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Abstract

We present the Utility Maximizing Design (UMD) model
for optimally redesigning stochastic environments to achieve
maximized performance. This model suits well contempo-
rary applications that involve the design of environments
where robots and humans co-exist an co-operate, e.g., vac-
uum cleaning robot. We discuss two special cases of the
UMD model. The first is the equi-reward UMD (ER-UMD)
in which the agents and the system share a utility function,
such as for the vacuum cleaning robot. The second is the goal
recognition design (GRD) setting, discussed in the literature,
in which system and agent utilities are independent. To find
the set of optimal modifications to apply to a UMD model, we
present a generic method, based on heuristic search. After
specifying the conditions for optimality in the general case,
we present an admissible heuristic for the ER-UMD case.
We also present a novel compilation that embeds the redesign
process into a planning problem, allowing use of any off-the-
shelf solver to find the best way to modify an environment
when a design budget is specified. Our evaluation shows the
feasibility of the approach using standard benchmarks from
the probabilistic planning competition.

Introduction

We are surrounded by environments that are designed and
manipulated with the intention of maximizing some benefit.
Hospitals may be designed to minimize the daily distance
covered by staff, supermarkets are constantly rearranged to
make sure users buy as much as possible, airports may be de-
signed to increase passenger spending, computer networks
are structured to maximize message throughput, ec.

Common to all these environments is that their design is
controllable. Such environments can be designed and of-
ten later redesigned to accommodate a specific objective. In
addition, such environments need to account for different
forms of uncertainty.

We aim at providing a generic model to support the of-
fline design of such environments. Therefore, we present
a model of Utility Maximizing Design in which a problem
of redesigning non-deterministic environments in order to
maximize system utility is specified. Non-determinism is
expressed by stochastic outcomes of actions performed by
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agents. The setting we propose takes as input a stochastic
environment, a set of allowed modifications, a set of con-
straints and a system utility criteria. It then finds an optimal
set of modifications to apply to the environment for maxi-
mizing expected utility under the constraints.

Example 1 Consider Figure I(left), where a vacuum clean-
ing robot is placed in a living room. The utility of the
robot may be expressed in various ways; it may try to clean
an entire room as quickly as possible or cover as much
space as possible before its battery runs out. In any case,
(re)moving a piece of furniture from or within the room (Fig-
ure I(center)) may increase the robot’s utility. Accounting
for uncertainty, there may be specific locations in which the
robot tends to slip, ending up in a different location than
intended. Increasing friction, e.g., by introducing a high
friction tile (Figure 1(right)), may reduce the probability of
undesired outcomes in particular locations. Both types of
modifications are applied offline (since such robots typically
perform their task unsupervised) and should be applied eco-
nomically in order to maintain usability of the environment.

The proposed Utility Maximizing Design (UMD) model
is a general model whose instantiations provide common
grounds for comparative analysis and identification of ef-
ficient methods for special cases. A key observation with
the UMD model is that utility may differ between the sys-
tem and the agents acting in it. While Example 1 illustrates
an Equi-Reward UMD(ER-UMD) case where agent and sys-
tem share a utility function, earlier works on goal recogni-
tion design (Keren, Gal, and Karpas 2014; Wayllace et al.
2016)(GRD) assumed optimal agents while the system aims
at minimizing expected goal recognition time. We show that
different assumptions on the relation between agent and sys-
tem utility induce different solution techniques.

To support various assumptions on the model, the Util-
ity Maximizing Design (UMD) model we propose consists
of four elements. The environment component describe the
possible settings in which agents act by applying stochas-
tic actions. The agents component describes the different
types of agents that may act in the environment. The system
component specifies both the way the system accumulates
rewards and the ways by which it can redesign the environ-
ment. Finally, the initial environment describes the environ-
ment that is modified for maximizing system utility.



Figure 1: An example of a Utility Maximizing Design problem

In this work we assume a fully observable stochastic set-
ting and use Markov decision processes (Bellman 1957;
Mausam 2012) to model the agent environment. We offer
a general solution to the redesign problem by using heuris-
tic search that yields optimal design strategies when using
admissible heuristics. We formulate the conditions for ad-
missibility for UMD settings and propose a heuristic based
on simplifications of the environment, which we show to be
admissible for the ER-UMD case but not for GRD. In addi-
tion, inspired by the compilation techinque of Gobelbecker
et al. (2010), we exploit the alignment of system and agent
utility in ER-UMD settings, to show a way to piggyback on
the search for optimal policy to find an optimal set of modifi-
cations. Finally, for settings where practicality is prioritized
over optimality, we discuss ways to acquire sub-optimal so-
lutions.

The contributions of this work are threefold. First, we de-
scribe a new general model, namely Utility Maximizing De-
sign, which involves the offline redesign stochastic environ-
ments for improving utility and show how goal recognition
design is a special case of this setting. In particular, chang-
ing probability distributions offers a wide range of subtle
(more realistic) modifications to be applied to a model, e.g.,
reducing the probability of a slipping rather than eliminat-
ing it altogether. Second, we present a general method for
solving UMD problems using informed heuristic search and
specify the conditions under which an optimal solution can
be found. Finally, for the special case where agent and sys-
tem utility function is the same, which we refer to as equi-
reward UMD (ER-UMD) we formulate and compare three
approaches for finding an optimal set of modifications to
apply given a budget, namely an informed search approach
with an admissible heuristic, a compilation-based method
that embeds design into the definition of a planning prob-
lem, and a sub-optimal solver.

We evaluate our work using probabilistic benchmarks
from the International Planning Competitions, where a va-
riety of stochastic shortest path MDPs are introduced (Bert-
sekas 1995). Our evaluation aims at measuring the effect
of a budget on the utility of a ER-UMD problem, as well as
the performance of the different techniques for solving a ER-
UMD problem. We used six PPDDL domains from the prob-
abilistic tracks of the sixth and eighth International Planning
Competition! (IPPC06 and IPPCO8) representing stochastic
shortest path MDPs with uniform action cost: Box World
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(IPPCO08), Blocks World (IPPCOS), Exploding Blocks World
(IPPCO08), Triangle Tire (IPPC08) and Elevators (IPPC06).

With the exception of Exploding Blocks World, re-
sults show the reduction in expected cost increases with
the budget increase, demonstrating the applicability of the
UMD problem. When comparing solution performance, in
all case, the use of informed search outperformed the ex-
haustive approach on all domains. However, the dominating
heuristic approach varied between domains, encouraging a
further exploration of various heuristic techniques for solv-
ing UMD problems.

References

Bellman, R. 1957. A markovian decision process. Indiana
Univ. Math. J. 6:679—684.

Bertsekas, D. P. 1995. Dynamic programming and optimal
control, volume 1. Athena Scientific Belmont, MA.
Gobelbecker, M.; Keller, T.; Eyerich, P.; Brenner, M.; and
Nebel, B. 2010. Coming up with good excuses: What to do
when no plan can be found. Cognitive Robotics (10081).
Keren, S.; Gal, A.; and Karpas, E. 2014. Goal recognition
design. In ICAPS Conference Proceedings.

Mausam, A. K. 2012. Planning with markov decision pro-
cesses: an ai perspective. Morgan & Claypool Publishers.
Wayllace, C.; Hou, P.; Yeoh, W.; and Son, T. C. 2016. Goal
recognition design with stochastic agent action outcomes. In

Proceedings of the International Joint Conference on Artifi-
cial Intelligence (IJCAI 2016).





