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Introduction
Many research studies on distance metric learning (DML)
reiterate that the definition of distance between two data
points substantially affects clustering tasks. Recently, vari-
ety of DML methods have been proposed to improve the ac-
curacy of clustering by learning a distance metric (Moutafis,
Leng, and Kakadiaris 2016); however, most of them only
perform a linear transformation, which yields insignifi-
cant to non-linear separable data. This study proposes a
DML method which provides an integration of kernelization
technique with Mahalanobis-based DML. Thus, non-linear
transformation of the distance metric can be performed.
Moreover, a cluster validity index is optimized by an evolu-
tionary algorithm. The empirical results on semi-supervised
clustering suggest the promising result on both synthetic and
real-world data set.

Related Work
Kernelized Kmeans Clustering
Kernelized Kmeans clustering (K-KMN) (Dhillon, Guan,
and Kulis 2004) is an enhancement of Kmeans clustering
(KMN), that can extract clusters that are non-linearly separa-
ble in the original data space by applying a proper nonlinear
mapping function (kernel) to a higher dimensional feature
space.

Given a data set D = {xi = (xi,1, · · · , xi,v) ∈ Rv}Ni=1,
let the kth cluster Ck ∈ C. Using non-linear function φ(x),
the objective function of K-KMN is defined as:

min
∑

Ck∈C

∑

xi∈Ck

‖ πk − φ(xi) ‖22 (1)

The centroid of cluster Ck, πk is defined as:

πk =

∑
xi∈Ck

φ(xi)

| Ck | (2)

Since the mapping function φ(x) is hard to obtain, thus ker-
nel function K(x,y) = φ(xi) · φ(y) is calculated instead.
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‖ πk − φ(xi) ‖22 =

∑
xj ,xl∈Ck

K(xj ,xl)

| Ck |2

−
2
∑

xj∈Ck
K(xi,xj)

| Ck | +K(xi,xi)

(3)

Evolutionary Distance Metric Learning (EDML)
EDML, proposed by Fukui et al. (Fukui et al. 2013), is a
DML technique based on the Mahalanobis-based distance.
Distance metric matrix M is a variable to be learned in or-
der to maximize a cluster validity index as in Eq. 4 which
is optimized by self-adapting control parameters and gen-
eralized opposition- based differential evolution (GOjDE),
a state-of-the-art differential evolution technique. Note that
M must be a symmetric positive semi-definite matrix (PSD)
to satisfy the distance propositions. Let mi,j ∈ M and d2i,j
is a distance metric for the corresponding semi-supervised
clustering.

Maximize Eval(Clustering(d2i,j)), (4)

s.t. |mk,k| ≥
∑

l(k �=l)

|mk,l|,

0 < mk,k ≤ 1, −1 ≤ mk,l ≤ 1 (k �= l).

Proposed Method
Unlike other kernelized DMLs (Moutafis, Leng, and Kaka-
diaris 2016) which formulate a penalty function for con-
straints, i.e., must-link and cannot-link, into an objective
function, the proposed kernelized evolutionary distance met-
ric learning (K-EDML) can directly improve cluster valid-
ity index as an objective function. This method can per-
form non-linear transformation while in EDML cannot. Fur-
ther, the symmetric PSD matrix M can be decomposed into
M = LtL by Cholesky decomposition, where L denotes an
upper triangular matrix. Mahalanobis distance in EDML can
be rewritten as:
d2i,j =‖ xi − xj ‖2M

= (xi − xj)
tM(xi − xj) = (xi − xj)

tLtL(xi − xj)

= (Lxi − Lxj)
t(Lxi − Lxj) =‖ Lxi − Lxj ‖22

(5)
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We substitute xi with Lxi into the K-KMN objective func-
tion Eq. 1 and used as Clustering() in Eq. 4.

min
∑

Ck∈C

∑

xi∈Ck

‖ πk − φ(Lxi) ‖22 (6)

