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Abstract

In mobile devices, the limited area of fingerprint sensors
brings demand of partial fingerprint matching. Existing fin-
gerprint authentication algorithms are mainly based on minu-
tiae matching. However, their accuracy degrades significantly
for partial-to-partial matching due to the lack of minutiae.
Optical fingerprint sensor can capture very high-resolution
fingerprints (2000dpi) with rich details as pores, scars, etc.
These details can cover the shortage of minutiae insufficiency.
In this paper, we propose a novel matching algorithm for
such fingerprints, namely Deep Joint KNN-Triplet Embed-
ding, by making good use of these subtle features. Our model
employs a deep convolutional neural network (CNN) with a
well-designed joint loss to project raw fingerprint images into
an Euclidean space. Then we can use L2-distance to measure
the similarity of two fingerprints. Experiments indicate that
our model outperforms several state-of-the-art approaches.

Introduction

Nowadays, fingerprint authentication in mobile devices be-
comes increasingly popular. Limited by space, the finger-
print sensors are miniaturized, which leads to partial fin-
gerprints. Mobile fingerprint sensors are mainly capaci-
tive, capturing images of resolution around 500dpi. Par-
tial fingerprint matching is challenging under such resolu-
tion because local features are relatively insufficient. Accu-
racy of minutiae-based fingerprint matching algorithms (Fu
et al. 2012) degrades significantly with inadequate num-
ber of minutiae. Some other texture descriptors such as
AKAZE (Alcantarilla and Solutions 2011) can increase the
number of local matching (Mathur et al. 2016), but they are
not designed to make full use of fingerprint structures.

Optical fingerprint sensor can capture fingerprints with
resolution as high as 2000dpi, providing very rich details
such as pores, scars and so on (Fig. 1). These features
can make up for the insufficiency of minutiae. Moreover,
with these details, fingerprint authentication system is much
harder to crack. However, making use of these subtle fea-
tures is challenging, since they are unstable and irregular. It
is tedious to detect and match these details one by one.

In this paper, we propose a novel model named Deep Joint
KNN-Triplet Embedding (Fig. 2) to address the above chal-
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Figure 1: (a) Optical fingerprint sensor, (b) Minutiae, pores
and scars on a partial high-resolution fingerprint.

Figure 2: Model structure.

lenges. We have two major contributions. First, instead of
using handcrafted features, we employ a deep CNN with
triplet loss to learn features from scratch in an end-to-end
manner. It embeds fingerprint images into an Euclidean
space. Moreover, we carefully design a K-Nearest-Neighbor
policy to select proper triplets for training. Second, by ex-
ploiting the advantages of triplet loss and softmax loss, we
joint both losses to make our model converge fast and stably.

Experiments on our in-house database show that the pro-
posed model achieves true accept rate of 89.17% where false
accept rate is under 0.1%, and equal error rate of 1.94%,
which outperforms several state-of-the-art approaches.

Deep Joint KNN-Triplet Embedding

We design a 38-layer CNN1. Let f(x) ∈ Rd denote the
feature embedding. It embeds a fingerprint image x into
a d-dimension Euclidean space. In addition, we constrain
‖f(x)‖2 = 1 suggested by (Schroff, Kalenichenko, and
Philbin 2015). The following sections describe how we em-
ploy KNN-Triplet Embedding and Joint Feature Learning.

KNN-Triplet Embedding

We first briefly review the standard triplet loss. For each
triplet of images < xa

i , x
p
i , x

n
i >, where xa

i (anchor) and xp
i

1Details of our network and more complementary materials are
available in https://zhangfd.github.io/fp/djkte/
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(positive) come from the same identity while xn
i (negative)

comes from another identity, we want the feature embedding
of them to satisfy the following constraint:

Ji = ‖f(xa
i )− f(xp

i )‖2+α−‖f(xa
i )− f(xn

i )‖2 ≤ 0, (1)

where α is a given constant representing the margin enforced
between positive and negative pairs. The loss function of N
triplets is defined as,

Jtriplet =

N∑

i

max {0, Ji} (2)

Triplet selection policy is quite crucial. Random sampling
may result in slow convergence, since most triplets eas-
ily satisfy Eq.(1). Online hard example mining can acceler-
ate convergence (Schroff, Kalenichenko, and Philbin 2015).
However, a pair of partial fingerprints from the same iden-
tity may be captured from different regions of a finger. It’s
not reasonable to force them to be close in feature space.
Triplets containing these couples should be ignored.

