αpxEEG + (1− α)pxmusic, (1)

where α is the weighting factor that satisfies 0 ≤ α ≤ 1 and
determines how much the EEG modality contributes to the
final decision. Note that we used the same window size for
both EEG and music modality.

Emotion Classification and Evaluation

For the sake of simplicity, our work addressed the binary
emotion classification of arousal and valence separately. To
recognize emotion, support vector machine (SVM) based
on Gaussian radial basis kernel function (kernel scale = 3)
was used to classify emotional classes. We evaluated the
performance of classification both dependently or indepen-
dently on subjects. In subject-dependent classification, the
stratified 10-fold cross-validation method was adopted to
each subject’s dataset, and the results of each individual
were then averaged across subjects to derive overall per-
formance. In subject-independent classification, we adopted
the leave-one-subject-out validation method. Prior to clas-
sification, each feature was normalized to the range of
[0, 1] using the min-max approach. Regarding a performance
measurement, we used the Matthews correlation coefficient
(MCC) (Matthews 1975), which is a measure to reflect
classification performance with consideration of class im-
balance. Given a confusion matrix of binary classification,
MCC can be calculated by

MCC = TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

, (2)

where TP is the number of true positives, TN is the number
of true negatives, FP is the number of false positives and
FN is the number of false negatives.

Results and Discussion

We analyzed the effect of weighting factors (α in Equa-
tion 1) on classification in details by varying the factor from
0 (equivalent to music unimodality) to 1 (equivalent to EEG
unimodality) at a step of 0.025. By exhaustive optimal pa-
rameter searching, the sliding window size was fixed at 2
s for subject-dependent classification and 9 s for subject-
independent classification. As can be seen from the results
(Figure 1), the decision-level fusion that relied slightly more
on musical features than EEG features provided better re-
sults. The classification performance decreased when in-
creasing the contribution of EEG features (varying α from
0 to 1), especially in subject-independent arousal classifica-
tion. This suggested that music modality played more im-
portant role in emotion classification.

Figure 1: Averaged emotion classification MCCs across sub-
jects varying the weighting factor (α in Equation 1); the er-
ror bars represent the standard deviations

Despite the good empirical results, the system cannot
merely rely on the music unimodality based on the assump-
tion that emotion in music listening is subjective. Com-
pletely discarding EEG modality would have adverse effects
on practical emotion recognition model constructing. Our
results, therefore, can merely suggest that integrating mu-
sical features into EEG dynamics could be a promising ap-
proach to alleviate the challenges in using EEG signals.

More information is available at http://arxiv.org/abs/
1611.10120.
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