Experimental Evaluation
We study the performance of M from K-EDML by compar-
ing it to other clustering algorithms, i.e., KMN, K-KMN,
and EDML. Each method is performed for 5000 trials with
random initialization, and evaluated using external criteria,
i.e., class information (label). Cluster validity index is used
as Eval() in Eq. 4. Unlike conventional cluster validity that
can only evaluate individual cluster quality, weighted pair-
wise F-measure (wPFM ) (Fukui et al. 2013) is applied here
to evaluate the overall cluster structure and neighbor cluster
relations. We selected non-linearly separable data sets, i.e.,
artificial data set (Rings) and Pima Indians Diabetes data set
(Pima) obtained from UCI Machine Learning Repository1 in
order to present the effectiveness of the proposed K-EDML.
Note that appropriate kernel and hyperparameters selection
is out of the scope of this work and that is the reason we
try only the degree-2 polynomial kernel with c = 0. Thus,
K(x,y) = (xy)2. Label sampling rate for EDML and K-
EDML is set to 30% of the data.

Artificial Data Set
The experiment is conducted on the synthetic data to con-
firm the explicit performance of the proposed method. It
consists of two circles as shown in Figure 1. Each circle
represents one class, each class contains 200 instances with
normal distribution on the specific radius. We set the clus-
ter size to 10 and neighbor size to 5. The cluster size has to
be larger than the actual class size in order to evaluate us-
ing the wPFM . Table 1 shows the evaluation result in aver-
age and standard deviation of each clustering algorithm. The
K-EDML outperforms all other clustering algorithms with
99% confidence level via paired t-test. Also, visualization of
the clustering result is presented in Fig. 1. Obviously, KMN
and EDML cannot perform well due to the non-linearly sep-
arable data sets. Thus, EDML cannot improve the cluster
validity index score or performs even worse when data is
non-linearly separable. Although KKMN with hyperparam-
eter tuning can easily cluster this data set, it fails to archive
fine clustering when the hyperparamter is inappropriate. On
the other hand, K-EDML takes advantage of class label uti-
lization, thus a more flexible kernel data space in K-EDML
is obtained.

Table 1: Clustering results on each algorithm (wPFM )
KMN KKMN EDML K-EDML

Rings 0.2824± 0.2529 0.2972± 0.2661 0.2749± 0.2462 0.3739± 0.3351
Pima 0.2703± 0.2422 0.2815± 0.2520 0.3090± 0.2772 0.4107± 0.3677

1https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
Complementary material:

http://www.ai.sanken.osaka-u.ac.jp/files/AAAI17-supplyment.pdf

(a) EDML (b) K-EDML

Figure 1: Visualization of cluster assignment in input space.
(KMN and KKMN is omitted due to the space limitation)

Pima Indians Diabetes Data Set
K-EDML is then applied on a real-world data set, Pima, con-
tains 2 classes with 8 dimensions and 768 instances. The di-
mension is normalized to μ = 0 and σ = 1. We set cluster
and neighbor size to 20 and 5 respectively. The evaluation
results in average and standard deviation of each clustering
algorithm are shown in Table 1. K-EDML still archived sim-
ilar results like in the previous data set. According to the
paired t-test, K-EDML outperforms all other methods with
95% confidence. The improvement of wPFM in Table 1
clearly illustrated the performance of K-EDML. Further-
more, EDML outperforms KMN and KKMN in this dataset,
which confirms the advantage of utilizing class information
in clustering on both EDML and K-EDML.

Conclusion
This paper proposes a non-linear transformation of distance
metric learning. Experimental results on synthetic and real-
world data set, Pima, empirically demonstrates the drawback
of EDML in non-linearly separable input space and illus-
trate the benefit of kernel function to the proposed K-EDML
method due to its superior results to other clustering algo-
rithms for semi-supervised clustering. Lastly, we aim to pro-
ceed this research by applying other kernel function with hy-
perparameter tuning during optimization and also improving
the computational efficiency of the proposed method.
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