We employ KNN policy to address such a problem. To
create one mini-batch, we firstly sample N c identities and
Np fingerprints per identity as anchors. Then we randomly
sample Nn negative fingerprints to select hard negatives. For
a given anchor, we only select k nearest positives to gener-
ate anchor-positive (a-p) pairs. For each a-p pair, we select
the nearest negative sample to the anchor to form a triplet.
Therefore we have N c ×Np × k triplets in one mini-batch.

Joint Feature Learning

Triplet loss can constrain features in Euclidean space. How-
ever, it has a relatively slow convergence speed. Here are
two possible reasons. First, triplet loss measures relative dis-
tances. The optimization objective is relative and uncertain.
Gradients of different batches may conflict to each other.
Second, inter-class gradient (Eq. (3)) of triplet loss is small
when f(xa

i ) and f(xn
i ) are close, which makes harder nega-

tive samples separate from other more slowly. Besides, bad
parameter initialization or undesirable triplets may lead to a
collapsed model f(x) = C, where C is a constant vector.

∂Ji
∂xn

i

= f(xa
i )− f(xn

i ) (3)

Softmax loss doesn’t have the above problems, but it can’t
promise the features extracted from the same identity to be
close in Euclidean space, since dissimilar vectors could have
same outputs of softmax.

J = Jtriplet + λJsoftmax (4)

Therefore, we joint triplet loss and softmax loss (Eq. (4))
to take both advantages, providing not only a constraint in
Euclidean space, but a fast and stable convergence.

Experiments

Due to lack of publicly available partial high-resolution fin-
gerprint database, we collected an in-house database. We
used an optical fingerprint sensor with area 0.24” × 0.39”.
Size of captured images is 480 × 800. We collected the

Table 1: TAR@FAR≤ 0.1% on in-house database (%)

M A OurST OurS OurKT Proposed
28.83 11.11 80.78 76.17 71.33 89.17

Table 2: EER on in-house database (%)

M A OurST OurS OurKT Proposed
20.48 41.16 2.83 3.81 6.78 1.94

database of 1800 identities in two steps. In first step, 20
scans on different finger regions were registered as templates
for each person. In the second step, same volunteers gave
40 scans with varying finger regions and orientations as test
images during matching. Then we randomly sampled 180
identities for testing and remaining 1620 for training.

We compared accuracy of the proposed model against
minutiae-based algorithm (Fu et al. 2012) (denoted as M)
and AKAZE-based algorithm (Mathur et al. 2016) (denoted
as A). We also compared accuracy of 3 variants of the pro-
posed model by removing KNN (denoted as OurST), KNN-
Triplet (denoted as OurS) and Softmax (denoted as OurKT).
Table 1 shows the TAR (True Accept Rate) with FAR (False
Accept Rate) under 0.1% and Table 2 lists EER (Equal Error
Rate) for above algorithms.

As shown in Table 1 and Table 2, all deep models out-
perform both algorithms based on minutiae and A-KAZE
feature, showing great power of deep convolutional network.
Removing any of the joint components in loss, or KNN sam-
pling policy will make the accuracy degrade, proving the ef-
fectiveness of proposed method.
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Conclusions and Future Work

In this paper, we propose a novel model to solve partial high-
resolution fingerprint matching problem. Experimental re-
sults show that proposed model performs better than several
existing methods. In future, we decide to investigate some
pre-processing such as rough alignment, denoising, enhanc-
ing, etc. We also want to consider minutiae topology which
proposed model can’t take fully advantage of.
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