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Abstract

Stable Marriage (SM) is a well-known matching problem,
where the aim is to match a set of men and women. The
resulting matching must satisfy two properties: there is no
unassigned person and there are no other assignments where
two people of opposite gender prefer each other to their
current assignments. We propose a new version of SM
called as Robust Stable Marriage (RSM) by combining sta-
bility and robustness. We define robustness by introduc-
ing (a,b)-supermatches, which has been inspired by (a, b)-
supermodels (Ginsberg, Parkes, and Roy 1998). An (a, b)-
supermatch is a stable matching, where if at most a pairs want
to break up, it is possible to find another stable matching by
breaking at most b other pairs.

Introduction & Background

Many matching problems involve the assignment of agents
to agents while respecting an optimality criterion. Such
problems include the assignment of junior doctors to hospi-
tals, workers to firms, and training programs (Gusfield and
Irving 1989). Stable marriage, introduced by Gale and Shap-
ley (Gale and Shapley 1962), is a classic approach to solving
such problems. An instance of the stable marriage problem
involves two disjoint sets of men and women. Each person is
associated with a strictly ordered preference list containing
members of the opposite sex. A stable matching M is one
between men and women in which each person is matched
to at most one person in his/her preference list such that no
two persons prefer each other to their current match in M .
A stable matching Mi dominates a stable matching Mj , de-
noted by Mi � Mj , if every man prefers his match in Mi to
Mj or is indifferent between them. The structure that repre-
sents all stable matchings according to the dominance order
is a lattice. We denote by M0 (Mz) the man-optimal (respec-
tively, woman-optimal or man-pessimal) stable matching.

A rotation ρ corresponds to an ordered list of pairs taking
part in a stable matching M such that eliminating these pairs
from M and matching each man to the woman of the next
man (with respect to ordering of ρ) corresponds to a stable
matching. In this case ρ is said to be exposed in M . An im-
portant property of rotations is that every pair is a part of at
most one rotation (Gusfield and Irving 1989). A rotation ρ
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dominates another rotation ρ′ if ρ′ cannot be exposed until
exposing ρ. This dominance relation defines a partial order
on the set of rotations and the associated structure is called a
rotation poset. Although the number of all stable matchings
can be exponential in the number of men/women, the size of
rotation poset remains polynomial. A closed subset S is a set
of rotations such that for any rotation ρ in S, if there exists
a rotation ρ′ that dominates ρ then ρ′ is also in S. There is a
one-to-one correspondence between such closed subsets and
the set of stable matchings (Gusfield and Irving 1989).

Motivation

We introduce the notion of (a, b)-supermatch which we de-
fine as a stable matching M such that if at most a men (or
women) decide to break their matches in M , it is possible
to “repair” the matching (i.e., find another stable matching)
by changing the partners of those a men/women and at most
b others. This concept is inspired by the notion of (a, b)-
supermodels in boolean satisfiability (Ginsberg, Parkes, and
Roy 1998). We study the problem of finding a stable match-
ing Mi that is closest to a given stable matching M if a pair
(man,woman) decides to break their match in M . The dis-
tance between matchings is measured as the total number of
men that have different partners between M and Mi.

The intuition behind using this notion of robustness is
to provide solutions that can be repaired as a result of un-
foreseen cases with bounded cost. The most robust match-
ing is the one that requires the minimum number of repairs
(i.e. minimum b) amongst all stable matchings. The concept
of (a, b)-supermatches is also meaningful in the context of
other matching problems such as carpooling, stable room-
mate problems, etc.

Methodology

Let M be a stable matching and S be the closed subset that
corresponds to M . Suppose that 〈m,w〉 ∈ M is a pair to
remove. Let ρp be the unique rotation that produces 〈m,w〉
and ρe be the unique rotation that eliminates 〈m,w〉.

The closest matching that does not include 〈m,w〉 is a
matching in which either 〈m,w〉 was not produced at all
or was eliminated. Hence, if ρp exists, there exists a set of
stable matchings Su that dominate M and do not include
〈m,w〉. Similarly, if ρe exists, there exists another set of
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stable matchings Sd that are dominated by M and do not
include 〈m,w〉.

Predecessors of a rotation ρ in rotation poset are denoted
by N−(ρ) and successors are denoted by N+(ρ). Note that,
due to the transitivity property of rotation posets, these two
sets correspond to all predecessors and successors of the ro-
tation ρ. For all 〈m,w〉 ∈ M such that 〈m,w〉 �∈ M0 there
exists ρp that produces 〈m,w〉. If there exists such a ρp, we
can define a specific closed subset, S∗

1 , as follows:

S∗
1 = S \

{
{ρp} ∪ {N+(ρp) ∩ S}

}
. (1)

Similarly, if 〈m,w〉 �∈ Mz there exists ρe that eliminates
〈m,w〉. If there exists such a ρe we define S∗

2 as follows:

