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Introduction

Temporal reasoning is one of the main topics investigated
within the field of Artificial Intelligence. Formal methods for
temporal reasoning arouse interest of researchers from both
theoretical and practical point of view (2004). Such meth-
ods enable modelling and studying human-like reasoning
mechanisms, thus constituting a valuable tool in cognitive
science, philosophy, and linguistics. On the other hand, tem-
poral reasoning formalisms have a number of potential prac-
tical applications, e.g., in task scheduling, action planning,
and temporal databases. Temporal reasoning methods may
be divided into point-based and interval-based depending
on the type of the considered primitive ontological objects.
My work revolves around the latter type of methods which
seem to be more human-like and more suitable for such ap-
plications as continuous process modelling. My main result
is that the satisfiability problem in the fragment denoted by
HS�,i,@

horn (which stands for a hybridized fragment of HS in
which formulas are in a form of conjunction of Horn clauses
and only box modal operators are allowed – diamond oper-
ators are disallowed) is NP-complete over reflexive, as well
as over irreflexive and dense time frames. Before hybridiza-
tion this fragment (denoted by HS�horn) was P-complete over
such time structures. The results mentioned in this abstract
have been proved in my paper accepted to the 7th Indian
Conference on Logic and its Applications (ICLA) (2016).

Halpern-Shoham Logic

One of the most elegant interval temporal logics is Halpern-
Shoham logic (HS in short) (1991). In HS a time line is mod-
elled as a partial order of timepoints. An interval is consti-
tuted by an ordered pair of timepoints, namely a beginning
and an ending point. What is crucial is that HS introduces
12 binary relations between the current interval [x, y] and a
nonidentical interval [x′, y′], which forms a pairwise disjoint
and mutually exclusive set of relations: begins, during, ends,
overlaps, adjacent to, and later than defined as follows:
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[x, y]relB[x
′, y′] iff x = x′, y′ < y x′ y′

[x, y]relD[x
′, y′] iff x < x′, y′ < y x′ y′

[x, y]relE[x
′, y′] iff x < x′, y = y′ x′ y′

[x, y]relO[x
′, y′] iff x < x′ < y < y′ x′ y′

[x, y]relA[x
′, y′] iff y = x′ x′ y′

[x, y]relL[x
′, y′] iff y < x′ x′ y′

and thier inverses. In the language of HS, there are 12
possibility (diamond) and 12 necessity (box) operators
corresponding to the abovementioned relations. The satis-
faction relation for a model M and an interval [x, y] has the
following definition:
M, [x, y] |= 〈R〉ϕ iff there is an interval [x′, y′] such that

[x, y]relR[x
′, y′] and M, [x′, y′] |= ϕ;

M, [x, y] |= [R]ϕ iff for every interval [x′, y′] such that
[x, y]relR[x

′, y′],M, [x′, y′] |= ϕ;

where R is one of B,D,E,O,A, L and their inverses, and sat-
isfaction conditions for propositional variables and boolean
connectives are defined in a classical way.

HS is very expressive but undecidable for the most in-
teresting structures of time including N, Z, Q, and R
(1991). One of the recently studied way to obtain decid-
able fragments of HS while maintaining expressive power
high enough for practical applications consists in introduc-
ing syntactic restrictions on the formulas (2016). Two inter-
esting fragments obtained in such a way are Horn and core
fragments of the ’sub-propositional’ language only allowing
box modalities (excluding diamond modalities). Henceforth,
they will be denoted as HS�horn and HS�core, respectively. To
define the languages of these fragments, let a positive tem-
poral literal λ be defined by the following grammar:

λ := � | ⊥ | p | [R]λ.
where p is a propositional variable. An HS�horn formula is

ϕ := λ | [U](λ ∧ . . . ∧ λ → λ) | ϕ ∧ ϕ,

whereas an HS�core formula is
ϕ := λ | [U](λ → λ) | [U](λ ∧ λ → ⊥) | ϕ ∧ ϕ,
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where λ is a positive temporal literal. The computational
complexity of HS�horn and HS�core depends on the type of
the underlying structure of timepoints – for details see Ta-
ble 1. In the case of reflexive or dense structures HS�horn is
P-complete, whereas the complexity of HS�core is not pre-
cisely known – it is only known that it is in P and
NLOGSPACE-hard. In the case of irreflexive and discrete
time structures HS�horn is undecidable, while HS�core is
PSPACE-hard. Particularly interesting is HS�horn which is
tractable over reflexive and dense time structures and ex-
pressive enough to be applied, e.g., to ontology-based data
access over temporal databases (2016).

Table 1: Computational complexity of HS fragments. My
contributions are denoted by (�).

Irreflexive Reflexive

D
is

cr
et

e

HS�core: PSPACE-hard HS�core: in P, NL-hard

HS�horn: undecidable HS�horn: P-compl.

HS�,@,i
horn : undecidable HS�,@,i

horn :NP-compl. (�)

D
en

se

HS�core: in P, NL-hard HS�core: in P, NL-hard

HS�horn: P-compl. HS�horn: P-compl.

HS�,@,i
horn : NP-compl. (�) HS�,@,i

horn : NP-compl. (�)

Hybridization of Halpern-Shoham Logic

Restricting syntax of HS may lead to decidability (as pointed
out in the previous section), however such limitations signif-
icantly decrease expressive power. Namely, HS�horn, as well
as HS�core seems to lose the referentiality, i.e., the ability to
label intervals and then to refer to a chosen interval with a
concrete label. Importantly, the full HS is referential in this
sense. The referentiality is a crucial construct in temporal
knowledge representation (2000) and the most straightfor-
ward way to retrieve it is to hybridize a logic. Hybridization
is obtained by adding the second sort of atoms called nom-
inals that label single intervals, and satisfaction operators
indexed by nominals that enable to refer to an interval in
which this nominal is satisfied. As an example, the formula
@iϕ is true iff ϕ holds in the (single) interval labelled by the
nominal i.

Hybridization usually increases expressive power of the
logic, e.g., it enables to express identity of intervals labelled
with i and j by @ij. Surprisingly, although hybridization of
interval temporal logics was already recognised as a promis-
ing line of research (2000), it has received only limited at-
tention from the research community. One exception is an
attempt of adding a very restricted reference property (that
makes it possible to state that some propositional variable is
satisfied in a particular interval (2015)).

My main contribution consists in proving computational
complexity of a hybrid version of HS�horn, denoted by
HS�,@,i

horn . In particular, I have shown that in the case of re-
flexive or dense time structures HS�,@,i

horn is NP-complete –

see Table 1. This result seems to be unexpected. Namely, in
the case of the investigated HS fragment, hybridisation in-
creases (assuming that P �= NP) its computational complex-
ity from P (or NLOGSPACE) to NP . Importantly, in classical
modal logic hybridisation does not change the complexity
of the logic, namely it is PSPACE-complete before and after
hybridization.

Open Problems and Future Work

There is a number of open problems concerning the compu-
tational complexity of the described fragments of HS, e.g.,
it is not known what is the computational computational
complexity hybridized HS�core. The most interesting case is
when the time structure is both irreflexive and discrete – it
is not even known if in such a case HS�core is decidable. If it
turns out that HS�core is decidable, it would be interesting to
study if HS�,@,i

core remains decidable. Another line of future
research is to study expressiveness of the abovementioned
fragments of HS and their potential practical applications.
The next step would be to implement the reasoning algo-
rithms involving the presented fragments of HS.
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