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1 Introduction

The introduction of smart meters for measuring and control-
ling electrical demand at home has motivated the electricity
industry to seek scalable mechanisms for matching electri-
cal demand to supply. Electrical demand can be managed if
households allow some flexibility in the scheduling of cer-
tain tasks such as washing clothes. If smart meters in an area
connected to a given power transformer are all coordinated,
this flexibility allows peak demand to be flattened, thus ob-
viating the need to upgrade transformer capacity or deploy
costly electricity generation capacity when the peak demand
grows. Real-time pricing (RTP) is an effective scheme to
reduce peak demand (Albadi and El-Saadany 2007). Un-
der RTP, the electricity price varies at different times of the
day, reflecting the real-time supply and demand conditions
in the market. Consumers can reduce their costs by shift-
ing the demand outside the peak times, therefore reduce the
peak demand. The overall aim of demand management is to
minimize electricity generation and distribution costs while
meeting the demands and preferences of consumers. This re-
search aims at investigating a new approach that elicits glob-
ally optimal demand schedule to achieve this overall aim un-
der RTP, and easily scales to large groups of households.
An autonomous system that rapidly schedules demand
for a large number of households is a challenge. This has
given rise to research on electrical demand management un-
der RTP (Samadi et al. 2010; Van Den Briel, Scott, and
Thiébaux 2013; He et al. 2014). One approach described
in (Barbato et al. 2011) is to gather data on planned tasks for
a single day from all households within an area, in an electri-
cal demand coordination centre (EDCC). All tasks are then
scheduled centrally, and the schedules are communicated to
smart meters in all households. It is not possible to opti-
mally schedule tasks for thousands of households in realistic
timescale. A second approach delegates the task scheduling
in each household to its smart meter. In (Samadi et al. 2010;
Li, Chen, and Low 2011), smart meters schedule tasks
against an initial set of prices across the day, and communi-
cate only their resulting demands to the EDCC, from which
new prices are computed. The smart meters iteratively com-
pute new schedules from which the EDCC computes new
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prices until a stopping condition is met. We call it central
pricing. However, naturally if the price is lowest at time 7',
then all households will tend to run tasks at time 7" which
causes a spike in the demand at that time, resulting in a
high cost. This paper proposes an innovative scalable ap-
proach which delegates task scheduling to household smart
meters, but avoids the limitations of central pricing. We term
it mixed initiative. This approach, like (Li, Chen, and Low
2011) uses an iterative process, but the end result is not a
set of prices. Instead it is a globally optimal consumption
level (maximum demand for all households) for each period
of the day.

2 Demand Optimization Problem

We investigate a non-linear multi-objective optimization
problem that minimizes the total electricity cost and incon-
venience cost of households. An electricity cost is specified
at each period of the day that increases non-linearly with the
total demand. An inconvenience cost is incurred for start-
ing a task at its non-preferred start time. The inconvenience
cost is designed to balance inconvenience against the cost of
electricity provision. The optimal solution to this problem
is a set of consumption levels that minimizes the total costs.
We find this solution by computing a probability for each
task to start at each feasible time, such that the expected
total demand per period of all tasks incurs the lowest total
costs, and the optimal expected total demands are the op-
timal consumption levels we seek for this problem. These
probabilities of start times for tasks are then used by smart
meters to schedule tasks in practice. As in (Van Den Briel,
Scott, and Thiébaux 2013), we assume that the number of
tasks is large enough that the total demands are highly likely
to be close to the optimal consumption levels.

3 The mixed initiative approach

We propose a mixed initiative approach to find the opti-
mal consumption levels in an iterative manner, illustrated
in the complementary material. At each iteration, each
household optimally schedules its own tasks, given a set
of prices. Then a demand coordinator computes a proba-
bility for these new start times and a new price per period,
with a convex optimization method, also known as Frank-
Wolfe (FW) algorithm. In our implementation of FW, firstly,



the coordinator computes the total demand per period Dy,.
Secondly, it takes the optimal consumption level per pe-
riod found at the previous iteration Dy _1, and finds a point
Dy, =Dy | +ax (D — ]~)k_1) between Dy, and Dy,
that minimizes the total electricity cost and inconvenience
cost, given the current set of prices. Dy, is the optimal con-
sumption levels found at iteration k, and the associated « is
the probability we seek for this iteration. Finally, the coordi-
nator computes the new prices for the next iteration based on

Dj.. The mixed initiative approach iterates until a stopping
condition where no household can reschedule any task to re-
duce its electricity cost and inconvenience cost, thus every
household is, in a sense, satisfied. After that, smart meters
uses the probability produced at each iteration to compute
the probability distribution of start times for tasks in each
households. The complexity of this approach is independent
of the number of households. At each iteration, the coordi-
nator does not need to know the details of individual tasks
of households, but the aggregate demands. This property al-
lows this approach to be applied to problems with tens of
thousands of households.

4 Experimental Results

We generated 200 artificial problem instances based on real
data, ranging in size from 1000 to 21000 households (each
household has ten tasks). We recorded the convergence rate,
run time, and peak and cost reductions in each problem in-
stance. Figure 1 shows that the average convergence rate
first increases slightly with the number of households, then
remains similar. The convergence rate for 21000 house-
holds (210000 appliances) is less than 50 iterations. Fig-
ure 2 shows the run-time of the task scheduling algorithm
per household and our version of Frank-Wolfe for the coor-
dinator, at each iteration. When 21000 households schedule
tasks independently in parallel, the average run time of one
iteration is less than 0.012 second. Figure 3 shows that on
average, the proposed approach reduces the peak demand by
18%, and the electricity cost by 12%.

5 Conclusions

The mixed initiative approach presented in this paper finds
the optimal consumption levels for households in an iterative
manner. The intermediate results of this approach can be
used by smart meters to compute probabilities of start times
for tasks in each household. With these distributions, smart
meters can schedule tasks with a simple randomized method,
and the resulting total demands will be highly likely close to
the optimal consumption levels that are computed before.
The complexity of this approach is independent of the num-
ber of households, which allows it to be applied to problems
with tens of thousands of households. Our results show that
the proposed approach has fast convergence, high scalability
and effective peak demand and cost reduction. More details
are available at http://tinyurl.com/jc9apqb6.
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