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Abstract

Recent enhancements to greedy best-first search (GBFS) im-
prove performance by occasionally adopting a non-greedy
node expansion policy, resulting in more exploratory behavior.
However, previous exploratory mechanisms do not address
exploration within the space sharing the same heuristic esti-
mate (plateau) and the search bias in a breadth direction. In
this abstract, we briefly describe two modes of exploration
(diversification), which work inter-(across) and intra-(within)
plateau, and also introduce IP-diversification, a method com-
bining Minimum Spanning Tree and randomization, which
addresses “breadth”-bias instead of the “depth”-bias addressed
by the existing methods.

1 Introduction
Many search problems in AI are too difficult to solve opti-
mally, and finding even one satisficing solution is challeng-
ing. Although GBFS ignores solution optimality, it has been
shown to be quite useful when it is necessary to find some
satisficing solution quickly, and GBFS has been the basis
for state-of-the-art domain-independent planners (Helmert
2006). Despite the ubiquitous use of GBFS for satisficing
search, previous work has shown that GBFS is susceptible
to being easily trapped by undetected dead ends and huge
search plateaus. These pathological behaviors are caused by
the strong dependendency of search behavior of GBFS on
the quality of the heuristic function.

Recently, several approaches have been proposed for alle-
viating this problem, e.g., DBFS (Imai and Kishimoto 2011),
ε-GBFS (Valenzano et al. 2014) and Type-GBFS (Xie et al.
2014). They improve the search performance by occasion-
ally expanding nodes which do not have the lowest h-value,
i.e., diversifying the search. These diversified algorithms pro-
vides an opportunity to expand nodes that are mistakenly
overlooked due to errors made by the heuristic functions.

Existing methods for diversification have two issues: First,
previous methods all employ h-based diversification as part
of their algorithms in order to avoid the bias toward the nodes
with smaller estimates. However, h-based diversification can-
not detect the bias among nodes with the same h-cost. Second,
as we see later, they are based on diversification with respect
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to search depth (distance from the start / goal / plateau en-
trance), so the bias among the set of nodes with the same
search depth is not removed. In this abstract, we briefly intro-
duce two modes of exploration (diversification), which work
inter-(across) and intra-(within) plateau as well as our new
diversification scheme, IP-diversification, a method combin-
ing Minimum Spanning Tree and randomization, which ad-
dresses “breadth”-bias instead of the “depth”-bias addressed
by the existing methods.

We first define some notation used in the paper. First,
h(n), g(n), f(n) for node n follows the standard terminol-
ogy (heuristic cost to goal, cost from the initial state, g + h).
A sorting strategy for a best first search algorithm tries to
select a single node from the open list (OPEN). Each sorting
strategy is denoted as a vector of several sorting criteria, such
as [criterion1, criterion2, . . ., criterionk], which means: First,
select a set of nodes from OPEN using criterion1. If there
are still multiple nodes remaining in the set, then break ties
using criterion2 and so on, until a single node is selected. A∗
which breaks ties according to h value is denoted as [f, h],
and GBFS is denoted as [h].

In A∗, those strategies have a significant effect on the per-
formance (Asai and Fukunaga 2016). Traditional strategies
such as [f, h, fifo] or [f, h, lifo] have a strong bias to either
the regions of smaller (fifo) or larger (lifo) search depth of
the plateau, which delays the search process. They proposed
a notion of depth and diversified the search over different
depths within a plateau. A depth d(n) of a node n is the
step-wise distance from the entrance of the plateau (the most
recent state which entered the plateau, along the path from
the initial state).

DBFS, ε-GBFS and Type-GBFS are the algorithms which
try to escape the local minima by relaxing the (h-based)
best-first order and introduce exploration (diversity) to the
search process. For example, Type-GBFS alternates GBFS
and Type-based expansion, which selects a random node in a
random bucket, where nodes are put in buckets indexed by
h-value and g-value.

2 Intra- and Inter-plateau Diversification
Previous work on exploration for GBFS address the problem
of heuristic errors by occasionally expanding nodes with high
h. Since this type of diversification operates across different
search plateaus, we refer to these as inter-plateau exploration.
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However, we propose another type of exploration, which we
call intra-plateau exploration, which works within a particu-
lar plateau: This type of exploration only changes expansion
order among the nodes within a plateau.

