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Abstract

Most of the existing proactive scheduling approaches assume
the durations of activities can be described by independent
random variables that have no relation with time. We deal
with the more challenging problem where the duration uncer-
tainty is related to the scheduled time period. We propose a
sampling based approach by extending the Consensus method
from stochastic optimization. Experimental results show the
effectiveness of our approach in solution quality and stability.

Introduction

Project scheduling is a common problem for business man-
agement. In most of the real-world environments, durations
of activities are highly uncertain. Though it is possible to
conduct online scheduling during execution, a proactive
schedule generated before execution by exploiting stochas-
tic knowledge of the duration uncertainty is of great value
in providing visibility for coordination of the execution pro-
cess (Van de Vonder, Demeulemeester, and Herroelen 2007).
Many approaches have been proposed for proactive project
scheduling, e.g. (Varakantham, Fu, and Lau 2016). These
approaches assume that activity durations can be modeled as
independent random variables that are not affected by their
scheduled time periods. However, this may not hold under
many circumstances. For example, suppose a product test
project involving a set of outdoor testing activities that are
sensitive to weather conditions (e.g. temperature, humidity,
wind speed). Due to seasonality, activity durations could be
affected differently based on their scheduled time periods.

In this work, we study the more challenging problem of
proactive project scheduling with time-dependent duration
uncertainty. Our approach is based on the Consensus method
(Hentenryck and Bent 2009) from stochastic optimization. It
first samples a set of scenarios from the probability distribu-
tions, then solves these scenarios as deterministic problems,
and finally makes scheduling decisions according to a Con-
sensus vote process. Different from its previous application
in online scheduling, here we adopt Consensus to construct
an offline schedule. After sampling scenarios, our approach
incrementally constructs the schedule through an iterative
solving and voting process.
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Problem Description
A static Resource-Constrained Project Scheduling Problem
(RCPSP) consists of a project with a set of non-preemptive
activities A = {a1, ..., an}, and a set of renewable resources
R = {r1, ..., rm}. Each ai ∈ A has a duration of di time
slots (days), and requires bik amount of rk ∈ R with a lim-
ited capacity of ck units per time slot. A pair of activities
could have a precedence relation ai ≺ aj , indicating ai must
complete before the start of aj . A schedule S = [s1, ..., sn]
is a vector where si is the start time of ai. A feasible S must
satisfy all the resource and precedence constraints. A fea-
sible schedule S∗ is optimal if it minimizes the makespan
MS(S) = maxj{ci}, where ci = si + di is the completion
time of ai. When uncertainty is considered, duration of ai is
not fixed but subject to the weather conditions of its sched-
uled interval [si, ci]. Nevertheless, ai must obtain at least di
workable days in [si, ci]. Here we associate each ai with a
type zi ∈ {1, ..., Z}, and different types of activities could
be affected differently by the same weather condition. Let pzt
be the Probability of Workability (POW) of day t for activity
type z. We assume the scheduling horizon {1, ..., T} is split
into a set of periods {E1, ..., El}, where Eg = [eg, fg] is a
consecutive time period (e.g. season, month, week) starts at
eg and ends at fg . We further assume for an activity type z,
all days in a period have the same POW.

In general, a proactive schedule S can be evaluated from
two aspects: quality and stability (Van de Vonder, Demeule-
meester, and Herroelen 2007). Let Ŝ be the final schedule af-
ter executing S in an actual scenario, and Ŝ∗ be the optimal
schedule assuming to have full knowledge of that scenario.
Ŝ is obtained with a reactive strategy to handle schedule dis-
ruptions (here we adopt the commonly used early start pol-
icy with fixed resource allocation (Van de Vonder, Demeule-
meester, and Herroelen 2007)), while Ŝ∗ can be obtained by
solving an offline problem (here we solve it using Integer
Linear Programming, ILP). The quality of S is evaluated us-
ing the makespan deviation of Ŝ from Ŝ∗, i.e. dev(S) =

(MS(Ŝ)−MS(Ŝ∗))/MS(Ŝ∗). The stability of S is evalu-
ated using a stability cost function sc(S) =

∑
i |si − ŝi|.