S∗
2 = S ∪

{
{ρe} ∪ {N−(ρe) \ S}

}
. (2)

Let M∗
1 (respectively M∗

2 ) be the stable matching corre-
sponding to S∗

1 (respectively S∗
2 ). By construction, we have

M∗
1 ∈ Su and M∗

2 ∈ Sd. We can show that any stable
matching Mi /∈ {M∗

1 ,M
∗
2 } that does not include the pair

〈m,w〉 cannot be closer to M than M∗
1 or M∗

2 . Two rota-
tions are incomparable if one does not precede the other. Let
X(S) denote the set of men that are exposed in at least one
of the rotations in S. Let d(Mi,Mj) be the distance calcu-
lated by the number of men that have different partners. We
introduce the following two lemmas but omit their proof for
space limitation.
Lemma 1. Given two incomparable rotations ρ and ρ′,
X({ρ}) ∩X({ρ′}) = ∅.
Lemma 2. Given three stable matchings Mi, Mj and Mk

where Mi � Mj � Mk, then d(Mj ,Mk) ≤ d(Mi,Mk)
and d(Mi,Mj) ≤ d(Mi,Mk).
Lemma 3. If there exists an Mx that does not contain
〈m,w〉, dominates M and different from M∗

1 , then Mx dom-
inates M∗

1 .
Proof. M∗

1 � M by definition. Let 〈m,w〉 be the un-
wanted pair. Suppose by contradiction that there exists an
Mx such that 〈m,w〉 �∈ Mx and M∗

1 � Mx � M . It
implies that S∗

1 ⊂ Sx ⊂ S. In this case, (Sx \ S∗
1 ) ⊂{

{ρp}∪{N+(ρp)∩S}
}

. However, this set contains ρp and
the rotations preceded by ρp. Adding any rotation from this
set to Sx results in a contradiction by either adding 〈m,w〉 to
the matching, thereby not breaking that couple, or because
the resulting set is not a closed subset.
Lemma 4. If there exists an Mx that does not contain
〈m,w〉 dominated by M but different from M∗

2 , then M∗
2

dominates Mx.
Proof. Similar to the proof above, suppose that there ex-
ists an Mx such that 〈m,w〉 �∈ Mx and M � Mx � M∗

2 .
Therefore S ⊂ Sx ⊂ S∗

2 . It implies (Sx \ S) ⊂
{
{ρe} ∪

{N−(ρe) \S}
}

. This set contains the rotation ρe that elimi-
nates the pair and the rotations preceding ρe. In order to add
ρe all other rotations must be added to form a closed sub-
set. If all rotations are added, S = S∗

2 which results in a
contradiction.

Lemma 5. For any stable matching Mi incomparable with
M such that Mi does not contain the pair 〈m,w〉, M∗

1 is
closer to M than Mi.
Proof. Let Si be the closed subset corresponding to Mi, and
S be that corresponding to M .

First, we consider the case in which Si ∩ S = ∅. If the
closed subsets have no rotations in common the rotations
in these sets are incomparable. Using Lemma 1 X(Si) ∩
X(S) = ∅. Therefore, d(Mi,M) = |X(Si)| + |X(S)|,
whereas d(M∗

1 ,M) ≤ |X(S)|.
Second, we consider the case in which Si ∩ S �= ∅. Let

Mc be the closest dominating stable matching of both Mi

and M∗
1 , along with Sc as its corresponding closed subset.

Using Lemma 2 we know that d(M∗
1 ,Ms) ≤ d(Mc,Ms),

where d(Mc,Ms) = |X(S \ Sc)|.
Using Lemma 1 we know that X(Si\Sc)∩X(S\Sc) = ∅.

Therefore, d(Mi,M) = |X(Si\Sc)|+ |X(S \Sc)|. By sub-
stituting the formula above, d(Mi,M) ≥ |X(Si \ Sc)| +
d(M∗

1 ,M). Using the fact that |X(Si \ Sc)| > 0 from
the definition of Mi, we can conclude that d(Mi,M) >
d(M∗

1 ,M).
The following theorem is immediate from Lemmas 3, 4, 5.
Theorem 6. The closest stable matching of a stable match-
ing M is either M∗

1 or M∗
2 .

Enumerating all closed subsets requires exponential time
since the number of stable matchings is exponential. How-
ever, using the properties of rotations and their partial order
provides a way to compute M∗

1 and M∗
2 in polynomial time.

A direct consequence of this work is that checking if a stable
matching is a (1, b)-supermatch can be performed in polyno-
mial time.

Conclusion & Future Research

We have introduced the novel concept of stable matching
involving robustness. We show how to “repair” a solution in
polynomial time if one pair is to be eliminated. There exist
a number of future research directions for this new topic.
For instance, the complexity of finding a (1, b)-supermatch
is still open. It is not clear how one can find the most robust
stable matching. Moreover, it would be interesting to study
the more general problem of finding (a, b)-supermatches.
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