Consider a hypothetical 2-dimensional histogram (Figure
1) of the number of nodes for each pair h, h∗. If h is perfect
(h = h∗), all nodes would be on the diagonal line x = y.
However, in reality, h has errors relative to h∗ (projected to
the x-axis). Inter-plateau exploration assumes that low-h∗
nodes may have high-h values and it is sometimes reason-
able to expand high-h nodes. However, a single h-plateau
also consists of nodes with different h∗ values (projected to
the y-axis). This leads to an observation that a naive algo-
rithm may keep expanding bad (high-h∗) nodes within an
h-value plateau. This pathology happens for each h-plateau
and requires intra-plateau exploration.

Both Type-GBFS and Depth Diversification use Type-
based node selection (Xie et al. 2014), but for different
purposes. In Type-based node selection, nodes with equal
depth-related metrics (distance from goals h, initial states g or
plateau entrance d) are put in a single bucket, and the search is
diversified by random bucket selection. However, the former
breaks the h-based best-first ordering (inter-plateau) while
the latter uses it inside each h-plateau (intra-plateau). In Ta-
ble 1, we compared their performance and show that: 1. Inter-
and intra-plateau exploration address orthogonal issues and
have complementary performance; 2. Combining inter- and
intra-plateau exploration can result in better performance
than either exploration alone.

3 Breadth-Aware IP-Diversification
One problem with diversification based on path distance or
heuristics (depth, Type-GBFS) is that it does not diversify
with respect to breadth – nodes with equal estimated dis-
tance from goals (h), initial states (g) or plateau entrance (d)
are put in a single bucket. We propose IP-diversification, a
new diversification that addresses this type of bias. On each
explorative expansion, we expand nodes following Prim’s
method (Prim 1957) for Minimum Spanning Tree (MST)
on a graph which is isomorphic to the search space (inter-
plateau) or pleateau (intra-pleateau), but has randomly as-
signed edge costs. This is known to simulate Invasion Per-
colation (Wilkinson and Willemsen 1983), a physical fractal
phenomenon where the distribution of fluid slowly invading
porous media (e.g. porous rock). Figure 2 shows an example
of a 2-dimensional lattice after running this algorithm for a
certain length of time (blue=expanded). The resulting struc-
ture has holes of various size that the fluid has not invaded,
due to embankments, the high-valued edges surrounding the
neighbors of the holes.

Consider a blind search on the graph shown in Figure 2.
It consists of two large components, high-b and low-b. The
initial node is I and the goal is L4. Both branches have max-
imum depth D, and the high-b branch has maximum width
B, both values being very large. It presents a pathological
case for depth-diversification. Although it addresses the bias
of Depth/Breadth-first Search to deeper/shallower region by
distributing the effort among various depths, the probabil-
ity of expanding L2, L4 at depths 2, 4 is 1/(B + 1) each,
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Figure 1: A conceptual view of the node distribution wrto
y = h∗ and inadmissible x = h. The peak line is on x = y.
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Figure 2: (Left) Invasion Percolation on 2-dimensional lattice.
(Right) Example case exhibiting large bias in the branching
factor depending on the subgraph.

which is small for large B. In contrast, in IP-diversification
does not expand high-b branch with probability 1/5. (Let
r(n) the cost of the parent edge of a node n. This happens
when r(H1) > r(Li) for any of i = 1 . . . 4, and

∫ 1

0
dr(H1)

Pr(∀i; r(Li) ≤ r(H1)) =
∫ 1

0
x4dx). In this case, node H1

is acting as an embankment.

GBFS hd hD hdD hb hB hbB
total 77 84.2 84.4 89 77 88 92.1

Table 1: Number of solved IPC14 instances (5 min, 4GB
RAM) using CG heuristics (Helmert 2006), mean of 10 runs.
hd/hD: intra/inter-plateau type-based diversification [h, 〈d〉]
and alt([h], [〈g, h〉, ro]) (Type-GBFS), hb/hB: intra / inter-
plateau IP diversification [h, r] and alt([h], [r]), hdD/hbB:
A combined configuration, alt([h, 〈d〉], [〈g, h〉, ro]) and
alt([h, r], [r]).

This strategy can be used as both inter- and intra-plateau
diversification and improve GBFS performance (Table 1).
Complementary material contains in-depth analysis and state-
of-the-art results of these methods applied to LAMA.
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