Methodology
The first step of our approach is to sample a set of scenar-
ios Q = {Q1, ..., QN}. A scenario Q is a matrix [qzt]Z×T ,
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Figure 1: Monthly POW data
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Figure 2: Average deviation
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Figure 3: Average stability cost ratio

where qzt ∈ {0, 1} indicates whether day t is workable for
activity type z. Then, a series of Consensus processes are
conducted for each period Eg to schedule a set of activities
Ag ⊆ A to start within Eg , until all activities in A are sched-
uled. Each Consensus process consists of two consecutive
stages, solving and voting.

Solving. In this stage, a schedule Sλ is generated for each
Qλ ∈ Q by solving a deterministic problem where the
usability of each day is known. These problems have the
same constraints as the static problem, but the duration of
ai is no longer a fixed parameter di; instead a duration con-
straint

∑ci
t=si

qzit ≥ di is added to guarantee that ai receives
enough processing days during its scheduled interval. Con-
sequently, these problems extend the static problem (NP-
hard) by adding a set of decision variables ci and duration
constraints. Here we design a polynomial-time algorithm
based on the parallel generation scheme from static project
scheduling. This algorithm first selects an unscheduled ac-
tivity ai using the latest finish time rule, then sets sλi as the
earliest resource and precedence feasible time, and sets cλi as
the earliest completion time that satisfies the duration con-
straints of ai. Complexity of this algorithm is O(n2mT ).

Voting. In this stage, the unscheduled activities are first
ranked in the descending order of their votes. The vote of ai
is the number of Sλ where it is scheduled to start within the
current period Eg . Activities with zero vote are not consid-
ered in the ranking. Then, the algorithm tries to schedule the
eligible activities according to the vote ranking, until no ac-
tivity is eligible or can be scheduled to start within Eg . An
activity is eligible if all its predecessors have been sched-
uled. When an activity ai is chosen to be scheduled, si is set
to be the earliest resource and precedence feasible time. To
determine ci, we first estimate the duration of ai using an
average value di =

∑
Qλ∈Q(ai)

(cλi − sλi )/|Q(ai)|, where
Q(ai) is the set of scenarios that vote for ai, then set the
completion time to be ci = si + di.

The above algorithm runs in polynomial time, with a com-
plexity of O(lN × n2mT ).

Preliminary Results

We use the J30 problem set from PSPLIB (http://www.om-
db.wi.tum.de/psplib/) for evaluation, which contains 480
project instances. The POW data used here is collected from
a real-world aero engine test project. As shown in Figure 1,
this data set contains POWs of each month for four activity
types. We conduct 1000 tests to evaluate our approach. Each
test consists of a randomly selected J30 instance where each
activity is randomly assigned a type z ∈ {1, ..., 4}, and a

scenario Q is sampled as the actual scenario. For each test,
we run our approach with (N = 50) 1 to get the proactive
schedule Spr. We compare the makespan deviation and sta-
bility cost of Spr and Sst, the static optimal schedule ob-
tained by solving an ILP of the static problem. Figures 2
and 3 show the average deviation of Spr and Sst and the
average stability cost ratio sc(Spr)/sc(Sst) of all the 1000
tests, along with the corresponding values of the groups cate-
gorized based on two parameters of J30, Network Complex-
ity (NC, higher value indicates more precedence relations)
and Resource Strength (RS, higher value indicates tighter
resource constraints). We can observe that, the qualities of
both Spr and Sst are comparable and close to the offline
optimal solution (within 10% on average). However, Spr is
generated in polynomial time, while Sst requires exponen-
tial time computation. Both approaches tend to perform bet-
ter on tighter constrained instances with higher NC and RS,
since the deviation tends to decrease. On the other hand, the
stability cost of Spr is much smaller than Sst (improvement
is 78% on average), and the improvement tends to increase
on tighter constrained instances with higher NC and RS.

Future Work

The current approach relies on the assumption of horizon
splitting. In the future, we plan to develop an approach based
on the Sample Average Approximation method (Kleywegt,
Shapiro, and Homem-de Mello 2002), which supports gen-
eral probability models and has good theoretical properties
in approximately solving complex stochastic optimization
problems through sampling.
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1The parameter testing experiments are omitted here for brevity.
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